github.com/code-reading/golang@v0.0.0-20220303082512-ba5bc0e589a3/go/src/math/big/ratconv.go (about) 1 // Copyright 2015 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // This file implements rat-to-string conversion functions. 6 7 package big 8 9 import ( 10 "errors" 11 "fmt" 12 "io" 13 "strconv" 14 "strings" 15 ) 16 17 func ratTok(ch rune) bool { 18 return strings.ContainsRune("+-/0123456789.eE", ch) 19 } 20 21 var ratZero Rat 22 var _ fmt.Scanner = &ratZero // *Rat must implement fmt.Scanner 23 24 // Scan is a support routine for fmt.Scanner. It accepts the formats 25 // 'e', 'E', 'f', 'F', 'g', 'G', and 'v'. All formats are equivalent. 26 func (z *Rat) Scan(s fmt.ScanState, ch rune) error { 27 tok, err := s.Token(true, ratTok) 28 if err != nil { 29 return err 30 } 31 if !strings.ContainsRune("efgEFGv", ch) { 32 return errors.New("Rat.Scan: invalid verb") 33 } 34 if _, ok := z.SetString(string(tok)); !ok { 35 return errors.New("Rat.Scan: invalid syntax") 36 } 37 return nil 38 } 39 40 // SetString sets z to the value of s and returns z and a boolean indicating 41 // success. s can be given as a (possibly signed) fraction "a/b", or as a 42 // floating-point number optionally followed by an exponent. 43 // If a fraction is provided, both the dividend and the divisor may be a 44 // decimal integer or independently use a prefix of ``0b'', ``0'' or ``0o'', 45 // or ``0x'' (or their upper-case variants) to denote a binary, octal, or 46 // hexadecimal integer, respectively. The divisor may not be signed. 47 // If a floating-point number is provided, it may be in decimal form or 48 // use any of the same prefixes as above but for ``0'' to denote a non-decimal 49 // mantissa. A leading ``0'' is considered a decimal leading 0; it does not 50 // indicate octal representation in this case. 51 // An optional base-10 ``e'' or base-2 ``p'' (or their upper-case variants) 52 // exponent may be provided as well, except for hexadecimal floats which 53 // only accept an (optional) ``p'' exponent (because an ``e'' or ``E'' cannot 54 // be distinguished from a mantissa digit). If the exponent's absolute value 55 // is too large, the operation may fail. 56 // The entire string, not just a prefix, must be valid for success. If the 57 // operation failed, the value of z is undefined but the returned value is nil. 58 func (z *Rat) SetString(s string) (*Rat, bool) { 59 if len(s) == 0 { 60 return nil, false 61 } 62 // len(s) > 0 63 64 // parse fraction a/b, if any 65 if sep := strings.Index(s, "/"); sep >= 0 { 66 if _, ok := z.a.SetString(s[:sep], 0); !ok { 67 return nil, false 68 } 69 r := strings.NewReader(s[sep+1:]) 70 var err error 71 if z.b.abs, _, _, err = z.b.abs.scan(r, 0, false); err != nil { 72 return nil, false 73 } 74 // entire string must have been consumed 75 if _, err = r.ReadByte(); err != io.EOF { 76 return nil, false 77 } 78 if len(z.b.abs) == 0 { 79 return nil, false 80 } 81 return z.norm(), true 82 } 83 84 // parse floating-point number 85 r := strings.NewReader(s) 86 87 // sign 88 neg, err := scanSign(r) 89 if err != nil { 90 return nil, false 91 } 92 93 // mantissa 94 var base int 95 var fcount int // fractional digit count; valid if <= 0 96 z.a.abs, base, fcount, err = z.a.abs.scan(r, 0, true) 97 if err != nil { 98 return nil, false 99 } 100 101 // exponent 102 var exp int64 103 var ebase int 104 exp, ebase, err = scanExponent(r, true, true) 105 if err != nil { 106 return nil, false 107 } 108 109 // there should be no unread characters left 110 if _, err = r.ReadByte(); err != io.EOF { 111 return nil, false 112 } 113 114 // special-case 0 (see also issue #16176) 115 if len(z.a.abs) == 0 { 116 return z, true 117 } 118 // len(z.a.abs) > 0 119 120 // The mantissa may have a radix point (fcount <= 0) and there 121 // may be a nonzero exponent exp. The radix point amounts to a 122 // division by base**(-fcount), which equals a multiplication by 123 // base**fcount. An exponent means multiplication by ebase**exp. 124 // Multiplications are commutative, so we can apply them in any 125 // order. We only have powers of 2 and 10, and we split powers 126 // of 10 into the product of the same powers of 2 and 5. This 127 // may reduce the size of shift/multiplication factors or 128 // divisors required to create the final fraction, depending 129 // on the actual floating-point value. 130 131 // determine binary or decimal exponent contribution of radix point 132 var exp2, exp5 int64 133 if fcount < 0 { 134 // The mantissa has a radix point ddd.dddd; and 135 // -fcount is the number of digits to the right 136 // of '.'. Adjust relevant exponent accordingly. 137 d := int64(fcount) 138 switch base { 139 case 10: 140 exp5 = d 141 fallthrough // 10**e == 5**e * 2**e 142 case 2: 143 exp2 = d 144 case 8: 145 exp2 = d * 3 // octal digits are 3 bits each 146 case 16: 147 exp2 = d * 4 // hexadecimal digits are 4 bits each 148 default: 149 panic("unexpected mantissa base") 150 } 151 // fcount consumed - not needed anymore 152 } 153 154 // take actual exponent into account 155 switch ebase { 156 case 10: 157 exp5 += exp 158 fallthrough // see fallthrough above 159 case 2: 160 exp2 += exp 161 default: 162 panic("unexpected exponent base") 163 } 164 // exp consumed - not needed anymore 165 166 // apply exp5 contributions 167 // (start with exp5 so the numbers to multiply are smaller) 168 if exp5 != 0 { 169 n := exp5 170 if n < 0 { 171 n = -n 172 } 173 if n > 1e6 { 174 return nil, false // avoid excessively large exponents 175 } 176 pow5 := z.b.abs.expNN(natFive, nat(nil).setWord(Word(n)), nil) // use underlying array of z.b.abs 177 if exp5 > 0 { 178 z.a.abs = z.a.abs.mul(z.a.abs, pow5) 179 z.b.abs = z.b.abs.setWord(1) 180 } else { 181 z.b.abs = pow5 182 } 183 } else { 184 z.b.abs = z.b.abs.setWord(1) 185 } 186 187 // apply exp2 contributions 188 if exp2 < -1e7 || exp2 > 1e7 { 189 return nil, false // avoid excessively large exponents 190 } 191 if exp2 > 0 { 192 z.a.abs = z.a.abs.shl(z.a.abs, uint(exp2)) 193 } else if exp2 < 0 { 194 z.b.abs = z.b.abs.shl(z.b.abs, uint(-exp2)) 195 } 196 197 z.a.neg = neg && len(z.a.abs) > 0 // 0 has no sign 198 199 return z.norm(), true 200 } 201 202 // scanExponent scans the longest possible prefix of r representing a base 10 203 // (``e'', ``E'') or a base 2 (``p'', ``P'') exponent, if any. It returns the 204 // exponent, the exponent base (10 or 2), or a read or syntax error, if any. 205 // 206 // If sepOk is set, an underscore character ``_'' may appear between successive 207 // exponent digits; such underscores do not change the value of the exponent. 208 // Incorrect placement of underscores is reported as an error if there are no 209 // other errors. If sepOk is not set, underscores are not recognized and thus 210 // terminate scanning like any other character that is not a valid digit. 211 // 212 // exponent = ( "e" | "E" | "p" | "P" ) [ sign ] digits . 213 // sign = "+" | "-" . 214 // digits = digit { [ '_' ] digit } . 215 // digit = "0" ... "9" . 216 // 217 // A base 2 exponent is only permitted if base2ok is set. 218 func scanExponent(r io.ByteScanner, base2ok, sepOk bool) (exp int64, base int, err error) { 219 // one char look-ahead 220 ch, err := r.ReadByte() 221 if err != nil { 222 if err == io.EOF { 223 err = nil 224 } 225 return 0, 10, err 226 } 227 228 // exponent char 229 switch ch { 230 case 'e', 'E': 231 base = 10 232 case 'p', 'P': 233 if base2ok { 234 base = 2 235 break // ok 236 } 237 fallthrough // binary exponent not permitted 238 default: 239 r.UnreadByte() // ch does not belong to exponent anymore 240 return 0, 10, nil 241 } 242 243 // sign 244 var digits []byte 245 ch, err = r.ReadByte() 246 if err == nil && (ch == '+' || ch == '-') { 247 if ch == '-' { 248 digits = append(digits, '-') 249 } 250 ch, err = r.ReadByte() 251 } 252 253 // prev encodes the previously seen char: it is one 254 // of '_', '0' (a digit), or '.' (anything else). A 255 // valid separator '_' may only occur after a digit. 256 prev := '.' 257 invalSep := false 258 259 // exponent value 260 hasDigits := false 261 for err == nil { 262 if '0' <= ch && ch <= '9' { 263 digits = append(digits, ch) 264 prev = '0' 265 hasDigits = true 266 } else if ch == '_' && sepOk { 267 if prev != '0' { 268 invalSep = true 269 } 270 prev = '_' 271 } else { 272 r.UnreadByte() // ch does not belong to number anymore 273 break 274 } 275 ch, err = r.ReadByte() 276 } 277 278 if err == io.EOF { 279 err = nil 280 } 281 if err == nil && !hasDigits { 282 err = errNoDigits 283 } 284 if err == nil { 285 exp, err = strconv.ParseInt(string(digits), 10, 64) 286 } 287 // other errors take precedence over invalid separators 288 if err == nil && (invalSep || prev == '_') { 289 err = errInvalSep 290 } 291 292 return 293 } 294 295 // String returns a string representation of x in the form "a/b" (even if b == 1). 296 func (x *Rat) String() string { 297 return string(x.marshal()) 298 } 299 300 // marshal implements String returning a slice of bytes 301 func (x *Rat) marshal() []byte { 302 var buf []byte 303 buf = x.a.Append(buf, 10) 304 buf = append(buf, '/') 305 if len(x.b.abs) != 0 { 306 buf = x.b.Append(buf, 10) 307 } else { 308 buf = append(buf, '1') 309 } 310 return buf 311 } 312 313 // RatString returns a string representation of x in the form "a/b" if b != 1, 314 // and in the form "a" if b == 1. 315 func (x *Rat) RatString() string { 316 if x.IsInt() { 317 return x.a.String() 318 } 319 return x.String() 320 } 321 322 // FloatString returns a string representation of x in decimal form with prec 323 // digits of precision after the radix point. The last digit is rounded to 324 // nearest, with halves rounded away from zero. 325 func (x *Rat) FloatString(prec int) string { 326 var buf []byte 327 328 if x.IsInt() { 329 buf = x.a.Append(buf, 10) 330 if prec > 0 { 331 buf = append(buf, '.') 332 for i := prec; i > 0; i-- { 333 buf = append(buf, '0') 334 } 335 } 336 return string(buf) 337 } 338 // x.b.abs != 0 339 340 q, r := nat(nil).div(nat(nil), x.a.abs, x.b.abs) 341 342 p := natOne 343 if prec > 0 { 344 p = nat(nil).expNN(natTen, nat(nil).setUint64(uint64(prec)), nil) 345 } 346 347 r = r.mul(r, p) 348 r, r2 := r.div(nat(nil), r, x.b.abs) 349 350 // see if we need to round up 351 r2 = r2.add(r2, r2) 352 if x.b.abs.cmp(r2) <= 0 { 353 r = r.add(r, natOne) 354 if r.cmp(p) >= 0 { 355 q = nat(nil).add(q, natOne) 356 r = nat(nil).sub(r, p) 357 } 358 } 359 360 if x.a.neg { 361 buf = append(buf, '-') 362 } 363 buf = append(buf, q.utoa(10)...) // itoa ignores sign if q == 0 364 365 if prec > 0 { 366 buf = append(buf, '.') 367 rs := r.utoa(10) 368 for i := prec - len(rs); i > 0; i-- { 369 buf = append(buf, '0') 370 } 371 buf = append(buf, rs...) 372 } 373 374 return string(buf) 375 }