github.com/code-reading/golang@v0.0.0-20220303082512-ba5bc0e589a3/go/src/net/http/server.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // HTTP server. See RFC 7230 through 7235. 6 7 package http 8 9 import ( 10 "bufio" 11 "bytes" 12 "context" 13 "crypto/tls" 14 "errors" 15 "fmt" 16 "io" 17 "log" 18 "math/rand" 19 "net" 20 "net/textproto" 21 "net/url" 22 urlpkg "net/url" 23 "os" 24 "path" 25 "runtime" 26 "sort" 27 "strconv" 28 "strings" 29 "sync" 30 "sync/atomic" 31 "time" 32 33 "golang.org/x/net/http/httpguts" 34 ) 35 36 // Errors used by the HTTP server. 37 var ( 38 // ErrBodyNotAllowed is returned by ResponseWriter.Write calls 39 // when the HTTP method or response code does not permit a 40 // body. 41 ErrBodyNotAllowed = errors.New("http: request method or response status code does not allow body") 42 43 // ErrHijacked is returned by ResponseWriter.Write calls when 44 // the underlying connection has been hijacked using the 45 // Hijacker interface. A zero-byte write on a hijacked 46 // connection will return ErrHijacked without any other side 47 // effects. 48 ErrHijacked = errors.New("http: connection has been hijacked") 49 50 // ErrContentLength is returned by ResponseWriter.Write calls 51 // when a Handler set a Content-Length response header with a 52 // declared size and then attempted to write more bytes than 53 // declared. 54 ErrContentLength = errors.New("http: wrote more than the declared Content-Length") 55 56 // Deprecated: ErrWriteAfterFlush is no longer returned by 57 // anything in the net/http package. Callers should not 58 // compare errors against this variable. 59 ErrWriteAfterFlush = errors.New("unused") 60 ) 61 62 // A Handler responds to an HTTP request. 63 // 64 // ServeHTTP should write reply headers and data to the ResponseWriter 65 // and then return. Returning signals that the request is finished; it 66 // is not valid to use the ResponseWriter or read from the 67 // Request.Body after or concurrently with the completion of the 68 // ServeHTTP call. 69 // 70 // Depending on the HTTP client software, HTTP protocol version, and 71 // any intermediaries between the client and the Go server, it may not 72 // be possible to read from the Request.Body after writing to the 73 // ResponseWriter. Cautious handlers should read the Request.Body 74 // first, and then reply. 75 // 76 // Except for reading the body, handlers should not modify the 77 // provided Request. 78 // 79 // If ServeHTTP panics, the server (the caller of ServeHTTP) assumes 80 // that the effect of the panic was isolated to the active request. 81 // It recovers the panic, logs a stack trace to the server error log, 82 // and either closes the network connection or sends an HTTP/2 83 // RST_STREAM, depending on the HTTP protocol. To abort a handler so 84 // the client sees an interrupted response but the server doesn't log 85 // an error, panic with the value ErrAbortHandler. 86 type Handler interface { 87 ServeHTTP(ResponseWriter, *Request) 88 } 89 90 // A ResponseWriter interface is used by an HTTP handler to 91 // construct an HTTP response. 92 // 93 // A ResponseWriter may not be used after the Handler.ServeHTTP method 94 // has returned. 95 type ResponseWriter interface { 96 // Header returns the header map that will be sent by 97 // WriteHeader. The Header map also is the mechanism with which 98 // Handlers can set HTTP trailers. 99 // 100 // Changing the header map after a call to WriteHeader (or 101 // Write) has no effect unless the modified headers are 102 // trailers. 103 // 104 // There are two ways to set Trailers. The preferred way is to 105 // predeclare in the headers which trailers you will later 106 // send by setting the "Trailer" header to the names of the 107 // trailer keys which will come later. In this case, those 108 // keys of the Header map are treated as if they were 109 // trailers. See the example. The second way, for trailer 110 // keys not known to the Handler until after the first Write, 111 // is to prefix the Header map keys with the TrailerPrefix 112 // constant value. See TrailerPrefix. 113 // 114 // To suppress automatic response headers (such as "Date"), set 115 // their value to nil. 116 Header() Header 117 118 // Write writes the data to the connection as part of an HTTP reply. 119 // 120 // If WriteHeader has not yet been called, Write calls 121 // WriteHeader(http.StatusOK) before writing the data. If the Header 122 // does not contain a Content-Type line, Write adds a Content-Type set 123 // to the result of passing the initial 512 bytes of written data to 124 // DetectContentType. Additionally, if the total size of all written 125 // data is under a few KB and there are no Flush calls, the 126 // Content-Length header is added automatically. 127 // 128 // Depending on the HTTP protocol version and the client, calling 129 // Write or WriteHeader may prevent future reads on the 130 // Request.Body. For HTTP/1.x requests, handlers should read any 131 // needed request body data before writing the response. Once the 132 // headers have been flushed (due to either an explicit Flusher.Flush 133 // call or writing enough data to trigger a flush), the request body 134 // may be unavailable. For HTTP/2 requests, the Go HTTP server permits 135 // handlers to continue to read the request body while concurrently 136 // writing the response. However, such behavior may not be supported 137 // by all HTTP/2 clients. Handlers should read before writing if 138 // possible to maximize compatibility. 139 Write([]byte) (int, error) 140 141 // WriteHeader sends an HTTP response header with the provided 142 // status code. 143 // 144 // If WriteHeader is not called explicitly, the first call to Write 145 // will trigger an implicit WriteHeader(http.StatusOK). 146 // Thus explicit calls to WriteHeader are mainly used to 147 // send error codes. 148 // 149 // The provided code must be a valid HTTP 1xx-5xx status code. 150 // Only one header may be written. Go does not currently 151 // support sending user-defined 1xx informational headers, 152 // with the exception of 100-continue response header that the 153 // Server sends automatically when the Request.Body is read. 154 WriteHeader(statusCode int) 155 } 156 157 // The Flusher interface is implemented by ResponseWriters that allow 158 // an HTTP handler to flush buffered data to the client. 159 // 160 // The default HTTP/1.x and HTTP/2 ResponseWriter implementations 161 // support Flusher, but ResponseWriter wrappers may not. Handlers 162 // should always test for this ability at runtime. 163 // 164 // Note that even for ResponseWriters that support Flush, 165 // if the client is connected through an HTTP proxy, 166 // the buffered data may not reach the client until the response 167 // completes. 168 type Flusher interface { 169 // Flush sends any buffered data to the client. 170 Flush() 171 } 172 173 // The Hijacker interface is implemented by ResponseWriters that allow 174 // an HTTP handler to take over the connection. 175 // 176 // The default ResponseWriter for HTTP/1.x connections supports 177 // Hijacker, but HTTP/2 connections intentionally do not. 178 // ResponseWriter wrappers may also not support Hijacker. Handlers 179 // should always test for this ability at runtime. 180 type Hijacker interface { 181 // Hijack lets the caller take over the connection. 182 // After a call to Hijack the HTTP server library 183 // will not do anything else with the connection. 184 // 185 // It becomes the caller's responsibility to manage 186 // and close the connection. 187 // 188 // The returned net.Conn may have read or write deadlines 189 // already set, depending on the configuration of the 190 // Server. It is the caller's responsibility to set 191 // or clear those deadlines as needed. 192 // 193 // The returned bufio.Reader may contain unprocessed buffered 194 // data from the client. 195 // 196 // After a call to Hijack, the original Request.Body must not 197 // be used. The original Request's Context remains valid and 198 // is not canceled until the Request's ServeHTTP method 199 // returns. 200 Hijack() (net.Conn, *bufio.ReadWriter, error) 201 } 202 203 // The CloseNotifier interface is implemented by ResponseWriters which 204 // allow detecting when the underlying connection has gone away. 205 // 206 // This mechanism can be used to cancel long operations on the server 207 // if the client has disconnected before the response is ready. 208 // 209 // Deprecated: the CloseNotifier interface predates Go's context package. 210 // New code should use Request.Context instead. 211 type CloseNotifier interface { 212 // CloseNotify returns a channel that receives at most a 213 // single value (true) when the client connection has gone 214 // away. 215 // 216 // CloseNotify may wait to notify until Request.Body has been 217 // fully read. 218 // 219 // After the Handler has returned, there is no guarantee 220 // that the channel receives a value. 221 // 222 // If the protocol is HTTP/1.1 and CloseNotify is called while 223 // processing an idempotent request (such a GET) while 224 // HTTP/1.1 pipelining is in use, the arrival of a subsequent 225 // pipelined request may cause a value to be sent on the 226 // returned channel. In practice HTTP/1.1 pipelining is not 227 // enabled in browsers and not seen often in the wild. If this 228 // is a problem, use HTTP/2 or only use CloseNotify on methods 229 // such as POST. 230 CloseNotify() <-chan bool 231 } 232 233 var ( 234 // ServerContextKey is a context key. It can be used in HTTP 235 // handlers with Context.Value to access the server that 236 // started the handler. The associated value will be of 237 // type *Server. 238 ServerContextKey = &contextKey{"http-server"} 239 240 // LocalAddrContextKey is a context key. It can be used in 241 // HTTP handlers with Context.Value to access the local 242 // address the connection arrived on. 243 // The associated value will be of type net.Addr. 244 LocalAddrContextKey = &contextKey{"local-addr"} 245 ) 246 247 // A conn represents the server side of an HTTP connection. 248 type conn struct { 249 // server is the server on which the connection arrived. 250 // Immutable; never nil. 251 server *Server 252 253 // cancelCtx cancels the connection-level context. 254 cancelCtx context.CancelFunc 255 256 // rwc is the underlying network connection. 257 // This is never wrapped by other types and is the value given out 258 // to CloseNotifier callers. It is usually of type *net.TCPConn or 259 // *tls.Conn. 260 rwc net.Conn 261 262 // remoteAddr is rwc.RemoteAddr().String(). It is not populated synchronously 263 // inside the Listener's Accept goroutine, as some implementations block. 264 // It is populated immediately inside the (*conn).serve goroutine. 265 // This is the value of a Handler's (*Request).RemoteAddr. 266 remoteAddr string 267 268 // tlsState is the TLS connection state when using TLS. 269 // nil means not TLS. 270 tlsState *tls.ConnectionState 271 272 // werr is set to the first write error to rwc. 273 // It is set via checkConnErrorWriter{w}, where bufw writes. 274 werr error 275 276 // r is bufr's read source. It's a wrapper around rwc that provides 277 // io.LimitedReader-style limiting (while reading request headers) 278 // and functionality to support CloseNotifier. See *connReader docs. 279 r *connReader 280 281 // bufr reads from r. 282 bufr *bufio.Reader 283 284 // bufw writes to checkConnErrorWriter{c}, which populates werr on error. 285 bufw *bufio.Writer 286 287 // lastMethod is the method of the most recent request 288 // on this connection, if any. 289 lastMethod string 290 291 curReq atomic.Value // of *response (which has a Request in it) 292 293 curState struct{ atomic uint64 } // packed (unixtime<<8|uint8(ConnState)) 294 295 // mu guards hijackedv 296 mu sync.Mutex 297 298 // hijackedv is whether this connection has been hijacked 299 // by a Handler with the Hijacker interface. 300 // It is guarded by mu. 301 hijackedv bool 302 } 303 304 func (c *conn) hijacked() bool { 305 c.mu.Lock() 306 defer c.mu.Unlock() 307 return c.hijackedv 308 } 309 310 // c.mu must be held. 311 func (c *conn) hijackLocked() (rwc net.Conn, buf *bufio.ReadWriter, err error) { 312 if c.hijackedv { 313 return nil, nil, ErrHijacked 314 } 315 c.r.abortPendingRead() 316 317 c.hijackedv = true 318 rwc = c.rwc 319 rwc.SetDeadline(time.Time{}) 320 321 buf = bufio.NewReadWriter(c.bufr, bufio.NewWriter(rwc)) 322 if c.r.hasByte { 323 if _, err := c.bufr.Peek(c.bufr.Buffered() + 1); err != nil { 324 return nil, nil, fmt.Errorf("unexpected Peek failure reading buffered byte: %v", err) 325 } 326 } 327 c.setState(rwc, StateHijacked, runHooks) 328 return 329 } 330 331 // This should be >= 512 bytes for DetectContentType, 332 // but otherwise it's somewhat arbitrary. 333 const bufferBeforeChunkingSize = 2048 334 335 // chunkWriter writes to a response's conn buffer, and is the writer 336 // wrapped by the response.w buffered writer. 337 // 338 // chunkWriter also is responsible for finalizing the Header, including 339 // conditionally setting the Content-Type and setting a Content-Length 340 // in cases where the handler's final output is smaller than the buffer 341 // size. It also conditionally adds chunk headers, when in chunking mode. 342 // 343 // See the comment above (*response).Write for the entire write flow. 344 type chunkWriter struct { 345 res *response 346 347 // header is either nil or a deep clone of res.handlerHeader 348 // at the time of res.writeHeader, if res.writeHeader is 349 // called and extra buffering is being done to calculate 350 // Content-Type and/or Content-Length. 351 header Header 352 353 // wroteHeader tells whether the header's been written to "the 354 // wire" (or rather: w.conn.buf). this is unlike 355 // (*response).wroteHeader, which tells only whether it was 356 // logically written. 357 wroteHeader bool 358 359 // set by the writeHeader method: 360 chunking bool // using chunked transfer encoding for reply body 361 } 362 363 var ( 364 crlf = []byte("\r\n") 365 colonSpace = []byte(": ") 366 ) 367 368 func (cw *chunkWriter) Write(p []byte) (n int, err error) { 369 if !cw.wroteHeader { 370 cw.writeHeader(p) 371 } 372 if cw.res.req.Method == "HEAD" { 373 // Eat writes. 374 return len(p), nil 375 } 376 if cw.chunking { 377 _, err = fmt.Fprintf(cw.res.conn.bufw, "%x\r\n", len(p)) 378 if err != nil { 379 cw.res.conn.rwc.Close() 380 return 381 } 382 } 383 n, err = cw.res.conn.bufw.Write(p) 384 if cw.chunking && err == nil { 385 _, err = cw.res.conn.bufw.Write(crlf) 386 } 387 if err != nil { 388 cw.res.conn.rwc.Close() 389 } 390 return 391 } 392 393 func (cw *chunkWriter) flush() { 394 if !cw.wroteHeader { 395 cw.writeHeader(nil) 396 } 397 cw.res.conn.bufw.Flush() 398 } 399 400 func (cw *chunkWriter) close() { 401 if !cw.wroteHeader { 402 cw.writeHeader(nil) 403 } 404 if cw.chunking { 405 bw := cw.res.conn.bufw // conn's bufio writer 406 // zero chunk to mark EOF 407 bw.WriteString("0\r\n") 408 if trailers := cw.res.finalTrailers(); trailers != nil { 409 trailers.Write(bw) // the writer handles noting errors 410 } 411 // final blank line after the trailers (whether 412 // present or not) 413 bw.WriteString("\r\n") 414 } 415 } 416 417 // A response represents the server side of an HTTP response. 418 type response struct { 419 conn *conn 420 req *Request // request for this response 421 reqBody io.ReadCloser 422 cancelCtx context.CancelFunc // when ServeHTTP exits 423 wroteHeader bool // reply header has been (logically) written 424 wroteContinue bool // 100 Continue response was written 425 wants10KeepAlive bool // HTTP/1.0 w/ Connection "keep-alive" 426 wantsClose bool // HTTP request has Connection "close" 427 428 // canWriteContinue is a boolean value accessed as an atomic int32 429 // that says whether or not a 100 Continue header can be written 430 // to the connection. 431 // writeContinueMu must be held while writing the header. 432 // These two fields together synchronize the body reader 433 // (the expectContinueReader, which wants to write 100 Continue) 434 // against the main writer. 435 canWriteContinue atomicBool 436 writeContinueMu sync.Mutex 437 438 w *bufio.Writer // buffers output in chunks to chunkWriter 439 cw chunkWriter 440 441 // handlerHeader is the Header that Handlers get access to, 442 // which may be retained and mutated even after WriteHeader. 443 // handlerHeader is copied into cw.header at WriteHeader 444 // time, and privately mutated thereafter. 445 handlerHeader Header 446 calledHeader bool // handler accessed handlerHeader via Header 447 448 written int64 // number of bytes written in body 449 contentLength int64 // explicitly-declared Content-Length; or -1 450 status int // status code passed to WriteHeader 451 452 // close connection after this reply. set on request and 453 // updated after response from handler if there's a 454 // "Connection: keep-alive" response header and a 455 // Content-Length. 456 closeAfterReply bool 457 458 // requestBodyLimitHit is set by requestTooLarge when 459 // maxBytesReader hits its max size. It is checked in 460 // WriteHeader, to make sure we don't consume the 461 // remaining request body to try to advance to the next HTTP 462 // request. Instead, when this is set, we stop reading 463 // subsequent requests on this connection and stop reading 464 // input from it. 465 requestBodyLimitHit bool 466 467 // trailers are the headers to be sent after the handler 468 // finishes writing the body. This field is initialized from 469 // the Trailer response header when the response header is 470 // written. 471 trailers []string 472 473 handlerDone atomicBool // set true when the handler exits 474 475 // Buffers for Date, Content-Length, and status code 476 dateBuf [len(TimeFormat)]byte 477 clenBuf [10]byte 478 statusBuf [3]byte 479 480 // closeNotifyCh is the channel returned by CloseNotify. 481 // TODO(bradfitz): this is currently (for Go 1.8) always 482 // non-nil. Make this lazily-created again as it used to be? 483 closeNotifyCh chan bool 484 didCloseNotify int32 // atomic (only 0->1 winner should send) 485 } 486 487 // TrailerPrefix is a magic prefix for ResponseWriter.Header map keys 488 // that, if present, signals that the map entry is actually for 489 // the response trailers, and not the response headers. The prefix 490 // is stripped after the ServeHTTP call finishes and the values are 491 // sent in the trailers. 492 // 493 // This mechanism is intended only for trailers that are not known 494 // prior to the headers being written. If the set of trailers is fixed 495 // or known before the header is written, the normal Go trailers mechanism 496 // is preferred: 497 // https://golang.org/pkg/net/http/#ResponseWriter 498 // https://golang.org/pkg/net/http/#example_ResponseWriter_trailers 499 const TrailerPrefix = "Trailer:" 500 501 // finalTrailers is called after the Handler exits and returns a non-nil 502 // value if the Handler set any trailers. 503 func (w *response) finalTrailers() Header { 504 var t Header 505 for k, vv := range w.handlerHeader { 506 if strings.HasPrefix(k, TrailerPrefix) { 507 if t == nil { 508 t = make(Header) 509 } 510 t[strings.TrimPrefix(k, TrailerPrefix)] = vv 511 } 512 } 513 for _, k := range w.trailers { 514 if t == nil { 515 t = make(Header) 516 } 517 for _, v := range w.handlerHeader[k] { 518 t.Add(k, v) 519 } 520 } 521 return t 522 } 523 524 type atomicBool int32 525 526 func (b *atomicBool) isSet() bool { return atomic.LoadInt32((*int32)(b)) != 0 } 527 func (b *atomicBool) setTrue() { atomic.StoreInt32((*int32)(b), 1) } 528 func (b *atomicBool) setFalse() { atomic.StoreInt32((*int32)(b), 0) } 529 530 // declareTrailer is called for each Trailer header when the 531 // response header is written. It notes that a header will need to be 532 // written in the trailers at the end of the response. 533 func (w *response) declareTrailer(k string) { 534 k = CanonicalHeaderKey(k) 535 if !httpguts.ValidTrailerHeader(k) { 536 // Forbidden by RFC 7230, section 4.1.2 537 return 538 } 539 w.trailers = append(w.trailers, k) 540 } 541 542 // requestTooLarge is called by maxBytesReader when too much input has 543 // been read from the client. 544 func (w *response) requestTooLarge() { 545 w.closeAfterReply = true 546 w.requestBodyLimitHit = true 547 if !w.wroteHeader { 548 w.Header().Set("Connection", "close") 549 } 550 } 551 552 // needsSniff reports whether a Content-Type still needs to be sniffed. 553 func (w *response) needsSniff() bool { 554 _, haveType := w.handlerHeader["Content-Type"] 555 return !w.cw.wroteHeader && !haveType && w.written < sniffLen 556 } 557 558 // writerOnly hides an io.Writer value's optional ReadFrom method 559 // from io.Copy. 560 type writerOnly struct { 561 io.Writer 562 } 563 564 // ReadFrom is here to optimize copying from an *os.File regular file 565 // to a *net.TCPConn with sendfile, or from a supported src type such 566 // as a *net.TCPConn on Linux with splice. 567 func (w *response) ReadFrom(src io.Reader) (n int64, err error) { 568 bufp := copyBufPool.Get().(*[]byte) 569 buf := *bufp 570 defer copyBufPool.Put(bufp) 571 572 // Our underlying w.conn.rwc is usually a *TCPConn (with its 573 // own ReadFrom method). If not, just fall back to the normal 574 // copy method. 575 rf, ok := w.conn.rwc.(io.ReaderFrom) 576 if !ok { 577 return io.CopyBuffer(writerOnly{w}, src, buf) 578 } 579 580 // Copy the first sniffLen bytes before switching to ReadFrom. 581 // This ensures we don't start writing the response before the 582 // source is available (see golang.org/issue/5660) and provides 583 // enough bytes to perform Content-Type sniffing when required. 584 if !w.cw.wroteHeader { 585 n0, err := io.CopyBuffer(writerOnly{w}, io.LimitReader(src, sniffLen), buf) 586 n += n0 587 if err != nil || n0 < sniffLen { 588 return n, err 589 } 590 } 591 592 w.w.Flush() // get rid of any previous writes 593 w.cw.flush() // make sure Header is written; flush data to rwc 594 595 // Now that cw has been flushed, its chunking field is guaranteed initialized. 596 if !w.cw.chunking && w.bodyAllowed() { 597 n0, err := rf.ReadFrom(src) 598 n += n0 599 w.written += n0 600 return n, err 601 } 602 603 n0, err := io.CopyBuffer(writerOnly{w}, src, buf) 604 n += n0 605 return n, err 606 } 607 608 // debugServerConnections controls whether all server connections are wrapped 609 // with a verbose logging wrapper. 610 const debugServerConnections = false 611 612 // Create new connection from rwc. 613 func (srv *Server) newConn(rwc net.Conn) *conn { 614 c := &conn{ 615 server: srv, // 这个值后面逻辑处理会用到, 这个srv 就是服务初始化时的Server实例,里面记录了addr, 和Handler 616 // Handler为路由器, 为nil 则使用标准库自带的路由器 617 rwc: rwc, 618 } 619 if debugServerConnections { 620 c.rwc = newLoggingConn("server", c.rwc) 621 } 622 return c 623 } 624 625 type readResult struct { 626 _ incomparable 627 n int 628 err error 629 b byte // byte read, if n == 1 630 } 631 632 // connReader is the io.Reader wrapper used by *conn. It combines a 633 // selectively-activated io.LimitedReader (to bound request header 634 // read sizes) with support for selectively keeping an io.Reader.Read 635 // call blocked in a background goroutine to wait for activity and 636 // trigger a CloseNotifier channel. 637 type connReader struct { 638 conn *conn 639 640 mu sync.Mutex // guards following 641 hasByte bool 642 byteBuf [1]byte 643 cond *sync.Cond 644 inRead bool 645 aborted bool // set true before conn.rwc deadline is set to past 646 remain int64 // bytes remaining 647 } 648 649 func (cr *connReader) lock() { 650 cr.mu.Lock() 651 if cr.cond == nil { 652 cr.cond = sync.NewCond(&cr.mu) 653 } 654 } 655 656 func (cr *connReader) unlock() { cr.mu.Unlock() } 657 658 func (cr *connReader) startBackgroundRead() { 659 cr.lock() 660 defer cr.unlock() 661 if cr.inRead { 662 panic("invalid concurrent Body.Read call") 663 } 664 if cr.hasByte { 665 return 666 } 667 cr.inRead = true 668 cr.conn.rwc.SetReadDeadline(time.Time{}) 669 go cr.backgroundRead() 670 } 671 672 func (cr *connReader) backgroundRead() { 673 n, err := cr.conn.rwc.Read(cr.byteBuf[:]) 674 cr.lock() 675 if n == 1 { 676 cr.hasByte = true 677 // We were past the end of the previous request's body already 678 // (since we wouldn't be in a background read otherwise), so 679 // this is a pipelined HTTP request. Prior to Go 1.11 we used to 680 // send on the CloseNotify channel and cancel the context here, 681 // but the behavior was documented as only "may", and we only 682 // did that because that's how CloseNotify accidentally behaved 683 // in very early Go releases prior to context support. Once we 684 // added context support, people used a Handler's 685 // Request.Context() and passed it along. Having that context 686 // cancel on pipelined HTTP requests caused problems. 687 // Fortunately, almost nothing uses HTTP/1.x pipelining. 688 // Unfortunately, apt-get does, or sometimes does. 689 // New Go 1.11 behavior: don't fire CloseNotify or cancel 690 // contexts on pipelined requests. Shouldn't affect people, but 691 // fixes cases like Issue 23921. This does mean that a client 692 // closing their TCP connection after sending a pipelined 693 // request won't cancel the context, but we'll catch that on any 694 // write failure (in checkConnErrorWriter.Write). 695 // If the server never writes, yes, there are still contrived 696 // server & client behaviors where this fails to ever cancel the 697 // context, but that's kinda why HTTP/1.x pipelining died 698 // anyway. 699 } 700 if ne, ok := err.(net.Error); ok && cr.aborted && ne.Timeout() { 701 // Ignore this error. It's the expected error from 702 // another goroutine calling abortPendingRead. 703 } else if err != nil { 704 cr.handleReadError(err) 705 } 706 cr.aborted = false 707 cr.inRead = false 708 cr.unlock() 709 cr.cond.Broadcast() 710 } 711 712 func (cr *connReader) abortPendingRead() { 713 cr.lock() 714 defer cr.unlock() 715 if !cr.inRead { 716 return 717 } 718 cr.aborted = true 719 cr.conn.rwc.SetReadDeadline(aLongTimeAgo) 720 for cr.inRead { 721 cr.cond.Wait() 722 } 723 cr.conn.rwc.SetReadDeadline(time.Time{}) 724 } 725 726 func (cr *connReader) setReadLimit(remain int64) { cr.remain = remain } 727 func (cr *connReader) setInfiniteReadLimit() { cr.remain = maxInt64 } 728 func (cr *connReader) hitReadLimit() bool { return cr.remain <= 0 } 729 730 // handleReadError is called whenever a Read from the client returns a 731 // non-nil error. 732 // 733 // The provided non-nil err is almost always io.EOF or a "use of 734 // closed network connection". In any case, the error is not 735 // particularly interesting, except perhaps for debugging during 736 // development. Any error means the connection is dead and we should 737 // down its context. 738 // 739 // It may be called from multiple goroutines. 740 func (cr *connReader) handleReadError(_ error) { 741 cr.conn.cancelCtx() 742 cr.closeNotify() 743 } 744 745 // may be called from multiple goroutines. 746 func (cr *connReader) closeNotify() { 747 res, _ := cr.conn.curReq.Load().(*response) 748 if res != nil && atomic.CompareAndSwapInt32(&res.didCloseNotify, 0, 1) { 749 res.closeNotifyCh <- true 750 } 751 } 752 753 func (cr *connReader) Read(p []byte) (n int, err error) { 754 cr.lock() 755 if cr.inRead { 756 cr.unlock() 757 if cr.conn.hijacked() { 758 panic("invalid Body.Read call. After hijacked, the original Request must not be used") 759 } 760 panic("invalid concurrent Body.Read call") 761 } 762 if cr.hitReadLimit() { 763 cr.unlock() 764 return 0, io.EOF 765 } 766 if len(p) == 0 { 767 cr.unlock() 768 return 0, nil 769 } 770 if int64(len(p)) > cr.remain { 771 p = p[:cr.remain] 772 } 773 if cr.hasByte { 774 p[0] = cr.byteBuf[0] 775 cr.hasByte = false 776 cr.unlock() 777 return 1, nil 778 } 779 cr.inRead = true 780 cr.unlock() 781 n, err = cr.conn.rwc.Read(p) 782 783 cr.lock() 784 cr.inRead = false 785 if err != nil { 786 cr.handleReadError(err) 787 } 788 cr.remain -= int64(n) 789 cr.unlock() 790 791 cr.cond.Broadcast() 792 return n, err 793 } 794 795 var ( 796 bufioReaderPool sync.Pool 797 bufioWriter2kPool sync.Pool 798 bufioWriter4kPool sync.Pool 799 ) 800 801 var copyBufPool = sync.Pool{ 802 New: func() interface{} { 803 b := make([]byte, 32*1024) 804 return &b 805 }, 806 } 807 808 func bufioWriterPool(size int) *sync.Pool { 809 switch size { 810 case 2 << 10: 811 return &bufioWriter2kPool 812 case 4 << 10: 813 return &bufioWriter4kPool 814 } 815 return nil 816 } 817 818 func newBufioReader(r io.Reader) *bufio.Reader { 819 if v := bufioReaderPool.Get(); v != nil { 820 br := v.(*bufio.Reader) 821 br.Reset(r) 822 return br 823 } 824 // Note: if this reader size is ever changed, update 825 // TestHandlerBodyClose's assumptions. 826 return bufio.NewReader(r) 827 } 828 829 func putBufioReader(br *bufio.Reader) { 830 br.Reset(nil) 831 bufioReaderPool.Put(br) 832 } 833 834 func newBufioWriterSize(w io.Writer, size int) *bufio.Writer { 835 pool := bufioWriterPool(size) 836 if pool != nil { 837 if v := pool.Get(); v != nil { 838 bw := v.(*bufio.Writer) 839 bw.Reset(w) 840 return bw 841 } 842 } 843 return bufio.NewWriterSize(w, size) 844 } 845 846 func putBufioWriter(bw *bufio.Writer) { 847 bw.Reset(nil) 848 if pool := bufioWriterPool(bw.Available()); pool != nil { 849 pool.Put(bw) 850 } 851 } 852 853 // DefaultMaxHeaderBytes is the maximum permitted size of the headers 854 // in an HTTP request. 855 // This can be overridden by setting Server.MaxHeaderBytes. 856 const DefaultMaxHeaderBytes = 1 << 20 // 1 MB 857 858 func (srv *Server) maxHeaderBytes() int { 859 if srv.MaxHeaderBytes > 0 { 860 return srv.MaxHeaderBytes 861 } 862 return DefaultMaxHeaderBytes 863 } 864 865 func (srv *Server) initialReadLimitSize() int64 { 866 return int64(srv.maxHeaderBytes()) + 4096 // bufio slop 867 } 868 869 // wrapper around io.ReadCloser which on first read, sends an 870 // HTTP/1.1 100 Continue header 871 type expectContinueReader struct { 872 resp *response 873 readCloser io.ReadCloser 874 closed atomicBool 875 sawEOF atomicBool 876 } 877 878 func (ecr *expectContinueReader) Read(p []byte) (n int, err error) { 879 if ecr.closed.isSet() { 880 return 0, ErrBodyReadAfterClose 881 } 882 w := ecr.resp 883 if !w.wroteContinue && w.canWriteContinue.isSet() && !w.conn.hijacked() { 884 w.wroteContinue = true 885 w.writeContinueMu.Lock() 886 if w.canWriteContinue.isSet() { 887 w.conn.bufw.WriteString("HTTP/1.1 100 Continue\r\n\r\n") 888 w.conn.bufw.Flush() 889 w.canWriteContinue.setFalse() 890 } 891 w.writeContinueMu.Unlock() 892 } 893 n, err = ecr.readCloser.Read(p) 894 if err == io.EOF { 895 ecr.sawEOF.setTrue() 896 } 897 return 898 } 899 900 func (ecr *expectContinueReader) Close() error { 901 ecr.closed.setTrue() 902 return ecr.readCloser.Close() 903 } 904 905 // TimeFormat is the time format to use when generating times in HTTP 906 // headers. It is like time.RFC1123 but hard-codes GMT as the time 907 // zone. The time being formatted must be in UTC for Format to 908 // generate the correct format. 909 // 910 // For parsing this time format, see ParseTime. 911 const TimeFormat = "Mon, 02 Jan 2006 15:04:05 GMT" 912 913 // appendTime is a non-allocating version of []byte(t.UTC().Format(TimeFormat)) 914 func appendTime(b []byte, t time.Time) []byte { 915 const days = "SunMonTueWedThuFriSat" 916 const months = "JanFebMarAprMayJunJulAugSepOctNovDec" 917 918 t = t.UTC() 919 yy, mm, dd := t.Date() 920 hh, mn, ss := t.Clock() 921 day := days[3*t.Weekday():] 922 mon := months[3*(mm-1):] 923 924 return append(b, 925 day[0], day[1], day[2], ',', ' ', 926 byte('0'+dd/10), byte('0'+dd%10), ' ', 927 mon[0], mon[1], mon[2], ' ', 928 byte('0'+yy/1000), byte('0'+(yy/100)%10), byte('0'+(yy/10)%10), byte('0'+yy%10), ' ', 929 byte('0'+hh/10), byte('0'+hh%10), ':', 930 byte('0'+mn/10), byte('0'+mn%10), ':', 931 byte('0'+ss/10), byte('0'+ss%10), ' ', 932 'G', 'M', 'T') 933 } 934 935 var errTooLarge = errors.New("http: request too large") 936 937 // Read next request from connection. 938 func (c *conn) readRequest(ctx context.Context) (w *response, err error) { 939 if c.hijacked() { 940 return nil, ErrHijacked 941 } 942 943 var ( 944 wholeReqDeadline time.Time // or zero if none 945 hdrDeadline time.Time // or zero if none 946 ) 947 t0 := time.Now() 948 if d := c.server.readHeaderTimeout(); d > 0 { 949 hdrDeadline = t0.Add(d) 950 } 951 if d := c.server.ReadTimeout; d > 0 { 952 wholeReqDeadline = t0.Add(d) 953 } 954 c.rwc.SetReadDeadline(hdrDeadline) 955 if d := c.server.WriteTimeout; d > 0 { 956 defer func() { 957 c.rwc.SetWriteDeadline(time.Now().Add(d)) 958 }() 959 } 960 961 c.r.setReadLimit(c.server.initialReadLimitSize()) 962 if c.lastMethod == "POST" { 963 // RFC 7230 section 3 tolerance for old buggy clients. 964 peek, _ := c.bufr.Peek(4) // ReadRequest will get err below 965 c.bufr.Discard(numLeadingCRorLF(peek)) 966 } 967 req, err := readRequest(c.bufr) 968 if err != nil { 969 if c.r.hitReadLimit() { 970 return nil, errTooLarge 971 } 972 return nil, err 973 } 974 975 if !http1ServerSupportsRequest(req) { 976 return nil, statusError{StatusHTTPVersionNotSupported, "unsupported protocol version"} 977 } 978 979 c.lastMethod = req.Method 980 c.r.setInfiniteReadLimit() 981 982 hosts, haveHost := req.Header["Host"] 983 isH2Upgrade := req.isH2Upgrade() 984 if req.ProtoAtLeast(1, 1) && (!haveHost || len(hosts) == 0) && !isH2Upgrade && req.Method != "CONNECT" { 985 return nil, badRequestError("missing required Host header") 986 } 987 if len(hosts) == 1 && !httpguts.ValidHostHeader(hosts[0]) { 988 return nil, badRequestError("malformed Host header") 989 } 990 for k, vv := range req.Header { 991 if !httpguts.ValidHeaderFieldName(k) { 992 return nil, badRequestError("invalid header name") 993 } 994 for _, v := range vv { 995 if !httpguts.ValidHeaderFieldValue(v) { 996 return nil, badRequestError("invalid header value") 997 } 998 } 999 } 1000 delete(req.Header, "Host") 1001 1002 ctx, cancelCtx := context.WithCancel(ctx) 1003 req.ctx = ctx 1004 req.RemoteAddr = c.remoteAddr 1005 req.TLS = c.tlsState 1006 if body, ok := req.Body.(*body); ok { 1007 body.doEarlyClose = true 1008 } 1009 1010 // Adjust the read deadline if necessary. 1011 if !hdrDeadline.Equal(wholeReqDeadline) { 1012 c.rwc.SetReadDeadline(wholeReqDeadline) 1013 } 1014 1015 w = &response{ 1016 conn: c, 1017 cancelCtx: cancelCtx, 1018 req: req, 1019 reqBody: req.Body, 1020 handlerHeader: make(Header), 1021 contentLength: -1, 1022 closeNotifyCh: make(chan bool, 1), 1023 1024 // We populate these ahead of time so we're not 1025 // reading from req.Header after their Handler starts 1026 // and maybe mutates it (Issue 14940) 1027 wants10KeepAlive: req.wantsHttp10KeepAlive(), 1028 wantsClose: req.wantsClose(), 1029 } 1030 if isH2Upgrade { 1031 w.closeAfterReply = true 1032 } 1033 w.cw.res = w 1034 w.w = newBufioWriterSize(&w.cw, bufferBeforeChunkingSize) 1035 return w, nil 1036 } 1037 1038 // http1ServerSupportsRequest reports whether Go's HTTP/1.x server 1039 // supports the given request. 1040 func http1ServerSupportsRequest(req *Request) bool { 1041 if req.ProtoMajor == 1 { 1042 return true 1043 } 1044 // Accept "PRI * HTTP/2.0" upgrade requests, so Handlers can 1045 // wire up their own HTTP/2 upgrades. 1046 if req.ProtoMajor == 2 && req.ProtoMinor == 0 && 1047 req.Method == "PRI" && req.RequestURI == "*" { 1048 return true 1049 } 1050 // Reject HTTP/0.x, and all other HTTP/2+ requests (which 1051 // aren't encoded in ASCII anyway). 1052 return false 1053 } 1054 1055 func (w *response) Header() Header { 1056 if w.cw.header == nil && w.wroteHeader && !w.cw.wroteHeader { 1057 // Accessing the header between logically writing it 1058 // and physically writing it means we need to allocate 1059 // a clone to snapshot the logically written state. 1060 w.cw.header = w.handlerHeader.Clone() 1061 } 1062 w.calledHeader = true 1063 return w.handlerHeader 1064 } 1065 1066 // maxPostHandlerReadBytes is the max number of Request.Body bytes not 1067 // consumed by a handler that the server will read from the client 1068 // in order to keep a connection alive. If there are more bytes than 1069 // this then the server to be paranoid instead sends a "Connection: 1070 // close" response. 1071 // 1072 // This number is approximately what a typical machine's TCP buffer 1073 // size is anyway. (if we have the bytes on the machine, we might as 1074 // well read them) 1075 const maxPostHandlerReadBytes = 256 << 10 1076 1077 func checkWriteHeaderCode(code int) { 1078 // Issue 22880: require valid WriteHeader status codes. 1079 // For now we only enforce that it's three digits. 1080 // In the future we might block things over 599 (600 and above aren't defined 1081 // at https://httpwg.org/specs/rfc7231.html#status.codes) 1082 // and we might block under 200 (once we have more mature 1xx support). 1083 // But for now any three digits. 1084 // 1085 // We used to send "HTTP/1.1 000 0" on the wire in responses but there's 1086 // no equivalent bogus thing we can realistically send in HTTP/2, 1087 // so we'll consistently panic instead and help people find their bugs 1088 // early. (We can't return an error from WriteHeader even if we wanted to.) 1089 if code < 100 || code > 999 { 1090 panic(fmt.Sprintf("invalid WriteHeader code %v", code)) 1091 } 1092 } 1093 1094 // relevantCaller searches the call stack for the first function outside of net/http. 1095 // The purpose of this function is to provide more helpful error messages. 1096 func relevantCaller() runtime.Frame { 1097 pc := make([]uintptr, 16) 1098 n := runtime.Callers(1, pc) 1099 frames := runtime.CallersFrames(pc[:n]) 1100 var frame runtime.Frame 1101 for { 1102 frame, more := frames.Next() 1103 if !strings.HasPrefix(frame.Function, "net/http.") { 1104 return frame 1105 } 1106 if !more { 1107 break 1108 } 1109 } 1110 return frame 1111 } 1112 1113 func (w *response) WriteHeader(code int) { 1114 if w.conn.hijacked() { 1115 caller := relevantCaller() 1116 w.conn.server.logf("http: response.WriteHeader on hijacked connection from %s (%s:%d)", caller.Function, path.Base(caller.File), caller.Line) 1117 return 1118 } 1119 if w.wroteHeader { 1120 caller := relevantCaller() 1121 w.conn.server.logf("http: superfluous response.WriteHeader call from %s (%s:%d)", caller.Function, path.Base(caller.File), caller.Line) 1122 return 1123 } 1124 checkWriteHeaderCode(code) 1125 w.wroteHeader = true 1126 w.status = code 1127 1128 if w.calledHeader && w.cw.header == nil { 1129 w.cw.header = w.handlerHeader.Clone() 1130 } 1131 1132 if cl := w.handlerHeader.get("Content-Length"); cl != "" { 1133 v, err := strconv.ParseInt(cl, 10, 64) 1134 if err == nil && v >= 0 { 1135 w.contentLength = v 1136 } else { 1137 w.conn.server.logf("http: invalid Content-Length of %q", cl) 1138 w.handlerHeader.Del("Content-Length") 1139 } 1140 } 1141 } 1142 1143 // extraHeader is the set of headers sometimes added by chunkWriter.writeHeader. 1144 // This type is used to avoid extra allocations from cloning and/or populating 1145 // the response Header map and all its 1-element slices. 1146 type extraHeader struct { 1147 contentType string 1148 connection string 1149 transferEncoding string 1150 date []byte // written if not nil 1151 contentLength []byte // written if not nil 1152 } 1153 1154 // Sorted the same as extraHeader.Write's loop. 1155 var extraHeaderKeys = [][]byte{ 1156 []byte("Content-Type"), 1157 []byte("Connection"), 1158 []byte("Transfer-Encoding"), 1159 } 1160 1161 var ( 1162 headerContentLength = []byte("Content-Length: ") 1163 headerDate = []byte("Date: ") 1164 ) 1165 1166 // Write writes the headers described in h to w. 1167 // 1168 // This method has a value receiver, despite the somewhat large size 1169 // of h, because it prevents an allocation. The escape analysis isn't 1170 // smart enough to realize this function doesn't mutate h. 1171 func (h extraHeader) Write(w *bufio.Writer) { 1172 if h.date != nil { 1173 w.Write(headerDate) 1174 w.Write(h.date) 1175 w.Write(crlf) 1176 } 1177 if h.contentLength != nil { 1178 w.Write(headerContentLength) 1179 w.Write(h.contentLength) 1180 w.Write(crlf) 1181 } 1182 for i, v := range []string{h.contentType, h.connection, h.transferEncoding} { 1183 if v != "" { 1184 w.Write(extraHeaderKeys[i]) 1185 w.Write(colonSpace) 1186 w.WriteString(v) 1187 w.Write(crlf) 1188 } 1189 } 1190 } 1191 1192 // writeHeader finalizes the header sent to the client and writes it 1193 // to cw.res.conn.bufw. 1194 // 1195 // p is not written by writeHeader, but is the first chunk of the body 1196 // that will be written. It is sniffed for a Content-Type if none is 1197 // set explicitly. It's also used to set the Content-Length, if the 1198 // total body size was small and the handler has already finished 1199 // running. 1200 func (cw *chunkWriter) writeHeader(p []byte) { 1201 if cw.wroteHeader { 1202 return 1203 } 1204 cw.wroteHeader = true 1205 1206 w := cw.res 1207 keepAlivesEnabled := w.conn.server.doKeepAlives() 1208 isHEAD := w.req.Method == "HEAD" 1209 1210 // header is written out to w.conn.buf below. Depending on the 1211 // state of the handler, we either own the map or not. If we 1212 // don't own it, the exclude map is created lazily for 1213 // WriteSubset to remove headers. The setHeader struct holds 1214 // headers we need to add. 1215 header := cw.header 1216 owned := header != nil 1217 if !owned { 1218 header = w.handlerHeader 1219 } 1220 var excludeHeader map[string]bool 1221 delHeader := func(key string) { 1222 if owned { 1223 header.Del(key) 1224 return 1225 } 1226 if _, ok := header[key]; !ok { 1227 return 1228 } 1229 if excludeHeader == nil { 1230 excludeHeader = make(map[string]bool) 1231 } 1232 excludeHeader[key] = true 1233 } 1234 var setHeader extraHeader 1235 1236 // Don't write out the fake "Trailer:foo" keys. See TrailerPrefix. 1237 trailers := false 1238 for k := range cw.header { 1239 if strings.HasPrefix(k, TrailerPrefix) { 1240 if excludeHeader == nil { 1241 excludeHeader = make(map[string]bool) 1242 } 1243 excludeHeader[k] = true 1244 trailers = true 1245 } 1246 } 1247 for _, v := range cw.header["Trailer"] { 1248 trailers = true 1249 foreachHeaderElement(v, cw.res.declareTrailer) 1250 } 1251 1252 te := header.get("Transfer-Encoding") 1253 hasTE := te != "" 1254 1255 // If the handler is done but never sent a Content-Length 1256 // response header and this is our first (and last) write, set 1257 // it, even to zero. This helps HTTP/1.0 clients keep their 1258 // "keep-alive" connections alive. 1259 // Exceptions: 304/204/1xx responses never get Content-Length, and if 1260 // it was a HEAD request, we don't know the difference between 1261 // 0 actual bytes and 0 bytes because the handler noticed it 1262 // was a HEAD request and chose not to write anything. So for 1263 // HEAD, the handler should either write the Content-Length or 1264 // write non-zero bytes. If it's actually 0 bytes and the 1265 // handler never looked at the Request.Method, we just don't 1266 // send a Content-Length header. 1267 // Further, we don't send an automatic Content-Length if they 1268 // set a Transfer-Encoding, because they're generally incompatible. 1269 if w.handlerDone.isSet() && !trailers && !hasTE && bodyAllowedForStatus(w.status) && header.get("Content-Length") == "" && (!isHEAD || len(p) > 0) { 1270 w.contentLength = int64(len(p)) 1271 setHeader.contentLength = strconv.AppendInt(cw.res.clenBuf[:0], int64(len(p)), 10) 1272 } 1273 1274 // If this was an HTTP/1.0 request with keep-alive and we sent a 1275 // Content-Length back, we can make this a keep-alive response ... 1276 if w.wants10KeepAlive && keepAlivesEnabled { 1277 sentLength := header.get("Content-Length") != "" 1278 if sentLength && header.get("Connection") == "keep-alive" { 1279 w.closeAfterReply = false 1280 } 1281 } 1282 1283 // Check for an explicit (and valid) Content-Length header. 1284 hasCL := w.contentLength != -1 1285 1286 if w.wants10KeepAlive && (isHEAD || hasCL || !bodyAllowedForStatus(w.status)) { 1287 _, connectionHeaderSet := header["Connection"] 1288 if !connectionHeaderSet { 1289 setHeader.connection = "keep-alive" 1290 } 1291 } else if !w.req.ProtoAtLeast(1, 1) || w.wantsClose { 1292 w.closeAfterReply = true 1293 } 1294 1295 if header.get("Connection") == "close" || !keepAlivesEnabled { 1296 w.closeAfterReply = true 1297 } 1298 1299 // If the client wanted a 100-continue but we never sent it to 1300 // them (or, more strictly: we never finished reading their 1301 // request body), don't reuse this connection because it's now 1302 // in an unknown state: we might be sending this response at 1303 // the same time the client is now sending its request body 1304 // after a timeout. (Some HTTP clients send Expect: 1305 // 100-continue but knowing that some servers don't support 1306 // it, the clients set a timer and send the body later anyway) 1307 // If we haven't seen EOF, we can't skip over the unread body 1308 // because we don't know if the next bytes on the wire will be 1309 // the body-following-the-timer or the subsequent request. 1310 // See Issue 11549. 1311 if ecr, ok := w.req.Body.(*expectContinueReader); ok && !ecr.sawEOF.isSet() { 1312 w.closeAfterReply = true 1313 } 1314 1315 // Per RFC 2616, we should consume the request body before 1316 // replying, if the handler hasn't already done so. But we 1317 // don't want to do an unbounded amount of reading here for 1318 // DoS reasons, so we only try up to a threshold. 1319 // TODO(bradfitz): where does RFC 2616 say that? See Issue 15527 1320 // about HTTP/1.x Handlers concurrently reading and writing, like 1321 // HTTP/2 handlers can do. Maybe this code should be relaxed? 1322 if w.req.ContentLength != 0 && !w.closeAfterReply { 1323 var discard, tooBig bool 1324 1325 switch bdy := w.req.Body.(type) { 1326 case *expectContinueReader: 1327 if bdy.resp.wroteContinue { 1328 discard = true 1329 } 1330 case *body: 1331 bdy.mu.Lock() 1332 switch { 1333 case bdy.closed: 1334 if !bdy.sawEOF { 1335 // Body was closed in handler with non-EOF error. 1336 w.closeAfterReply = true 1337 } 1338 case bdy.unreadDataSizeLocked() >= maxPostHandlerReadBytes: 1339 tooBig = true 1340 default: 1341 discard = true 1342 } 1343 bdy.mu.Unlock() 1344 default: 1345 discard = true 1346 } 1347 1348 if discard { 1349 _, err := io.CopyN(io.Discard, w.reqBody, maxPostHandlerReadBytes+1) 1350 switch err { 1351 case nil: 1352 // There must be even more data left over. 1353 tooBig = true 1354 case ErrBodyReadAfterClose: 1355 // Body was already consumed and closed. 1356 case io.EOF: 1357 // The remaining body was just consumed, close it. 1358 err = w.reqBody.Close() 1359 if err != nil { 1360 w.closeAfterReply = true 1361 } 1362 default: 1363 // Some other kind of error occurred, like a read timeout, or 1364 // corrupt chunked encoding. In any case, whatever remains 1365 // on the wire must not be parsed as another HTTP request. 1366 w.closeAfterReply = true 1367 } 1368 } 1369 1370 if tooBig { 1371 w.requestTooLarge() 1372 delHeader("Connection") 1373 setHeader.connection = "close" 1374 } 1375 } 1376 1377 code := w.status 1378 if bodyAllowedForStatus(code) { 1379 // If no content type, apply sniffing algorithm to body. 1380 _, haveType := header["Content-Type"] 1381 1382 // If the Content-Encoding was set and is non-blank, 1383 // we shouldn't sniff the body. See Issue 31753. 1384 ce := header.Get("Content-Encoding") 1385 hasCE := len(ce) > 0 1386 if !hasCE && !haveType && !hasTE && len(p) > 0 { 1387 setHeader.contentType = DetectContentType(p) 1388 } 1389 } else { 1390 for _, k := range suppressedHeaders(code) { 1391 delHeader(k) 1392 } 1393 } 1394 1395 if !header.has("Date") { 1396 setHeader.date = appendTime(cw.res.dateBuf[:0], time.Now()) 1397 } 1398 1399 if hasCL && hasTE && te != "identity" { 1400 // TODO: return an error if WriteHeader gets a return parameter 1401 // For now just ignore the Content-Length. 1402 w.conn.server.logf("http: WriteHeader called with both Transfer-Encoding of %q and a Content-Length of %d", 1403 te, w.contentLength) 1404 delHeader("Content-Length") 1405 hasCL = false 1406 } 1407 1408 if w.req.Method == "HEAD" || !bodyAllowedForStatus(code) || code == StatusNoContent { 1409 // Response has no body. 1410 delHeader("Transfer-Encoding") 1411 } else if hasCL { 1412 // Content-Length has been provided, so no chunking is to be done. 1413 delHeader("Transfer-Encoding") 1414 } else if w.req.ProtoAtLeast(1, 1) { 1415 // HTTP/1.1 or greater: Transfer-Encoding has been set to identity, and no 1416 // content-length has been provided. The connection must be closed after the 1417 // reply is written, and no chunking is to be done. This is the setup 1418 // recommended in the Server-Sent Events candidate recommendation 11, 1419 // section 8. 1420 if hasTE && te == "identity" { 1421 cw.chunking = false 1422 w.closeAfterReply = true 1423 delHeader("Transfer-Encoding") 1424 } else { 1425 // HTTP/1.1 or greater: use chunked transfer encoding 1426 // to avoid closing the connection at EOF. 1427 cw.chunking = true 1428 setHeader.transferEncoding = "chunked" 1429 if hasTE && te == "chunked" { 1430 // We will send the chunked Transfer-Encoding header later. 1431 delHeader("Transfer-Encoding") 1432 } 1433 } 1434 } else { 1435 // HTTP version < 1.1: cannot do chunked transfer 1436 // encoding and we don't know the Content-Length so 1437 // signal EOF by closing connection. 1438 w.closeAfterReply = true 1439 delHeader("Transfer-Encoding") // in case already set 1440 } 1441 1442 // Cannot use Content-Length with non-identity Transfer-Encoding. 1443 if cw.chunking { 1444 delHeader("Content-Length") 1445 } 1446 if !w.req.ProtoAtLeast(1, 0) { 1447 return 1448 } 1449 1450 // Only override the Connection header if it is not a successful 1451 // protocol switch response and if KeepAlives are not enabled. 1452 // See https://golang.org/issue/36381. 1453 delConnectionHeader := w.closeAfterReply && 1454 (!keepAlivesEnabled || !hasToken(cw.header.get("Connection"), "close")) && 1455 !isProtocolSwitchResponse(w.status, header) 1456 if delConnectionHeader { 1457 delHeader("Connection") 1458 if w.req.ProtoAtLeast(1, 1) { 1459 setHeader.connection = "close" 1460 } 1461 } 1462 1463 writeStatusLine(w.conn.bufw, w.req.ProtoAtLeast(1, 1), code, w.statusBuf[:]) 1464 cw.header.WriteSubset(w.conn.bufw, excludeHeader) 1465 setHeader.Write(w.conn.bufw) 1466 w.conn.bufw.Write(crlf) 1467 } 1468 1469 // foreachHeaderElement splits v according to the "#rule" construction 1470 // in RFC 7230 section 7 and calls fn for each non-empty element. 1471 func foreachHeaderElement(v string, fn func(string)) { 1472 v = textproto.TrimString(v) 1473 if v == "" { 1474 return 1475 } 1476 if !strings.Contains(v, ",") { 1477 fn(v) 1478 return 1479 } 1480 for _, f := range strings.Split(v, ",") { 1481 if f = textproto.TrimString(f); f != "" { 1482 fn(f) 1483 } 1484 } 1485 } 1486 1487 // writeStatusLine writes an HTTP/1.x Status-Line (RFC 7230 Section 3.1.2) 1488 // to bw. is11 is whether the HTTP request is HTTP/1.1. false means HTTP/1.0. 1489 // code is the response status code. 1490 // scratch is an optional scratch buffer. If it has at least capacity 3, it's used. 1491 func writeStatusLine(bw *bufio.Writer, is11 bool, code int, scratch []byte) { 1492 if is11 { 1493 bw.WriteString("HTTP/1.1 ") 1494 } else { 1495 bw.WriteString("HTTP/1.0 ") 1496 } 1497 if text, ok := statusText[code]; ok { 1498 bw.Write(strconv.AppendInt(scratch[:0], int64(code), 10)) 1499 bw.WriteByte(' ') 1500 bw.WriteString(text) 1501 bw.WriteString("\r\n") 1502 } else { 1503 // don't worry about performance 1504 fmt.Fprintf(bw, "%03d status code %d\r\n", code, code) 1505 } 1506 } 1507 1508 // bodyAllowed reports whether a Write is allowed for this response type. 1509 // It's illegal to call this before the header has been flushed. 1510 func (w *response) bodyAllowed() bool { 1511 if !w.wroteHeader { 1512 panic("") 1513 } 1514 return bodyAllowedForStatus(w.status) 1515 } 1516 1517 // The Life Of A Write is like this: 1518 // 1519 // Handler starts. No header has been sent. The handler can either 1520 // write a header, or just start writing. Writing before sending a header 1521 // sends an implicitly empty 200 OK header. 1522 // 1523 // If the handler didn't declare a Content-Length up front, we either 1524 // go into chunking mode or, if the handler finishes running before 1525 // the chunking buffer size, we compute a Content-Length and send that 1526 // in the header instead. 1527 // 1528 // Likewise, if the handler didn't set a Content-Type, we sniff that 1529 // from the initial chunk of output. 1530 // 1531 // The Writers are wired together like: 1532 // 1533 // 1. *response (the ResponseWriter) -> 1534 // 2. (*response).w, a *bufio.Writer of bufferBeforeChunkingSize bytes -> 1535 // 3. chunkWriter.Writer (whose writeHeader finalizes Content-Length/Type) 1536 // and which writes the chunk headers, if needed -> 1537 // 4. conn.bufw, a *bufio.Writer of default (4kB) bytes, writing to -> 1538 // 5. checkConnErrorWriter{c}, which notes any non-nil error on Write 1539 // and populates c.werr with it if so, but otherwise writes to -> 1540 // 6. the rwc, the net.Conn. 1541 // 1542 // TODO(bradfitz): short-circuit some of the buffering when the 1543 // initial header contains both a Content-Type and Content-Length. 1544 // Also short-circuit in (1) when the header's been sent and not in 1545 // chunking mode, writing directly to (4) instead, if (2) has no 1546 // buffered data. More generally, we could short-circuit from (1) to 1547 // (3) even in chunking mode if the write size from (1) is over some 1548 // threshold and nothing is in (2). The answer might be mostly making 1549 // bufferBeforeChunkingSize smaller and having bufio's fast-paths deal 1550 // with this instead. 1551 func (w *response) Write(data []byte) (n int, err error) { 1552 return w.write(len(data), data, "") 1553 } 1554 1555 func (w *response) WriteString(data string) (n int, err error) { 1556 return w.write(len(data), nil, data) 1557 } 1558 1559 // either dataB or dataS is non-zero. 1560 func (w *response) write(lenData int, dataB []byte, dataS string) (n int, err error) { 1561 if w.conn.hijacked() { 1562 if lenData > 0 { 1563 caller := relevantCaller() 1564 w.conn.server.logf("http: response.Write on hijacked connection from %s (%s:%d)", caller.Function, path.Base(caller.File), caller.Line) 1565 } 1566 return 0, ErrHijacked 1567 } 1568 1569 if w.canWriteContinue.isSet() { 1570 // Body reader wants to write 100 Continue but hasn't yet. 1571 // Tell it not to. The store must be done while holding the lock 1572 // because the lock makes sure that there is not an active write 1573 // this very moment. 1574 w.writeContinueMu.Lock() 1575 w.canWriteContinue.setFalse() 1576 w.writeContinueMu.Unlock() 1577 } 1578 1579 if !w.wroteHeader { 1580 w.WriteHeader(StatusOK) 1581 } 1582 if lenData == 0 { 1583 return 0, nil 1584 } 1585 if !w.bodyAllowed() { 1586 return 0, ErrBodyNotAllowed 1587 } 1588 1589 w.written += int64(lenData) // ignoring errors, for errorKludge 1590 if w.contentLength != -1 && w.written > w.contentLength { 1591 return 0, ErrContentLength 1592 } 1593 if dataB != nil { 1594 return w.w.Write(dataB) 1595 } else { 1596 return w.w.WriteString(dataS) 1597 } 1598 } 1599 1600 func (w *response) finishRequest() { 1601 w.handlerDone.setTrue() 1602 1603 if !w.wroteHeader { 1604 w.WriteHeader(StatusOK) 1605 } 1606 1607 w.w.Flush() 1608 putBufioWriter(w.w) 1609 w.cw.close() 1610 w.conn.bufw.Flush() 1611 1612 w.conn.r.abortPendingRead() 1613 1614 // Close the body (regardless of w.closeAfterReply) so we can 1615 // re-use its bufio.Reader later safely. 1616 w.reqBody.Close() 1617 1618 if w.req.MultipartForm != nil { 1619 w.req.MultipartForm.RemoveAll() 1620 } 1621 } 1622 1623 // shouldReuseConnection reports whether the underlying TCP connection can be reused. 1624 // It must only be called after the handler is done executing. 1625 func (w *response) shouldReuseConnection() bool { 1626 if w.closeAfterReply { 1627 // The request or something set while executing the 1628 // handler indicated we shouldn't reuse this 1629 // connection. 1630 return false 1631 } 1632 1633 if w.req.Method != "HEAD" && w.contentLength != -1 && w.bodyAllowed() && w.contentLength != w.written { 1634 // Did not write enough. Avoid getting out of sync. 1635 return false 1636 } 1637 1638 // There was some error writing to the underlying connection 1639 // during the request, so don't re-use this conn. 1640 if w.conn.werr != nil { 1641 return false 1642 } 1643 1644 if w.closedRequestBodyEarly() { 1645 return false 1646 } 1647 1648 return true 1649 } 1650 1651 func (w *response) closedRequestBodyEarly() bool { 1652 body, ok := w.req.Body.(*body) 1653 return ok && body.didEarlyClose() 1654 } 1655 1656 func (w *response) Flush() { 1657 if !w.wroteHeader { 1658 w.WriteHeader(StatusOK) 1659 } 1660 w.w.Flush() 1661 w.cw.flush() 1662 } 1663 1664 func (c *conn) finalFlush() { 1665 if c.bufr != nil { 1666 // Steal the bufio.Reader (~4KB worth of memory) and its associated 1667 // reader for a future connection. 1668 putBufioReader(c.bufr) 1669 c.bufr = nil 1670 } 1671 1672 if c.bufw != nil { 1673 c.bufw.Flush() 1674 // Steal the bufio.Writer (~4KB worth of memory) and its associated 1675 // writer for a future connection. 1676 putBufioWriter(c.bufw) 1677 c.bufw = nil 1678 } 1679 } 1680 1681 // Close the connection. 1682 func (c *conn) close() { 1683 c.finalFlush() 1684 c.rwc.Close() 1685 } 1686 1687 // rstAvoidanceDelay is the amount of time we sleep after closing the 1688 // write side of a TCP connection before closing the entire socket. 1689 // By sleeping, we increase the chances that the client sees our FIN 1690 // and processes its final data before they process the subsequent RST 1691 // from closing a connection with known unread data. 1692 // This RST seems to occur mostly on BSD systems. (And Windows?) 1693 // This timeout is somewhat arbitrary (~latency around the planet). 1694 const rstAvoidanceDelay = 500 * time.Millisecond 1695 1696 type closeWriter interface { 1697 CloseWrite() error 1698 } 1699 1700 var _ closeWriter = (*net.TCPConn)(nil) 1701 1702 // closeWrite flushes any outstanding data and sends a FIN packet (if 1703 // client is connected via TCP), signalling that we're done. We then 1704 // pause for a bit, hoping the client processes it before any 1705 // subsequent RST. 1706 // 1707 // See https://golang.org/issue/3595 1708 func (c *conn) closeWriteAndWait() { 1709 c.finalFlush() 1710 if tcp, ok := c.rwc.(closeWriter); ok { 1711 tcp.CloseWrite() 1712 } 1713 time.Sleep(rstAvoidanceDelay) 1714 } 1715 1716 // validNextProto reports whether the proto is a valid ALPN protocol name. 1717 // Everything is valid except the empty string and built-in protocol types, 1718 // so that those can't be overridden with alternate implementations. 1719 func validNextProto(proto string) bool { 1720 switch proto { 1721 case "", "http/1.1", "http/1.0": 1722 return false 1723 } 1724 return true 1725 } 1726 1727 const ( 1728 runHooks = true 1729 skipHooks = false 1730 ) 1731 1732 func (c *conn) setState(nc net.Conn, state ConnState, runHook bool) { 1733 srv := c.server 1734 switch state { 1735 case StateNew: 1736 srv.trackConn(c, true) 1737 case StateHijacked, StateClosed: 1738 srv.trackConn(c, false) 1739 } 1740 if state > 0xff || state < 0 { 1741 panic("internal error") 1742 } 1743 packedState := uint64(time.Now().Unix()<<8) | uint64(state) 1744 atomic.StoreUint64(&c.curState.atomic, packedState) 1745 if !runHook { 1746 return 1747 } 1748 if hook := srv.ConnState; hook != nil { 1749 hook(nc, state) 1750 } 1751 } 1752 1753 func (c *conn) getState() (state ConnState, unixSec int64) { 1754 packedState := atomic.LoadUint64(&c.curState.atomic) 1755 return ConnState(packedState & 0xff), int64(packedState >> 8) 1756 } 1757 1758 // badRequestError is a literal string (used by in the server in HTML, 1759 // unescaped) to tell the user why their request was bad. It should 1760 // be plain text without user info or other embedded errors. 1761 func badRequestError(e string) error { return statusError{StatusBadRequest, e} } 1762 1763 // statusError is an error used to respond to a request with an HTTP status. 1764 // The text should be plain text without user info or other embedded errors. 1765 type statusError struct { 1766 code int 1767 text string 1768 } 1769 1770 func (e statusError) Error() string { return StatusText(e.code) + ": " + e.text } 1771 1772 // ErrAbortHandler is a sentinel panic value to abort a handler. 1773 // While any panic from ServeHTTP aborts the response to the client, 1774 // panicking with ErrAbortHandler also suppresses logging of a stack 1775 // trace to the server's error log. 1776 var ErrAbortHandler = errors.New("net/http: abort Handler") 1777 1778 // isCommonNetReadError reports whether err is a common error 1779 // encountered during reading a request off the network when the 1780 // client has gone away or had its read fail somehow. This is used to 1781 // determine which logs are interesting enough to log about. 1782 func isCommonNetReadError(err error) bool { 1783 if err == io.EOF { 1784 return true 1785 } 1786 if neterr, ok := err.(net.Error); ok && neterr.Timeout() { 1787 return true 1788 } 1789 if oe, ok := err.(*net.OpError); ok && oe.Op == "read" { 1790 return true 1791 } 1792 return false 1793 } 1794 1795 // Serve a new connection. 1796 func (c *conn) serve(ctx context.Context) { 1797 c.remoteAddr = c.rwc.RemoteAddr().String() 1798 ctx = context.WithValue(ctx, LocalAddrContextKey, c.rwc.LocalAddr()) 1799 defer func() { 1800 if err := recover(); err != nil && err != ErrAbortHandler { 1801 const size = 64 << 10 1802 buf := make([]byte, size) 1803 buf = buf[:runtime.Stack(buf, false)] 1804 c.server.logf("http: panic serving %v: %v\n%s", c.remoteAddr, err, buf) 1805 } 1806 if !c.hijacked() { 1807 c.close() 1808 c.setState(c.rwc, StateClosed, runHooks) 1809 } 1810 }() 1811 1812 if tlsConn, ok := c.rwc.(*tls.Conn); ok { // 判断是否为tls conn 1813 if d := c.server.ReadTimeout; d > 0 { 1814 c.rwc.SetReadDeadline(time.Now().Add(d)) 1815 } 1816 if d := c.server.WriteTimeout; d > 0 { 1817 c.rwc.SetWriteDeadline(time.Now().Add(d)) 1818 } 1819 if err := tlsConn.HandshakeContext(ctx); err != nil { 1820 // If the handshake failed due to the client not speaking 1821 // TLS, assume they're speaking plaintext HTTP and write a 1822 // 400 response on the TLS conn's underlying net.Conn. 1823 if re, ok := err.(tls.RecordHeaderError); ok && re.Conn != nil && tlsRecordHeaderLooksLikeHTTP(re.RecordHeader) { 1824 io.WriteString(re.Conn, "HTTP/1.0 400 Bad Request\r\n\r\nClient sent an HTTP request to an HTTPS server.\n") 1825 re.Conn.Close() 1826 return 1827 } 1828 c.server.logf("http: TLS handshake error from %s: %v", c.rwc.RemoteAddr(), err) 1829 return 1830 } 1831 c.tlsState = new(tls.ConnectionState) 1832 *c.tlsState = tlsConn.ConnectionState() 1833 if proto := c.tlsState.NegotiatedProtocol; validNextProto(proto) { 1834 if fn := c.server.TLSNextProto[proto]; fn != nil { 1835 h := initALPNRequest{ctx, tlsConn, serverHandler{c.server}} 1836 // Mark freshly created HTTP/2 as active and prevent any server state hooks 1837 // from being run on these connections. This prevents closeIdleConns from 1838 // closing such connections. See issue https://golang.org/issue/39776. 1839 c.setState(c.rwc, StateActive, skipHooks) 1840 fn(c.server, tlsConn, h) 1841 } 1842 return 1843 } 1844 } 1845 1846 // HTTP/1.x from here on. 1847 1848 ctx, cancelCtx := context.WithCancel(ctx) 1849 c.cancelCtx = cancelCtx 1850 defer cancelCtx() 1851 1852 c.r = &connReader{conn: c} // 读连接 1853 c.bufr = newBufioReader(c.r) // 建立读取buffer 1854 c.bufw = newBufioWriterSize(checkConnErrorWriter{c}, 4<<10) 1855 1856 for { 1857 // 循环读取用户请求 1858 w, err := c.readRequest(ctx) 1859 if c.r.remain != c.server.initialReadLimitSize() { 1860 // If we read any bytes off the wire, we're active. 1861 c.setState(c.rwc, StateActive, runHooks) 1862 } 1863 if err != nil { // 读出错的处理逻辑 1864 const errorHeaders = "\r\nContent-Type: text/plain; charset=utf-8\r\nConnection: close\r\n\r\n" 1865 1866 switch { 1867 case err == errTooLarge: 1868 // Their HTTP client may or may not be 1869 // able to read this if we're 1870 // responding to them and hanging up 1871 // while they're still writing their 1872 // request. Undefined behavior. 1873 const publicErr = "431 Request Header Fields Too Large" 1874 fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr) 1875 c.closeWriteAndWait() 1876 return 1877 1878 case isUnsupportedTEError(err): 1879 // Respond as per RFC 7230 Section 3.3.1 which says, 1880 // A server that receives a request message with a 1881 // transfer coding it does not understand SHOULD 1882 // respond with 501 (Unimplemented). 1883 code := StatusNotImplemented 1884 1885 // We purposefully aren't echoing back the transfer-encoding's value, 1886 // so as to mitigate the risk of cross side scripting by an attacker. 1887 fmt.Fprintf(c.rwc, "HTTP/1.1 %d %s%sUnsupported transfer encoding", code, StatusText(code), errorHeaders) 1888 return 1889 1890 case isCommonNetReadError(err): 1891 return // don't reply 1892 1893 default: 1894 if v, ok := err.(statusError); ok { 1895 fmt.Fprintf(c.rwc, "HTTP/1.1 %d %s: %s%s%d %s: %s", v.code, StatusText(v.code), v.text, errorHeaders, v.code, StatusText(v.code), v.text) 1896 return 1897 } 1898 publicErr := "400 Bad Request" 1899 fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr) 1900 return 1901 } 1902 } 1903 1904 // Expect 100 Continue support 1905 req := w.req 1906 if req.expectsContinue() { 1907 if req.ProtoAtLeast(1, 1) && req.ContentLength != 0 { 1908 // Wrap the Body reader with one that replies on the connection 1909 req.Body = &expectContinueReader{readCloser: req.Body, resp: w} 1910 w.canWriteContinue.setTrue() 1911 } 1912 } else if req.Header.get("Expect") != "" { 1913 w.sendExpectationFailed() 1914 return 1915 } 1916 1917 c.curReq.Store(w) // 保存当前w 1918 1919 if requestBodyRemains(req.Body) { 1920 registerOnHitEOF(req.Body, w.conn.r.startBackgroundRead) 1921 } else { 1922 w.conn.r.startBackgroundRead() 1923 } 1924 1925 // HTTP cannot have multiple simultaneous active requests.[*] 1926 // Until the server replies to this request, it can't read another, 1927 // so we might as well run the handler in this goroutine. 1928 // [*] Not strictly true: HTTP pipelining. We could let them all process 1929 // in parallel even if their responses need to be serialized. 1930 // But we're not going to implement HTTP pipelining because it 1931 // was never deployed in the wild and the answer is HTTP/2. 1932 // step5 关键步骤, 这里调用ServeHTTP 进行业务逻辑处理 1933 serverHandler{c.server}.ServeHTTP(w, w.req) 1934 w.cancelCtx() 1935 if c.hijacked() { 1936 return 1937 } 1938 w.finishRequest() 1939 if !w.shouldReuseConnection() { 1940 if w.requestBodyLimitHit || w.closedRequestBodyEarly() { 1941 c.closeWriteAndWait() 1942 } 1943 return 1944 } 1945 c.setState(c.rwc, StateIdle, runHooks) // 设置状态为StateIdle 1946 c.curReq.Store((*response)(nil)) 1947 1948 if !w.conn.server.doKeepAlives() { 1949 // We're in shutdown mode. We might've replied 1950 // to the user without "Connection: close" and 1951 // they might think they can send another 1952 // request, but such is life with HTTP/1.1. 1953 return 1954 } 1955 1956 if d := c.server.idleTimeout(); d != 0 { 1957 c.rwc.SetReadDeadline(time.Now().Add(d)) 1958 if _, err := c.bufr.Peek(4); err != nil { 1959 return 1960 } 1961 } 1962 c.rwc.SetReadDeadline(time.Time{}) 1963 } 1964 } 1965 1966 func (w *response) sendExpectationFailed() { 1967 // TODO(bradfitz): let ServeHTTP handlers handle 1968 // requests with non-standard expectation[s]? Seems 1969 // theoretical at best, and doesn't fit into the 1970 // current ServeHTTP model anyway. We'd need to 1971 // make the ResponseWriter an optional 1972 // "ExpectReplier" interface or something. 1973 // 1974 // For now we'll just obey RFC 7231 5.1.1 which says 1975 // "A server that receives an Expect field-value other 1976 // than 100-continue MAY respond with a 417 (Expectation 1977 // Failed) status code to indicate that the unexpected 1978 // expectation cannot be met." 1979 w.Header().Set("Connection", "close") 1980 w.WriteHeader(StatusExpectationFailed) 1981 w.finishRequest() 1982 } 1983 1984 // Hijack implements the Hijacker.Hijack method. Our response is both a ResponseWriter 1985 // and a Hijacker. 1986 func (w *response) Hijack() (rwc net.Conn, buf *bufio.ReadWriter, err error) { 1987 if w.handlerDone.isSet() { 1988 panic("net/http: Hijack called after ServeHTTP finished") 1989 } 1990 if w.wroteHeader { 1991 w.cw.flush() 1992 } 1993 1994 c := w.conn 1995 c.mu.Lock() 1996 defer c.mu.Unlock() 1997 1998 // Release the bufioWriter that writes to the chunk writer, it is not 1999 // used after a connection has been hijacked. 2000 rwc, buf, err = c.hijackLocked() 2001 if err == nil { 2002 putBufioWriter(w.w) 2003 w.w = nil 2004 } 2005 return rwc, buf, err 2006 } 2007 2008 func (w *response) CloseNotify() <-chan bool { 2009 if w.handlerDone.isSet() { 2010 panic("net/http: CloseNotify called after ServeHTTP finished") 2011 } 2012 return w.closeNotifyCh 2013 } 2014 2015 func registerOnHitEOF(rc io.ReadCloser, fn func()) { 2016 switch v := rc.(type) { 2017 case *expectContinueReader: 2018 registerOnHitEOF(v.readCloser, fn) 2019 case *body: 2020 v.registerOnHitEOF(fn) 2021 default: 2022 panic("unexpected type " + fmt.Sprintf("%T", rc)) 2023 } 2024 } 2025 2026 // requestBodyRemains reports whether future calls to Read 2027 // on rc might yield more data. 2028 func requestBodyRemains(rc io.ReadCloser) bool { 2029 if rc == NoBody { 2030 return false 2031 } 2032 switch v := rc.(type) { 2033 case *expectContinueReader: 2034 return requestBodyRemains(v.readCloser) 2035 case *body: 2036 return v.bodyRemains() 2037 default: 2038 panic("unexpected type " + fmt.Sprintf("%T", rc)) 2039 } 2040 } 2041 2042 // The HandlerFunc type is an adapter to allow the use of 2043 // ordinary functions as HTTP handlers. If f is a function 2044 // with the appropriate signature, HandlerFunc(f) is a 2045 // Handler that calls f. 2046 // HandlerFunc 实现了Handler 接口 2047 // HandlerFunc 就相当于一个适配器, 就是实现一个接口Handler, 然后调用Handler的ServeHTTP方法就是调用 2048 // HandlerFunc(f) 就相当于调研f(w,r) 2049 type HandlerFunc func(ResponseWriter, *Request) 2050 2051 // ServeHTTP calls f(w, r). 2052 func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) { 2053 f(w, r) 2054 } 2055 2056 // Helper handlers 2057 2058 // Error replies to the request with the specified error message and HTTP code. 2059 // It does not otherwise end the request; the caller should ensure no further 2060 // writes are done to w. 2061 // The error message should be plain text. 2062 func Error(w ResponseWriter, error string, code int) { 2063 w.Header().Set("Content-Type", "text/plain; charset=utf-8") 2064 w.Header().Set("X-Content-Type-Options", "nosniff") 2065 w.WriteHeader(code) 2066 fmt.Fprintln(w, error) 2067 } 2068 2069 // NotFound replies to the request with an HTTP 404 not found error. 2070 func NotFound(w ResponseWriter, r *Request) { Error(w, "404 page not found", StatusNotFound) } 2071 2072 // NotFoundHandler returns a simple request handler 2073 // that replies to each request with a ``404 page not found'' reply. 2074 func NotFoundHandler() Handler { return HandlerFunc(NotFound) } 2075 2076 // StripPrefix returns a handler that serves HTTP requests by removing the 2077 // given prefix from the request URL's Path (and RawPath if set) and invoking 2078 // the handler h. StripPrefix handles a request for a path that doesn't begin 2079 // with prefix by replying with an HTTP 404 not found error. The prefix must 2080 // match exactly: if the prefix in the request contains escaped characters 2081 // the reply is also an HTTP 404 not found error. 2082 func StripPrefix(prefix string, h Handler) Handler { 2083 if prefix == "" { 2084 return h 2085 } 2086 return HandlerFunc(func(w ResponseWriter, r *Request) { 2087 p := strings.TrimPrefix(r.URL.Path, prefix) 2088 rp := strings.TrimPrefix(r.URL.RawPath, prefix) 2089 if len(p) < len(r.URL.Path) && (r.URL.RawPath == "" || len(rp) < len(r.URL.RawPath)) { 2090 r2 := new(Request) 2091 *r2 = *r 2092 r2.URL = new(url.URL) 2093 *r2.URL = *r.URL 2094 r2.URL.Path = p 2095 r2.URL.RawPath = rp 2096 h.ServeHTTP(w, r2) 2097 } else { 2098 NotFound(w, r) 2099 } 2100 }) 2101 } 2102 2103 // Redirect replies to the request with a redirect to url, 2104 // which may be a path relative to the request path. 2105 // 2106 // The provided code should be in the 3xx range and is usually 2107 // StatusMovedPermanently, StatusFound or StatusSeeOther. 2108 // 2109 // If the Content-Type header has not been set, Redirect sets it 2110 // to "text/html; charset=utf-8" and writes a small HTML body. 2111 // Setting the Content-Type header to any value, including nil, 2112 // disables that behavior. 2113 func Redirect(w ResponseWriter, r *Request, url string, code int) { 2114 if u, err := urlpkg.Parse(url); err == nil { 2115 // If url was relative, make its path absolute by 2116 // combining with request path. 2117 // The client would probably do this for us, 2118 // but doing it ourselves is more reliable. 2119 // See RFC 7231, section 7.1.2 2120 if u.Scheme == "" && u.Host == "" { 2121 oldpath := r.URL.Path 2122 if oldpath == "" { // should not happen, but avoid a crash if it does 2123 oldpath = "/" 2124 } 2125 2126 // no leading http://server 2127 if url == "" || url[0] != '/' { 2128 // make relative path absolute 2129 olddir, _ := path.Split(oldpath) 2130 url = olddir + url 2131 } 2132 2133 var query string 2134 if i := strings.Index(url, "?"); i != -1 { 2135 url, query = url[:i], url[i:] 2136 } 2137 2138 // clean up but preserve trailing slash 2139 trailing := strings.HasSuffix(url, "/") 2140 url = path.Clean(url) 2141 if trailing && !strings.HasSuffix(url, "/") { 2142 url += "/" 2143 } 2144 url += query 2145 } 2146 } 2147 2148 h := w.Header() 2149 2150 // RFC 7231 notes that a short HTML body is usually included in 2151 // the response because older user agents may not understand 301/307. 2152 // Do it only if the request didn't already have a Content-Type header. 2153 _, hadCT := h["Content-Type"] 2154 2155 h.Set("Location", hexEscapeNonASCII(url)) 2156 if !hadCT && (r.Method == "GET" || r.Method == "HEAD") { 2157 h.Set("Content-Type", "text/html; charset=utf-8") 2158 } 2159 w.WriteHeader(code) 2160 2161 // Shouldn't send the body for POST or HEAD; that leaves GET. 2162 if !hadCT && r.Method == "GET" { 2163 body := "<a href=\"" + htmlEscape(url) + "\">" + statusText[code] + "</a>.\n" 2164 fmt.Fprintln(w, body) 2165 } 2166 } 2167 2168 var htmlReplacer = strings.NewReplacer( 2169 "&", "&", 2170 "<", "<", 2171 ">", ">", 2172 // """ is shorter than """. 2173 `"`, """, 2174 // "'" is shorter than "'" and apos was not in HTML until HTML5. 2175 "'", "'", 2176 ) 2177 2178 func htmlEscape(s string) string { 2179 return htmlReplacer.Replace(s) 2180 } 2181 2182 // Redirect to a fixed URL 2183 type redirectHandler struct { 2184 url string 2185 code int 2186 } 2187 2188 func (rh *redirectHandler) ServeHTTP(w ResponseWriter, r *Request) { 2189 Redirect(w, r, rh.url, rh.code) 2190 } 2191 2192 // RedirectHandler returns a request handler that redirects 2193 // each request it receives to the given url using the given 2194 // status code. 2195 // 2196 // The provided code should be in the 3xx range and is usually 2197 // StatusMovedPermanently, StatusFound or StatusSeeOther. 2198 func RedirectHandler(url string, code int) Handler { 2199 return &redirectHandler{url, code} 2200 } 2201 2202 // ServeMux 是一个HTTP request 多路复用器 2203 // ServeMux is an HTTP request multiplexer. 2204 // It matches the URL of each incoming request against a list of registered 2205 // patterns and calls the handler for the pattern that 2206 // most closely matches the URL. 2207 // 2208 // Patterns name fixed, rooted paths, like "/favicon.ico", 2209 // or rooted subtrees, like "/images/" (note the trailing slash). 2210 // Longer patterns take precedence over shorter ones, so that 2211 // if there are handlers registered for both "/images/" 2212 // and "/images/thumbnails/", the latter handler will be 2213 // called for paths beginning "/images/thumbnails/" and the 2214 // former will receive requests for any other paths in the 2215 // "/images/" subtree. 2216 // 2217 // Note that since a pattern ending in a slash names a rooted subtree, 2218 // the pattern "/" matches all paths not matched by other registered 2219 // patterns, not just the URL with Path == "/". 2220 // 2221 // If a subtree has been registered and a request is received naming the 2222 // subtree root without its trailing slash, ServeMux redirects that 2223 // request to the subtree root (adding the trailing slash). This behavior can 2224 // be overridden with a separate registration for the path without 2225 // the trailing slash. For example, registering "/images/" causes ServeMux 2226 // to redirect a request for "/images" to "/images/", unless "/images" has 2227 // been registered separately. 2228 // 2229 // Patterns may optionally begin with a host name, restricting matches to 2230 // URLs on that host only. Host-specific patterns take precedence over 2231 // general patterns, so that a handler might register for the two patterns 2232 // "/codesearch" and "codesearch.google.com/" without also taking over 2233 // requests for "http://www.google.com/". 2234 // 2235 // ServeMux also takes care of sanitizing the URL request path and the Host 2236 // header, stripping the port number and redirecting any request containing . or 2237 // .. elements or repeated slashes to an equivalent, cleaner URL. 2238 type ServeMux struct { 2239 mu sync.RWMutex // 锁,由于请求涉及到并发处理,因此这里需要一个锁机制 2240 m map[string]muxEntry // 路由表,一个string对应一个mux实体,这里的string就是注册的路由表达式 2241 es []muxEntry // slice of entries sorted from longest to shortest. 有序数组,由长到短维护所有后缀为/的路由地址 2242 hosts bool // whether any patterns contain hostnames 布尔类型的hosts属性标记路由中是否带有主机名,若hosts值为true,则路由的起始不能为/ 2243 } 2244 2245 type muxEntry struct { 2246 h Handler 2247 pattern string 2248 } 2249 2250 // NewServeMux allocates and returns a new ServeMux. 2251 func NewServeMux() *ServeMux { return new(ServeMux) } 2252 2253 /* 2254 这里为什么可以在声明前使用变量?Dave Cheney告诉我包级别的变量与声明顺序无关, 2255 还告诉我这种问题以后去slack上自己问,编译器做初始化工作的时候会首先初始化包级别的变量, 2256 因此无论声明在哪里都可以使用。 2257 */ 2258 // DefaultServeMux is the default ServeMux used by Serve. 2259 var DefaultServeMux = &defaultServeMux 2260 2261 var defaultServeMux ServeMux 2262 2263 /* 2264 1.处理无效路由 2265 2266 2.对于斜杠的处理,代替无效的多个斜杠 2267 2268 3.移除所有的.替换为等效path 2269 2270 简单来说就是对路径进行处理为等效最短路径,使之可以在后续查找路由表的过程中可以查找到相应键值对。 2271 */ 2272 // cleanPath returns the canonical path for p, eliminating . and .. elements. 2273 func cleanPath(p string) string { 2274 if p == "" { 2275 return "/" 2276 } 2277 if p[0] != '/' { 2278 p = "/" + p 2279 } 2280 np := path.Clean(p) 2281 // path.Clean removes trailing slash except for root; 2282 // put the trailing slash back if necessary. 2283 if p[len(p)-1] == '/' && np != "/" { 2284 // Fast path for common case of p being the string we want: 2285 if len(p) == len(np)+1 && strings.HasPrefix(p, np) { 2286 np = p 2287 } else { 2288 np += "/" 2289 } 2290 } 2291 return np 2292 } 2293 2294 // stripHostPort returns h without any trailing ":<port>". 2295 func stripHostPort(h string) string { 2296 // If no port on host, return unchanged 2297 if strings.IndexByte(h, ':') == -1 { 2298 return h 2299 } 2300 host, _, err := net.SplitHostPort(h) 2301 if err != nil { 2302 return h // on error, return unchanged 2303 } 2304 return host 2305 } 2306 2307 // Find a handler on a handler map given a path string. 2308 // Most-specific (longest) pattern wins. 2309 func (mux *ServeMux) match(path string) (h Handler, pattern string) { 2310 // Check for exact match first. 2311 // 精确匹配 2312 v, ok := mux.m[path] 2313 if ok { 2314 return v.h, v.pattern 2315 } 2316 2317 // Check for longest valid match. mux.es contains all patterns 2318 // that end in / sorted from longest to shortest. 2319 // 匹配特定的pattern 就是有这个路由前缀的 2320 // 长字符串模式优先级大于短字符串模式,优先匹配长字符串 2321 for _, e := range mux.es { 2322 if strings.HasPrefix(path, e.pattern) { 2323 return e.h, e.pattern 2324 } 2325 } 2326 return nil, "" 2327 } 2328 2329 // redirectToPathSlash determines if the given path needs appending "/" to it. 2330 // This occurs when a handler for path + "/" was already registered, but 2331 // not for path itself. If the path needs appending to, it creates a new 2332 // URL, setting the path to u.Path + "/" and returning true to indicate so. 2333 func (mux *ServeMux) redirectToPathSlash(host, path string, u *url.URL) (*url.URL, bool) { 2334 mux.mu.RLock() 2335 shouldRedirect := mux.shouldRedirectRLocked(host, path) 2336 mux.mu.RUnlock() 2337 if !shouldRedirect { 2338 return u, false 2339 } 2340 path = path + "/" 2341 u = &url.URL{Path: path, RawQuery: u.RawQuery} 2342 return u, true 2343 } 2344 2345 // shouldRedirectRLocked reports whether the given path and host should be redirected to 2346 // path+"/". This should happen if a handler is registered for path+"/" but 2347 // not path -- see comments at ServeMux. 2348 func (mux *ServeMux) shouldRedirectRLocked(host, path string) bool { 2349 p := []string{path, host + path} 2350 2351 for _, c := range p { 2352 if _, exist := mux.m[c]; exist { 2353 return false 2354 } 2355 } 2356 2357 n := len(path) 2358 if n == 0 { 2359 return false 2360 } 2361 for _, c := range p { 2362 if _, exist := mux.m[c+"/"]; exist { 2363 return path[n-1] != '/' 2364 } 2365 } 2366 2367 return false 2368 } 2369 2370 // Handler returns the handler to use for the given request, 2371 // consulting r.Method, r.Host, and r.URL.Path. It always returns 2372 // a non-nil handler. If the path is not in its canonical form(规范形式), the 2373 // handler will be an internally-generated handler that redirects 2374 // to the canonical path(规范路径). If the host contains a port, it is ignored 2375 // when matching handlers. 2376 // 2377 // The path and host are used unchanged for CONNECT requests. 2378 // 2379 // Handler also returns the registered pattern that matches the 2380 // request or, in the case of internally-generated redirects, 2381 // the pattern that will match after following the redirect. 2382 // 2383 // If there is no registered handler that applies to the request, 2384 // Handler returns a ``page not found'' handler and an empty pattern. 2385 // step02 具体分配路由处理器的handler 2386 func (mux *ServeMux) Handler(r *Request) (h Handler, pattern string) { 2387 2388 // CONNECT requests are not canonicalized. 2389 if r.Method == "CONNECT" { 2390 // If r.URL.Path is /tree and its handler is not registered, 2391 // the /tree -> /tree/ redirect applies to CONNECT requests 2392 // but the path canonicalization does not. 2393 if u, ok := mux.redirectToPathSlash(r.URL.Host, r.URL.Path, r.URL); ok { 2394 return RedirectHandler(u.String(), StatusMovedPermanently), u.Path 2395 } 2396 2397 return mux.handler(r.Host, r.URL.Path) 2398 } 2399 2400 // All other requests have any port stripped and path cleaned 2401 // before passing to mux.handler. 2402 host := stripHostPort(r.Host) 2403 path := cleanPath(r.URL.Path) 2404 2405 // If the given path is /tree and its handler is not registered, 2406 // redirect for /tree/. 2407 if u, ok := mux.redirectToPathSlash(host, path, r.URL); ok { 2408 return RedirectHandler(u.String(), StatusMovedPermanently), u.Path 2409 } 2410 2411 if path != r.URL.Path { 2412 _, pattern = mux.handler(host, path) 2413 u := &url.URL{Path: path, RawQuery: r.URL.RawQuery} 2414 return RedirectHandler(u.String(), StatusMovedPermanently), pattern 2415 } 2416 2417 return mux.handler(host, r.URL.Path) 2418 } 2419 2420 // handler is the main implementation of Handler. 2421 // The path is known to be in canonical form, except for CONNECT methods. 2422 // step03 规范形式的handler 2423 func (mux *ServeMux) handler(host, path string) (h Handler, pattern string) { 2424 mux.mu.RLock() 2425 defer mux.mu.RUnlock() 2426 2427 // Host-specific pattern takes precedence over generic ones 2428 // 指定主机匹配 2429 if mux.hosts { 2430 h, pattern = mux.match(host + path) 2431 } 2432 // 路由匹配 2433 if h == nil { 2434 h, pattern = mux.match(path) 2435 } 2436 // 没有找到就返回NotFound 2437 if h == nil { 2438 h, pattern = NotFoundHandler(), "" 2439 } 2440 return 2441 } 2442 2443 // ServeHTTP dispatches the request to the handler whose 2444 // pattern most closely matches the request URL. 2445 // ServeHTTP将请求分派给就近符合请求路由的处理器handler处理 2446 func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request) { 2447 if r.RequestURI == "*" { 2448 if r.ProtoAtLeast(1, 1) { 2449 w.Header().Set("Connection", "close") 2450 } 2451 w.WriteHeader(StatusBadRequest) 2452 return 2453 } 2454 // step 01 分配具体的handler 2455 h, _ := mux.Handler(r) // 返回对应的handler 和 pattern 2456 // h.ServeHTTP 执行的就是HandlerFunc的ServeHTTP 2457 h.ServeHTTP(w, r) 2458 } 2459 2460 // Handle registers the handler for the given pattern. 2461 // If a handler already exists for pattern, Handle panics. 2462 // 如果注册的pattern 已经存在了就会报panic 2463 func (mux *ServeMux) Handle(pattern string, handler Handler) { 2464 mux.mu.Lock() 2465 defer mux.mu.Unlock() 2466 2467 if pattern == "" { 2468 panic("http: invalid pattern") 2469 } 2470 if handler == nil { 2471 panic("http: nil handler") 2472 } 2473 if _, exist := mux.m[pattern]; exist { 2474 panic("http: multiple registrations for " + pattern) 2475 } 2476 2477 if mux.m == nil { 2478 mux.m = make(map[string]muxEntry) 2479 } 2480 e := muxEntry{h: handler, pattern: pattern} 2481 mux.m[pattern] = e 2482 // 对于后缀为slash/的路径,按照长度大小写入mux.es中 2483 if pattern[len(pattern)-1] == '/' { 2484 mux.es = appendSorted(mux.es, e) 2485 } 2486 // 如果路由首字母不是'/' 则包含主机名 2487 if pattern[0] != '/' { 2488 mux.hosts = true 2489 } 2490 } 2491 2492 func appendSorted(es []muxEntry, e muxEntry) []muxEntry { 2493 n := len(es) 2494 i := sort.Search(n, func(i int) bool { 2495 return len(es[i].pattern) < len(e.pattern) 2496 }) 2497 if i == n { 2498 return append(es, e) 2499 } 2500 // we now know that i points at where we want to insert 2501 es = append(es, muxEntry{}) // try to grow the slice in place, any entry works. 2502 copy(es[i+1:], es[i:]) // Move shorter entries down 2503 es[i] = e 2504 return es 2505 } 2506 2507 // HandleFunc registers the handler function for the given pattern. 2508 // 把方法handler转换成HandlerFunc类型,即实现了Handler接口;再执行Handle方法 2509 // Handler是一个接口 2510 // HandlerFunc是Handler类型,是一个适配器函数 2511 /* 2512 HandleFunc优势 2513 HandleFunc函数的存在使得我们可以直接将一个func(ResponseWriter, *Request)类型的函数作为handler, 2514 而不再需要实现Handler这个接口和自定义一个实现ServeHTTP函数的类型了,HandleFunc可以非常简便的为url注册路径。 2515 */ 2516 func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request)) { 2517 if handler == nil { 2518 panic("http: nil handler") 2519 } 2520 mux.Handle(pattern, HandlerFunc(handler)) // 类型强转 2521 } 2522 2523 // Handle registers the handler for the given pattern 2524 // in the DefaultServeMux. 2525 // The documentation for ServeMux explains how patterns are matched. 2526 func Handle(pattern string, handler Handler) { DefaultServeMux.Handle(pattern, handler) } 2527 2528 // HandleFunc registers the handler function for the given pattern 2529 // in the DefaultServeMux. 2530 // The documentation for ServeMux explains how patterns are matched. 2531 func HandleFunc(pattern string, handler func(ResponseWriter, *Request)) { 2532 DefaultServeMux.HandleFunc(pattern, handler) 2533 } 2534 2535 // Serve accepts incoming HTTP connections on the listener l, 2536 // creating a new service goroutine for each. The service goroutines 2537 // read requests and then call handler to reply to them. 2538 // 2539 // The handler is typically nil, in which case the DefaultServeMux is used. 2540 // 2541 // HTTP/2 support is only enabled if the Listener returns *tls.Conn 2542 // connections and they were configured with "h2" in the TLS 2543 // Config.NextProtos. 2544 // 2545 // Serve always returns a non-nil error. 2546 func Serve(l net.Listener, handler Handler) error { 2547 srv := &Server{Handler: handler} 2548 return srv.Serve(l) 2549 } 2550 2551 // ServeTLS accepts incoming HTTPS connections on the listener l, 2552 // creating a new service goroutine for each. The service goroutines 2553 // read requests and then call handler to reply to them. 2554 // 2555 // The handler is typically nil, in which case the DefaultServeMux is used. 2556 // 2557 // Additionally, files containing a certificate and matching private key 2558 // for the server must be provided. If the certificate is signed by a 2559 // certificate authority, the certFile should be the concatenation 2560 // of the server's certificate, any intermediates, and the CA's certificate. 2561 // 2562 // ServeTLS always returns a non-nil error. 2563 func ServeTLS(l net.Listener, handler Handler, certFile, keyFile string) error { 2564 srv := &Server{Handler: handler} 2565 return srv.ServeTLS(l, certFile, keyFile) 2566 } 2567 2568 // A Server defines parameters for running an HTTP server. 2569 // The zero value for Server is a valid configuration. 2570 type Server struct { 2571 // Addr optionally specifies the TCP address for the server to listen on, 2572 // in the form "host:port". If empty, ":http" (port 80) is used. 2573 // The service names are defined in RFC 6335 and assigned by IANA. 2574 // See net.Dial for details of the address format. 2575 Addr string 2576 2577 Handler Handler // handler to invoke, http.DefaultServeMux if nil 2578 2579 // TLSConfig optionally provides a TLS configuration for use 2580 // by ServeTLS and ListenAndServeTLS. Note that this value is 2581 // cloned by ServeTLS and ListenAndServeTLS, so it's not 2582 // possible to modify the configuration with methods like 2583 // tls.Config.SetSessionTicketKeys. To use 2584 // SetSessionTicketKeys, use Server.Serve with a TLS Listener 2585 // instead. 2586 TLSConfig *tls.Config 2587 2588 // ReadTimeout is the maximum duration for reading the entire 2589 // request, including the body. A zero or negative value means 2590 // there will be no timeout. 2591 // 2592 // Because ReadTimeout does not let Handlers make per-request 2593 // decisions on each request body's acceptable deadline or 2594 // upload rate, most users will prefer to use 2595 // ReadHeaderTimeout. It is valid to use them both. 2596 ReadTimeout time.Duration 2597 2598 // ReadHeaderTimeout is the amount of time allowed to read 2599 // request headers. The connection's read deadline is reset 2600 // after reading the headers and the Handler can decide what 2601 // is considered too slow for the body. If ReadHeaderTimeout 2602 // is zero, the value of ReadTimeout is used. If both are 2603 // zero, there is no timeout. 2604 ReadHeaderTimeout time.Duration 2605 2606 // WriteTimeout is the maximum duration before timing out 2607 // writes of the response. It is reset whenever a new 2608 // request's header is read. Like ReadTimeout, it does not 2609 // let Handlers make decisions on a per-request basis. 2610 // A zero or negative value means there will be no timeout. 2611 WriteTimeout time.Duration 2612 2613 // IdleTimeout is the maximum amount of time to wait for the 2614 // next request when keep-alives are enabled. If IdleTimeout 2615 // is zero, the value of ReadTimeout is used. If both are 2616 // zero, there is no timeout. 2617 IdleTimeout time.Duration 2618 2619 // MaxHeaderBytes controls the maximum number of bytes the 2620 // server will read parsing the request header's keys and 2621 // values, including the request line. It does not limit the 2622 // size of the request body. 2623 // If zero, DefaultMaxHeaderBytes is used. 2624 MaxHeaderBytes int 2625 2626 // TLSNextProto optionally specifies a function to take over 2627 // ownership of the provided TLS connection when an ALPN 2628 // protocol upgrade has occurred. The map key is the protocol 2629 // name negotiated. The Handler argument should be used to 2630 // handle HTTP requests and will initialize the Request's TLS 2631 // and RemoteAddr if not already set. The connection is 2632 // automatically closed when the function returns. 2633 // If TLSNextProto is not nil, HTTP/2 support is not enabled 2634 // automatically. 2635 TLSNextProto map[string]func(*Server, *tls.Conn, Handler) 2636 2637 // ConnState specifies an optional callback function that is 2638 // called when a client connection changes state. See the 2639 // ConnState type and associated constants for details. 2640 ConnState func(net.Conn, ConnState) 2641 2642 // ErrorLog specifies an optional logger for errors accepting 2643 // connections, unexpected behavior from handlers, and 2644 // underlying FileSystem errors. 2645 // If nil, logging is done via the log package's standard logger. 2646 ErrorLog *log.Logger 2647 2648 // BaseContext optionally specifies a function that returns 2649 // the base context for incoming requests on this server. 2650 // The provided Listener is the specific Listener that's 2651 // about to start accepting requests. 2652 // If BaseContext is nil, the default is context.Background(). 2653 // If non-nil, it must return a non-nil context. 2654 BaseContext func(net.Listener) context.Context 2655 2656 // ConnContext optionally specifies a function that modifies 2657 // the context used for a new connection c. The provided ctx 2658 // is derived from the base context and has a ServerContextKey 2659 // value. 2660 ConnContext func(ctx context.Context, c net.Conn) context.Context 2661 2662 inShutdown atomicBool // true when server is in shutdown 2663 2664 disableKeepAlives int32 // accessed atomically. 2665 nextProtoOnce sync.Once // guards setupHTTP2_* init 2666 nextProtoErr error // result of http2.ConfigureServer if used 2667 2668 mu sync.Mutex 2669 listeners map[*net.Listener]struct{} 2670 activeConn map[*conn]struct{} 2671 doneChan chan struct{} 2672 onShutdown []func() 2673 } 2674 2675 func (s *Server) getDoneChan() <-chan struct{} { 2676 s.mu.Lock() 2677 defer s.mu.Unlock() 2678 return s.getDoneChanLocked() 2679 } 2680 2681 func (s *Server) getDoneChanLocked() chan struct{} { 2682 if s.doneChan == nil { 2683 s.doneChan = make(chan struct{}) 2684 } 2685 return s.doneChan 2686 } 2687 2688 func (s *Server) closeDoneChanLocked() { 2689 ch := s.getDoneChanLocked() 2690 select { 2691 case <-ch: 2692 // Already closed. Don't close again. 2693 default: 2694 // Safe to close here. We're the only closer, guarded 2695 // by s.mu. 2696 close(ch) 2697 } 2698 } 2699 2700 // Close immediately closes all active net.Listeners and any 2701 // connections in state StateNew, StateActive, or StateIdle. For a 2702 // graceful shutdown, use Shutdown. 2703 // 2704 // Close does not attempt to close (and does not even know about) 2705 // any hijacked connections, such as WebSockets. 2706 // 2707 // Close returns any error returned from closing the Server's 2708 // underlying Listener(s). 2709 func (srv *Server) Close() error { 2710 srv.inShutdown.setTrue() 2711 srv.mu.Lock() 2712 defer srv.mu.Unlock() 2713 srv.closeDoneChanLocked() 2714 err := srv.closeListenersLocked() 2715 for c := range srv.activeConn { 2716 c.rwc.Close() 2717 delete(srv.activeConn, c) 2718 } 2719 return err 2720 } 2721 2722 // shutdownPollIntervalMax is the max polling interval when checking 2723 // quiescence during Server.Shutdown. Polling starts with a small 2724 // interval and backs off to the max. 2725 // Ideally we could find a solution that doesn't involve polling, 2726 // but which also doesn't have a high runtime cost (and doesn't 2727 // involve any contentious mutexes), but that is left as an 2728 // exercise for the reader. 2729 const shutdownPollIntervalMax = 500 * time.Millisecond 2730 2731 // Shutdown gracefully shuts down the server without interrupting any 2732 // active connections. Shutdown works by first closing all open 2733 // listeners, then closing all idle connections, and then waiting 2734 // indefinitely for connections to return to idle and then shut down. 2735 // If the provided context expires before the shutdown is complete, 2736 // Shutdown returns the context's error, otherwise it returns any 2737 // error returned from closing the Server's underlying Listener(s). 2738 // 2739 // When Shutdown is called, Serve, ListenAndServe, and 2740 // ListenAndServeTLS immediately return ErrServerClosed. Make sure the 2741 // program doesn't exit and waits instead for Shutdown to return. 2742 // 2743 // Shutdown does not attempt to close nor wait for hijacked 2744 // connections such as WebSockets. The caller of Shutdown should 2745 // separately notify such long-lived connections of shutdown and wait 2746 // for them to close, if desired. See RegisterOnShutdown for a way to 2747 // register shutdown notification functions. 2748 // 2749 // Once Shutdown has been called on a server, it may not be reused; 2750 // future calls to methods such as Serve will return ErrServerClosed. 2751 func (srv *Server) Shutdown(ctx context.Context) error { 2752 srv.inShutdown.setTrue() 2753 2754 srv.mu.Lock() 2755 lnerr := srv.closeListenersLocked() 2756 srv.closeDoneChanLocked() 2757 for _, f := range srv.onShutdown { 2758 go f() 2759 } 2760 srv.mu.Unlock() 2761 2762 pollIntervalBase := time.Millisecond 2763 nextPollInterval := func() time.Duration { 2764 // Add 10% jitter. 2765 interval := pollIntervalBase + time.Duration(rand.Intn(int(pollIntervalBase/10))) 2766 // Double and clamp for next time. 2767 pollIntervalBase *= 2 2768 if pollIntervalBase > shutdownPollIntervalMax { 2769 pollIntervalBase = shutdownPollIntervalMax 2770 } 2771 return interval 2772 } 2773 2774 timer := time.NewTimer(nextPollInterval()) 2775 defer timer.Stop() 2776 for { 2777 if srv.closeIdleConns() && srv.numListeners() == 0 { 2778 return lnerr 2779 } 2780 select { 2781 case <-ctx.Done(): 2782 return ctx.Err() 2783 case <-timer.C: 2784 timer.Reset(nextPollInterval()) 2785 } 2786 } 2787 } 2788 2789 // RegisterOnShutdown registers a function to call on Shutdown. 2790 // This can be used to gracefully shutdown connections that have 2791 // undergone ALPN protocol upgrade or that have been hijacked. 2792 // This function should start protocol-specific graceful shutdown, 2793 // but should not wait for shutdown to complete. 2794 func (srv *Server) RegisterOnShutdown(f func()) { 2795 srv.mu.Lock() 2796 srv.onShutdown = append(srv.onShutdown, f) 2797 srv.mu.Unlock() 2798 } 2799 2800 func (s *Server) numListeners() int { 2801 s.mu.Lock() 2802 defer s.mu.Unlock() 2803 return len(s.listeners) 2804 } 2805 2806 // closeIdleConns closes all idle connections and reports whether the 2807 // server is quiescent. 2808 func (s *Server) closeIdleConns() bool { 2809 s.mu.Lock() 2810 defer s.mu.Unlock() 2811 quiescent := true 2812 for c := range s.activeConn { 2813 st, unixSec := c.getState() 2814 // Issue 22682: treat StateNew connections as if 2815 // they're idle if we haven't read the first request's 2816 // header in over 5 seconds. 2817 if st == StateNew && unixSec < time.Now().Unix()-5 { 2818 st = StateIdle 2819 } 2820 if st != StateIdle || unixSec == 0 { 2821 // Assume unixSec == 0 means it's a very new 2822 // connection, without state set yet. 2823 quiescent = false 2824 continue 2825 } 2826 c.rwc.Close() 2827 delete(s.activeConn, c) 2828 } 2829 return quiescent 2830 } 2831 2832 func (s *Server) closeListenersLocked() error { 2833 var err error 2834 for ln := range s.listeners { 2835 if cerr := (*ln).Close(); cerr != nil && err == nil { 2836 err = cerr 2837 } 2838 } 2839 return err 2840 } 2841 2842 // A ConnState represents the state of a client connection to a server. 2843 // It's used by the optional Server.ConnState hook. 2844 type ConnState int 2845 2846 const ( 2847 // StateNew represents a new connection that is expected to 2848 // send a request immediately. Connections begin at this 2849 // state and then transition to either StateActive or 2850 // StateClosed. 2851 StateNew ConnState = iota 2852 2853 // StateActive represents a connection that has read 1 or more 2854 // bytes of a request. The Server.ConnState hook for 2855 // StateActive fires before the request has entered a handler 2856 // and doesn't fire again until the request has been 2857 // handled. After the request is handled, the state 2858 // transitions to StateClosed, StateHijacked, or StateIdle. 2859 // For HTTP/2, StateActive fires on the transition from zero 2860 // to one active request, and only transitions away once all 2861 // active requests are complete. That means that ConnState 2862 // cannot be used to do per-request work; ConnState only notes 2863 // the overall state of the connection. 2864 StateActive 2865 2866 // StateIdle represents a connection that has finished 2867 // handling a request and is in the keep-alive state, waiting 2868 // for a new request. Connections transition from StateIdle 2869 // to either StateActive or StateClosed. 2870 StateIdle 2871 2872 // StateHijacked represents a hijacked connection. 2873 // This is a terminal state. It does not transition to StateClosed. 2874 StateHijacked 2875 2876 // StateClosed represents a closed connection. 2877 // This is a terminal state. Hijacked connections do not 2878 // transition to StateClosed. 2879 StateClosed 2880 ) 2881 2882 var stateName = map[ConnState]string{ 2883 StateNew: "new", 2884 StateActive: "active", 2885 StateIdle: "idle", 2886 StateHijacked: "hijacked", 2887 StateClosed: "closed", 2888 } 2889 2890 func (c ConnState) String() string { 2891 return stateName[c] 2892 } 2893 2894 // serverHandler delegates to either the server's Handler or 2895 // DefaultServeMux and also handles "OPTIONS *" requests. 2896 type serverHandler struct { 2897 srv *Server 2898 } 2899 2900 func (sh serverHandler) ServeHTTP(rw ResponseWriter, req *Request) { 2901 handler := sh.srv.Handler 2902 if handler == nil { // 如果用户没有提供路由器, 就用默认的路由器 DefaultServeMux 2903 handler = DefaultServeMux 2904 } 2905 if req.RequestURI == "*" && req.Method == "OPTIONS" { 2906 handler = globalOptionsHandler{} 2907 } 2908 2909 // 充许在查询中使用分号 2910 if req.URL != nil && strings.Contains(req.URL.RawQuery, ";") { 2911 var allowQuerySemicolonsInUse int32 2912 req = req.WithContext(context.WithValue(req.Context(), silenceSemWarnContextKey, func() { 2913 atomic.StoreInt32(&allowQuerySemicolonsInUse, 1) 2914 })) 2915 defer func() { 2916 if atomic.LoadInt32(&allowQuerySemicolonsInUse) == 0 { 2917 sh.srv.logf("http: URL query contains semicolon, which is no longer a supported separator; parts of the query may be stripped when parsed; see golang.org/issue/25192") 2918 } 2919 }() 2920 } 2921 // 分配handler 2922 // 如果是 DefaultServeMux 2923 // 则这里调用的是 ServeMux.ServeHTTP方法 2924 handler.ServeHTTP(rw, req) 2925 } 2926 2927 var silenceSemWarnContextKey = &contextKey{"silence-semicolons"} 2928 2929 // AllowQuerySemicolons returns a handler that serves requests by converting any 2930 // unescaped semicolons in the URL query to ampersands, and invoking the handler h. 2931 // 2932 // This restores the pre-Go 1.17 behavior of splitting query parameters on both 2933 // semicolons and ampersands. (See golang.org/issue/25192). Note that this 2934 // behavior doesn't match that of many proxies, and the mismatch can lead to 2935 // security issues. 2936 // 2937 // AllowQuerySemicolons should be invoked before Request.ParseForm is called. 2938 func AllowQuerySemicolons(h Handler) Handler { 2939 return HandlerFunc(func(w ResponseWriter, r *Request) { 2940 if silenceSemicolonsWarning, ok := r.Context().Value(silenceSemWarnContextKey).(func()); ok { 2941 silenceSemicolonsWarning() 2942 } 2943 if strings.Contains(r.URL.RawQuery, ";") { 2944 r2 := new(Request) 2945 *r2 = *r 2946 r2.URL = new(url.URL) 2947 *r2.URL = *r.URL 2948 r2.URL.RawQuery = strings.ReplaceAll(r.URL.RawQuery, ";", "&") 2949 h.ServeHTTP(w, r2) 2950 } else { 2951 h.ServeHTTP(w, r) 2952 } 2953 }) 2954 } 2955 2956 // ListenAndServe listens on the TCP network address srv.Addr and then 2957 // calls Serve to handle requests on incoming connections. 2958 // Accepted connections are configured to enable TCP keep-alives. 2959 // 2960 // If srv.Addr is blank, ":http" is used. 2961 // 2962 // ListenAndServe always returns a non-nil error. After Shutdown or Close, 2963 // the returned error is ErrServerClosed. 2964 func (srv *Server) ListenAndServe() error { 2965 if srv.shuttingDown() { 2966 return ErrServerClosed 2967 } 2968 addr := srv.Addr 2969 if addr == "" { 2970 addr = ":http" 2971 } 2972 ln, err := net.Listen("tcp", addr) // step1 打开tcp连接, 监听指定端口 2973 if err != nil { 2974 return err 2975 } 2976 return srv.Serve(ln) 2977 } 2978 2979 var testHookServerServe func(*Server, net.Listener) // used if non-nil 2980 2981 // shouldDoServeHTTP2 reports whether Server.Serve should configure 2982 // automatic HTTP/2. (which sets up the srv.TLSNextProto map) 2983 func (srv *Server) shouldConfigureHTTP2ForServe() bool { 2984 if srv.TLSConfig == nil { 2985 // Compatibility with Go 1.6: 2986 // If there's no TLSConfig, it's possible that the user just 2987 // didn't set it on the http.Server, but did pass it to 2988 // tls.NewListener and passed that listener to Serve. 2989 // So we should configure HTTP/2 (to set up srv.TLSNextProto) 2990 // in case the listener returns an "h2" *tls.Conn. 2991 return true 2992 } 2993 // The user specified a TLSConfig on their http.Server. 2994 // In this, case, only configure HTTP/2 if their tls.Config 2995 // explicitly mentions "h2". Otherwise http2.ConfigureServer 2996 // would modify the tls.Config to add it, but they probably already 2997 // passed this tls.Config to tls.NewListener. And if they did, 2998 // it's too late anyway to fix it. It would only be potentially racy. 2999 // See Issue 15908. 3000 return strSliceContains(srv.TLSConfig.NextProtos, http2NextProtoTLS) 3001 } 3002 3003 // ErrServerClosed is returned by the Server's Serve, ServeTLS, ListenAndServe, 3004 // and ListenAndServeTLS methods after a call to Shutdown or Close. 3005 var ErrServerClosed = errors.New("http: Server closed") 3006 3007 // Serve accepts incoming connections on the Listener l, creating a 3008 // new service goroutine for each. The service goroutines read requests and 3009 // then call srv.Handler to reply to them. 3010 // 3011 // HTTP/2 support is only enabled if the Listener returns *tls.Conn 3012 // connections and they were configured with "h2" in the TLS 3013 // Config.NextProtos. 3014 // 3015 // Serve always returns a non-nil error and closes l. 3016 // After Shutdown or Close, the returned error is ErrServerClosed. 3017 func (srv *Server) Serve(l net.Listener) error { 3018 if fn := testHookServerServe; fn != nil { 3019 fn(srv, l) // call hook with unwrapped listener 3020 } 3021 3022 origListener := l 3023 l = &onceCloseListener{Listener: l} //listener 通过once 保证只关闭一次 3024 defer l.Close() 3025 3026 if err := srv.setupHTTP2_Serve(); err != nil { 3027 return err 3028 } 3029 3030 if !srv.trackListener(&l, true) { 3031 return ErrServerClosed 3032 } 3033 defer srv.trackListener(&l, false) 3034 3035 baseCtx := context.Background() 3036 if srv.BaseContext != nil { 3037 baseCtx = srv.BaseContext(origListener) 3038 if baseCtx == nil { 3039 panic("BaseContext returned a nil context") 3040 } 3041 } 3042 3043 var tempDelay time.Duration // how long to sleep on accept failure 3044 3045 ctx := context.WithValue(baseCtx, ServerContextKey, srv) 3046 for { 3047 // 接收客户端请求 rw: 客户请求的信息 3048 // Accept从处于 established 状态的连接队列头部取出一个已经完成的连接 3049 rw, err := l.Accept() // step2 接收客户端请求信息rw; 3050 if err != nil { 3051 // 在判断错误之前,判断收到结束信号直接退出 3052 select { 3053 case <-srv.getDoneChan(): 3054 return ErrServerClosed 3055 default: 3056 } 3057 if ne, ok := err.(net.Error); ok && ne.Temporary() { // 发生网络错误时,则延时等待并重试 3058 if tempDelay == 0 { 3059 tempDelay = 5 * time.Millisecond // 第一次重试间隔时间为5毫秒 3060 } else { 3061 tempDelay *= 2 // 之后每次重试时间为2的指数级 3062 } 3063 if max := 1 * time.Second; tempDelay > max { // 重试间隔最大为1秒 3064 tempDelay = max 3065 } 3066 srv.logf("http: Accept error: %v; retrying in %v", err, tempDelay) 3067 time.Sleep(tempDelay) // 休眠 3068 continue 3069 } 3070 return err 3071 } 3072 connCtx := ctx 3073 if cc := srv.ConnContext; cc != nil { 3074 connCtx = cc(connCtx, rw) 3075 if connCtx == nil { 3076 panic("ConnContext returned nil") 3077 } 3078 } 3079 tempDelay = 0 3080 c := srv.newConn(rw) //step3 基于客户端的请求,新建一个连接 3081 c.setState(c.rwc, StateNew, runHooks) // before Serve can return 设置状态为StateNew 3082 go c.serve(connCtx) // step4 新建协程处理这个连接 3083 } 3084 } 3085 3086 // ServeTLS accepts incoming connections on the Listener l, creating a 3087 // new service goroutine for each. The service goroutines perform TLS 3088 // setup and then read requests, calling srv.Handler to reply to them. 3089 // 3090 // Files containing a certificate and matching private key for the 3091 // server must be provided if neither the Server's 3092 // TLSConfig.Certificates nor TLSConfig.GetCertificate are populated. 3093 // If the certificate is signed by a certificate authority, the 3094 // certFile should be the concatenation of the server's certificate, 3095 // any intermediates, and the CA's certificate. 3096 // 3097 // ServeTLS always returns a non-nil error. After Shutdown or Close, the 3098 // returned error is ErrServerClosed. 3099 func (srv *Server) ServeTLS(l net.Listener, certFile, keyFile string) error { 3100 // Setup HTTP/2 before srv.Serve, to initialize srv.TLSConfig 3101 // before we clone it and create the TLS Listener. 3102 if err := srv.setupHTTP2_ServeTLS(); err != nil { 3103 return err 3104 } 3105 3106 config := cloneTLSConfig(srv.TLSConfig) 3107 if !strSliceContains(config.NextProtos, "http/1.1") { 3108 config.NextProtos = append(config.NextProtos, "http/1.1") 3109 } 3110 3111 configHasCert := len(config.Certificates) > 0 || config.GetCertificate != nil 3112 if !configHasCert || certFile != "" || keyFile != "" { 3113 var err error 3114 config.Certificates = make([]tls.Certificate, 1) 3115 config.Certificates[0], err = tls.LoadX509KeyPair(certFile, keyFile) 3116 if err != nil { 3117 return err 3118 } 3119 } 3120 3121 tlsListener := tls.NewListener(l, config) 3122 return srv.Serve(tlsListener) 3123 } 3124 3125 // trackListener adds or removes a net.Listener to the set of tracked 3126 // listeners. 3127 // 3128 // We store a pointer to interface in the map set, in case the 3129 // net.Listener is not comparable. This is safe because we only call 3130 // trackListener via Serve and can track+defer untrack the same 3131 // pointer to local variable there. We never need to compare a 3132 // Listener from another caller. 3133 // 3134 // It reports whether the server is still up (not Shutdown or Closed). 3135 func (s *Server) trackListener(ln *net.Listener, add bool) bool { 3136 s.mu.Lock() 3137 defer s.mu.Unlock() 3138 if s.listeners == nil { 3139 s.listeners = make(map[*net.Listener]struct{}) 3140 } 3141 if add { 3142 if s.shuttingDown() { 3143 return false 3144 } 3145 s.listeners[ln] = struct{}{} 3146 } else { 3147 delete(s.listeners, ln) 3148 } 3149 return true 3150 } 3151 3152 func (s *Server) trackConn(c *conn, add bool) { 3153 s.mu.Lock() 3154 defer s.mu.Unlock() 3155 if s.activeConn == nil { 3156 s.activeConn = make(map[*conn]struct{}) 3157 } 3158 if add { 3159 s.activeConn[c] = struct{}{} 3160 } else { 3161 delete(s.activeConn, c) 3162 } 3163 } 3164 3165 func (s *Server) idleTimeout() time.Duration { 3166 if s.IdleTimeout != 0 { 3167 return s.IdleTimeout 3168 } 3169 return s.ReadTimeout 3170 } 3171 3172 func (s *Server) readHeaderTimeout() time.Duration { 3173 if s.ReadHeaderTimeout != 0 { 3174 return s.ReadHeaderTimeout 3175 } 3176 return s.ReadTimeout 3177 } 3178 3179 func (s *Server) doKeepAlives() bool { 3180 return atomic.LoadInt32(&s.disableKeepAlives) == 0 && !s.shuttingDown() 3181 } 3182 3183 func (s *Server) shuttingDown() bool { 3184 return s.inShutdown.isSet() 3185 } 3186 3187 // SetKeepAlivesEnabled controls whether HTTP keep-alives are enabled. 3188 // By default, keep-alives are always enabled. Only very 3189 // resource-constrained environments or servers in the process of 3190 // shutting down should disable them. 3191 func (srv *Server) SetKeepAlivesEnabled(v bool) { 3192 if v { 3193 atomic.StoreInt32(&srv.disableKeepAlives, 0) 3194 return 3195 } 3196 atomic.StoreInt32(&srv.disableKeepAlives, 1) 3197 3198 // Close idle HTTP/1 conns: 3199 srv.closeIdleConns() 3200 3201 // TODO: Issue 26303: close HTTP/2 conns as soon as they become idle. 3202 } 3203 3204 func (s *Server) logf(format string, args ...interface{}) { 3205 if s.ErrorLog != nil { 3206 s.ErrorLog.Printf(format, args...) 3207 } else { 3208 log.Printf(format, args...) 3209 } 3210 } 3211 3212 // logf prints to the ErrorLog of the *Server associated with request r 3213 // via ServerContextKey. If there's no associated server, or if ErrorLog 3214 // is nil, logging is done via the log package's standard logger. 3215 func logf(r *Request, format string, args ...interface{}) { 3216 s, _ := r.Context().Value(ServerContextKey).(*Server) 3217 if s != nil && s.ErrorLog != nil { 3218 s.ErrorLog.Printf(format, args...) 3219 } else { 3220 log.Printf(format, args...) 3221 } 3222 } 3223 3224 // ListenAndServe listens on the TCP network address addr and then calls 3225 // Serve with handler to handle requests on incoming connections. 3226 // Accepted connections are configured to enable TCP keep-alives. 3227 // 3228 // The handler is typically nil, in which case the DefaultServeMux is used. 3229 // 3230 // ListenAndServe always returns a non-nil error. 3231 func ListenAndServe(addr string, handler Handler) error { 3232 server := &Server{Addr: addr, Handler: handler} // 实例化一个Server对象 3233 return server.ListenAndServe() 3234 } 3235 3236 // ListenAndServeTLS acts identically to ListenAndServe, except that it 3237 // expects HTTPS connections. Additionally, files containing a certificate and 3238 // matching private key for the server must be provided. If the certificate 3239 // is signed by a certificate authority, the certFile should be the concatenation 3240 // of the server's certificate, any intermediates, and the CA's certificate. 3241 func ListenAndServeTLS(addr, certFile, keyFile string, handler Handler) error { 3242 server := &Server{Addr: addr, Handler: handler} 3243 return server.ListenAndServeTLS(certFile, keyFile) 3244 } 3245 3246 // ListenAndServeTLS listens on the TCP network address srv.Addr and 3247 // then calls ServeTLS to handle requests on incoming TLS connections. 3248 // Accepted connections are configured to enable TCP keep-alives. 3249 // 3250 // Filenames containing a certificate and matching private key for the 3251 // server must be provided if neither the Server's TLSConfig.Certificates 3252 // nor TLSConfig.GetCertificate are populated. If the certificate is 3253 // signed by a certificate authority, the certFile should be the 3254 // concatenation of the server's certificate, any intermediates, and 3255 // the CA's certificate. 3256 // 3257 // If srv.Addr is blank, ":https" is used. 3258 // 3259 // ListenAndServeTLS always returns a non-nil error. After Shutdown or 3260 // Close, the returned error is ErrServerClosed. 3261 func (srv *Server) ListenAndServeTLS(certFile, keyFile string) error { 3262 if srv.shuttingDown() { 3263 return ErrServerClosed 3264 } 3265 addr := srv.Addr 3266 if addr == "" { 3267 addr = ":https" 3268 } 3269 3270 ln, err := net.Listen("tcp", addr) 3271 if err != nil { 3272 return err 3273 } 3274 3275 defer ln.Close() 3276 3277 return srv.ServeTLS(ln, certFile, keyFile) 3278 } 3279 3280 // setupHTTP2_ServeTLS conditionally configures HTTP/2 on 3281 // srv and reports whether there was an error setting it up. If it is 3282 // not configured for policy reasons, nil is returned. 3283 func (srv *Server) setupHTTP2_ServeTLS() error { 3284 srv.nextProtoOnce.Do(srv.onceSetNextProtoDefaults) 3285 return srv.nextProtoErr 3286 } 3287 3288 // setupHTTP2_Serve is called from (*Server).Serve and conditionally 3289 // configures HTTP/2 on srv using a more conservative policy than 3290 // setupHTTP2_ServeTLS because Serve is called after tls.Listen, 3291 // and may be called concurrently. See shouldConfigureHTTP2ForServe. 3292 // 3293 // The tests named TestTransportAutomaticHTTP2* and 3294 // TestConcurrentServerServe in server_test.go demonstrate some 3295 // of the supported use cases and motivations. 3296 func (srv *Server) setupHTTP2_Serve() error { 3297 srv.nextProtoOnce.Do(srv.onceSetNextProtoDefaults_Serve) 3298 return srv.nextProtoErr 3299 } 3300 3301 func (srv *Server) onceSetNextProtoDefaults_Serve() { 3302 if srv.shouldConfigureHTTP2ForServe() { 3303 srv.onceSetNextProtoDefaults() 3304 } 3305 } 3306 3307 // onceSetNextProtoDefaults configures HTTP/2, if the user hasn't 3308 // configured otherwise. (by setting srv.TLSNextProto non-nil) 3309 // It must only be called via srv.nextProtoOnce (use srv.setupHTTP2_*). 3310 func (srv *Server) onceSetNextProtoDefaults() { 3311 if omitBundledHTTP2 || strings.Contains(os.Getenv("GODEBUG"), "http2server=0") { 3312 return 3313 } 3314 // Enable HTTP/2 by default if the user hasn't otherwise 3315 // configured their TLSNextProto map. 3316 if srv.TLSNextProto == nil { 3317 conf := &http2Server{ 3318 NewWriteScheduler: func() http2WriteScheduler { return http2NewPriorityWriteScheduler(nil) }, 3319 } 3320 srv.nextProtoErr = http2ConfigureServer(srv, conf) 3321 } 3322 } 3323 3324 // TimeoutHandler returns a Handler that runs h with the given time limit. 3325 // 3326 // The new Handler calls h.ServeHTTP to handle each request, but if a 3327 // call runs for longer than its time limit, the handler responds with 3328 // a 503 Service Unavailable error and the given message in its body. 3329 // (If msg is empty, a suitable default message will be sent.) 3330 // After such a timeout, writes by h to its ResponseWriter will return 3331 // ErrHandlerTimeout. 3332 // 3333 // TimeoutHandler supports the Pusher interface but does not support 3334 // the Hijacker or Flusher interfaces. 3335 func TimeoutHandler(h Handler, dt time.Duration, msg string) Handler { 3336 return &timeoutHandler{ 3337 handler: h, 3338 body: msg, 3339 dt: dt, 3340 } 3341 } 3342 3343 // ErrHandlerTimeout is returned on ResponseWriter Write calls 3344 // in handlers which have timed out. 3345 var ErrHandlerTimeout = errors.New("http: Handler timeout") 3346 3347 type timeoutHandler struct { 3348 handler Handler 3349 body string 3350 dt time.Duration 3351 3352 // When set, no context will be created and this context will 3353 // be used instead. 3354 testContext context.Context 3355 } 3356 3357 func (h *timeoutHandler) errorBody() string { 3358 if h.body != "" { 3359 return h.body 3360 } 3361 return "<html><head><title>Timeout</title></head><body><h1>Timeout</h1></body></html>" 3362 } 3363 3364 func (h *timeoutHandler) ServeHTTP(w ResponseWriter, r *Request) { 3365 ctx := h.testContext 3366 if ctx == nil { 3367 var cancelCtx context.CancelFunc 3368 ctx, cancelCtx = context.WithTimeout(r.Context(), h.dt) 3369 defer cancelCtx() 3370 } 3371 r = r.WithContext(ctx) 3372 done := make(chan struct{}) 3373 tw := &timeoutWriter{ 3374 w: w, 3375 h: make(Header), 3376 req: r, 3377 } 3378 panicChan := make(chan interface{}, 1) 3379 go func() { 3380 defer func() { 3381 if p := recover(); p != nil { 3382 panicChan <- p 3383 } 3384 }() 3385 h.handler.ServeHTTP(tw, r) 3386 close(done) 3387 }() 3388 select { 3389 case p := <-panicChan: 3390 panic(p) 3391 case <-done: 3392 tw.mu.Lock() 3393 defer tw.mu.Unlock() 3394 dst := w.Header() 3395 for k, vv := range tw.h { 3396 dst[k] = vv 3397 } 3398 if !tw.wroteHeader { 3399 tw.code = StatusOK 3400 } 3401 w.WriteHeader(tw.code) 3402 w.Write(tw.wbuf.Bytes()) 3403 case <-ctx.Done(): 3404 tw.mu.Lock() 3405 defer tw.mu.Unlock() 3406 w.WriteHeader(StatusServiceUnavailable) 3407 io.WriteString(w, h.errorBody()) 3408 tw.timedOut = true 3409 } 3410 } 3411 3412 type timeoutWriter struct { 3413 w ResponseWriter 3414 h Header 3415 wbuf bytes.Buffer 3416 req *Request 3417 3418 mu sync.Mutex 3419 timedOut bool 3420 wroteHeader bool 3421 code int 3422 } 3423 3424 var _ Pusher = (*timeoutWriter)(nil) 3425 3426 // Push implements the Pusher interface. 3427 func (tw *timeoutWriter) Push(target string, opts *PushOptions) error { 3428 if pusher, ok := tw.w.(Pusher); ok { 3429 return pusher.Push(target, opts) 3430 } 3431 return ErrNotSupported 3432 } 3433 3434 func (tw *timeoutWriter) Header() Header { return tw.h } 3435 3436 func (tw *timeoutWriter) Write(p []byte) (int, error) { 3437 tw.mu.Lock() 3438 defer tw.mu.Unlock() 3439 if tw.timedOut { 3440 return 0, ErrHandlerTimeout 3441 } 3442 if !tw.wroteHeader { 3443 tw.writeHeaderLocked(StatusOK) 3444 } 3445 return tw.wbuf.Write(p) 3446 } 3447 3448 func (tw *timeoutWriter) writeHeaderLocked(code int) { 3449 checkWriteHeaderCode(code) 3450 3451 switch { 3452 case tw.timedOut: 3453 return 3454 case tw.wroteHeader: 3455 if tw.req != nil { 3456 caller := relevantCaller() 3457 logf(tw.req, "http: superfluous response.WriteHeader call from %s (%s:%d)", caller.Function, path.Base(caller.File), caller.Line) 3458 } 3459 default: 3460 tw.wroteHeader = true 3461 tw.code = code 3462 } 3463 } 3464 3465 func (tw *timeoutWriter) WriteHeader(code int) { 3466 tw.mu.Lock() 3467 defer tw.mu.Unlock() 3468 tw.writeHeaderLocked(code) 3469 } 3470 3471 // onceCloseListener wraps a net.Listener, protecting it from 3472 // multiple Close calls. 3473 type onceCloseListener struct { 3474 net.Listener 3475 once sync.Once 3476 closeErr error 3477 } 3478 3479 func (oc *onceCloseListener) Close() error { 3480 oc.once.Do(oc.close) 3481 return oc.closeErr 3482 } 3483 3484 func (oc *onceCloseListener) close() { oc.closeErr = oc.Listener.Close() } 3485 3486 // globalOptionsHandler responds to "OPTIONS *" requests. 3487 type globalOptionsHandler struct{} 3488 3489 func (globalOptionsHandler) ServeHTTP(w ResponseWriter, r *Request) { 3490 w.Header().Set("Content-Length", "0") 3491 if r.ContentLength != 0 { 3492 // Read up to 4KB of OPTIONS body (as mentioned in the 3493 // spec as being reserved for future use), but anything 3494 // over that is considered a waste of server resources 3495 // (or an attack) and we abort and close the connection, 3496 // courtesy of MaxBytesReader's EOF behavior. 3497 mb := MaxBytesReader(w, r.Body, 4<<10) 3498 io.Copy(io.Discard, mb) 3499 } 3500 } 3501 3502 // initALPNRequest is an HTTP handler that initializes certain 3503 // uninitialized fields in its *Request. Such partially-initialized 3504 // Requests come from ALPN protocol handlers. 3505 type initALPNRequest struct { 3506 ctx context.Context 3507 c *tls.Conn 3508 h serverHandler 3509 } 3510 3511 // BaseContext is an exported but unadvertised http.Handler method 3512 // recognized by x/net/http2 to pass down a context; the TLSNextProto 3513 // API predates context support so we shoehorn through the only 3514 // interface we have available. 3515 func (h initALPNRequest) BaseContext() context.Context { return h.ctx } 3516 3517 func (h initALPNRequest) ServeHTTP(rw ResponseWriter, req *Request) { 3518 if req.TLS == nil { 3519 req.TLS = &tls.ConnectionState{} 3520 *req.TLS = h.c.ConnectionState() 3521 } 3522 if req.Body == nil { 3523 req.Body = NoBody 3524 } 3525 if req.RemoteAddr == "" { 3526 req.RemoteAddr = h.c.RemoteAddr().String() 3527 } 3528 h.h.ServeHTTP(rw, req) 3529 } 3530 3531 // loggingConn is used for debugging. 3532 type loggingConn struct { 3533 name string 3534 net.Conn 3535 } 3536 3537 var ( 3538 uniqNameMu sync.Mutex 3539 uniqNameNext = make(map[string]int) 3540 ) 3541 3542 func newLoggingConn(baseName string, c net.Conn) net.Conn { 3543 uniqNameMu.Lock() 3544 defer uniqNameMu.Unlock() 3545 uniqNameNext[baseName]++ 3546 return &loggingConn{ 3547 name: fmt.Sprintf("%s-%d", baseName, uniqNameNext[baseName]), 3548 Conn: c, 3549 } 3550 } 3551 3552 func (c *loggingConn) Write(p []byte) (n int, err error) { 3553 log.Printf("%s.Write(%d) = ....", c.name, len(p)) 3554 n, err = c.Conn.Write(p) 3555 log.Printf("%s.Write(%d) = %d, %v", c.name, len(p), n, err) 3556 return 3557 } 3558 3559 func (c *loggingConn) Read(p []byte) (n int, err error) { 3560 log.Printf("%s.Read(%d) = ....", c.name, len(p)) 3561 n, err = c.Conn.Read(p) 3562 log.Printf("%s.Read(%d) = %d, %v", c.name, len(p), n, err) 3563 return 3564 } 3565 3566 func (c *loggingConn) Close() (err error) { 3567 log.Printf("%s.Close() = ...", c.name) 3568 err = c.Conn.Close() 3569 log.Printf("%s.Close() = %v", c.name, err) 3570 return 3571 } 3572 3573 // checkConnErrorWriter writes to c.rwc and records any write errors to c.werr. 3574 // It only contains one field (and a pointer field at that), so it 3575 // fits in an interface value without an extra allocation. 3576 type checkConnErrorWriter struct { 3577 c *conn 3578 } 3579 3580 func (w checkConnErrorWriter) Write(p []byte) (n int, err error) { 3581 n, err = w.c.rwc.Write(p) 3582 if err != nil && w.c.werr == nil { 3583 w.c.werr = err 3584 w.c.cancelCtx() 3585 } 3586 return 3587 } 3588 3589 func numLeadingCRorLF(v []byte) (n int) { 3590 for _, b := range v { 3591 if b == '\r' || b == '\n' { 3592 n++ 3593 continue 3594 } 3595 break 3596 } 3597 return 3598 3599 } 3600 3601 func strSliceContains(ss []string, s string) bool { 3602 for _, v := range ss { 3603 if v == s { 3604 return true 3605 } 3606 } 3607 return false 3608 } 3609 3610 // tlsRecordHeaderLooksLikeHTTP reports whether a TLS record header 3611 // looks like it might've been a misdirected plaintext HTTP request. 3612 func tlsRecordHeaderLooksLikeHTTP(hdr [5]byte) bool { 3613 switch string(hdr[:]) { 3614 case "GET /", "HEAD ", "POST ", "PUT /", "OPTIO": 3615 return true 3616 } 3617 return false 3618 }