github.com/code-reading/golang@v0.0.0-20220303082512-ba5bc0e589a3/go/src/sync/pool.go (about)

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package sync
     6  
     7  import (
     8  	"internal/race"
     9  	"runtime"
    10  	"sync/atomic"
    11  	"unsafe"
    12  )
    13  
    14  // A Pool is a set of temporary objects that may be individually saved and
    15  // retrieved.
    16  // 一个临时对象集组成一个池,可单独保存和读取;
    17  //
    18  // Any item stored in the Pool may be removed automatically at any time without
    19  // notification. If the Pool holds the only reference when this happens, the
    20  // item might be deallocated.
    21  // 缓存对象随时可能被无通知的清除掉, 缓存对象占用的资源会被释放掉,
    22  //
    23  // A Pool is safe for use by multiple goroutines simultaneously.
    24  // 缓存池是协程安全的
    25  //
    26  // Pool's purpose is to cache allocated but unused items for later reuse,
    27  // relieving pressure on the garbage collector. That is, it makes it easy to
    28  // build efficient, thread-safe free lists. However, it is not suitable for all
    29  // free lists.
    30  // 缓存池的目的是缓存之后要在使用的分配对象, 减少GC回收压力
    31  // 即, 更容易的建立有效的,线程安全的列表
    32  // 但是并不适合所有需要缓存的列表
    33  //
    34  // An appropriate use of a Pool is to manage a group of temporary items
    35  // silently shared among and potentially reused by concurrent independent
    36  // clients of a package. Pool provides a way to amortize allocation overhead
    37  // across many clients.
    38  // 切当使用缓冲池的一个场景是管理一组可能在一个包独立并发中会重复使用到的临时对象
    39  // 缓存池提供一种为客服端摊销分配开销的解决方法
    40  //
    41  // An example of good use of a Pool is in the fmt package, which maintains a
    42  // dynamically-sized store of temporary output buffers. The store scales under
    43  // load (when many goroutines are actively printing) and shrinks when
    44  // quiescent.
    45  // 一个使用Pool的好的示例, 是在fmt pkg中 维护了一个动态大小的临时输出缓存
    46  // 这个存储随着goroutine中激活的printing调用可自动伸缩;
    47  //
    48  // On the other hand, a free list maintained as part of a short-lived object is
    49  // not a suitable use for a Pool, since the overhead does not amortize well in
    50  // that scenario. It is more efficient to have such objects implement their own
    51  // free list.
    52  // 另一个方面, 维护一个短期对象列表并不适合用Pool , 因为这种场景并没有很好的分摊分配开销;
    53  // 这种场景更适合专门定制
    54  //
    55  // A Pool must not be copied after first use.
    56  // 初次使用后不能复制,sync包大多跟并发控制相关,出于安全考虑(避免指针的复制使得指针污染不安全,误操作而使程序崩溃)不能复制
    57  type Pool struct {
    58  	// noCopy 是 Golang 源码中禁止拷贝的检测方法
    59  	noCopy noCopy
    60  	// local 是个数组,长度为 P 的个数。其元素类型是 poolLocal
    61  	// 这里面存储着各个 P 对应的本地对象池。可以近似的看做 [P]poolLocal
    62  	local unsafe.Pointer // local fixed-size per-P pool, actual type is [P]poolLocal
    63  	// 代表 local 数组的长度。因为 P 可以在运行时通过调用 runtime.GOMAXPROCS 进行修改,
    64  	// 因此我们还是得通过 localSize 来对应 local 数组的长度
    65  	localSize uintptr // size of the local array
    66  
    67  	// victim 和 victimSize 代表上一轮清理前的对象池,其内容语义 local 和 localSize 一致
    68  	victim     unsafe.Pointer // local from previous cycle
    69  	victimSize uintptr        // size of victims array
    70  
    71  	// New optionally specifies a function to generate
    72  	// a value when Get would otherwise return nil.
    73  	// It may not be changed concurrently with calls to Get.
    74  	// 用户提供的创建对象的函数。这个选项也不是必需。当不填的时候,Get 有可能返回 nil
    75  	New func() interface{}
    76  }
    77  
    78  // private 私有变量。Get 和 Put 操作都会优先存取 private 变量,
    79  // 如果 private 变量可以满足情况,则不再深入进行其他的复杂操作。
    80  // Local per-P Pool appendix.
    81  type poolLocalInternal struct {
    82  	private interface{} // Can be used only by the respective P.
    83  	// shared。其类型为 poolChain,从名字不难看出这个是链表结构,这个就是 P 的本地对象池
    84  	shared poolChain // Local P can pushHead/popHead; any P can popTail.
    85  }
    86  
    87  // 每个 P 都会有一个 poolLocal 的本地
    88  type poolLocal struct {
    89  	poolLocalInternal
    90  
    91  	// Prevents false sharing on widespread platforms with
    92  	// 128 mod (cache line size) = 0 .
    93  	pad [128 - unsafe.Sizeof(poolLocalInternal{})%128]byte
    94  }
    95  
    96  // from runtime
    97  func fastrand() uint32
    98  
    99  var poolRaceHash [128]uint64
   100  
   101  // poolRaceAddr returns an address to use as the synchronization point
   102  // for race detector logic. We don't use the actual pointer stored in x
   103  // directly, for fear of conflicting with other synchronization on that address.
   104  // Instead, we hash the pointer to get an index into poolRaceHash.
   105  // See discussion on golang.org/cl/31589.
   106  func poolRaceAddr(x interface{}) unsafe.Pointer {
   107  	ptr := uintptr((*[2]unsafe.Pointer)(unsafe.Pointer(&x))[1])
   108  	h := uint32((uint64(uint32(ptr)) * 0x85ebca6b) >> 16)
   109  	return unsafe.Pointer(&poolRaceHash[h%uint32(len(poolRaceHash))])
   110  }
   111  
   112  // Put adds x to the pool.
   113  func (p *Pool) Put(x interface{}) {
   114  	if x == nil {
   115  		return
   116  	}
   117  	if race.Enabled {
   118  		if fastrand()%4 == 0 {
   119  			// Randomly drop x on floor.
   120  			return
   121  		}
   122  		race.ReleaseMerge(poolRaceAddr(x))
   123  		race.Disable()
   124  	}
   125  	l, _ := p.pin()
   126  	if l.private == nil {
   127  		l.private = x // 将x 设置为private 之后 x 置空
   128  		x = nil
   129  	}
   130  	// 如果没有设置private 那么x 会被push 到shared
   131  	if x != nil {
   132  		l.shared.pushHead(x)
   133  	}
   134  	// 可以充许抢占P
   135  	runtime_procUnpin()
   136  	if race.Enabled {
   137  		race.Enable()
   138  	}
   139  }
   140  
   141  // Get selects an arbitrary item from the Pool, removes it from the
   142  // Pool, and returns it to the caller.
   143  // Get may choose to ignore the pool and treat it as empty.
   144  // Callers should not assume any relation between values passed to Put and
   145  // the values returned by Get.
   146  //
   147  // If Get would otherwise return nil and p.New is non-nil, Get returns
   148  // the result of calling p.New.
   149  func (p *Pool) Get() interface{} {
   150  	if race.Enabled {
   151  		race.Disable()
   152  	}
   153  	l, pid := p.pin()
   154  	x := l.private
   155  	l.private = nil
   156  	if x == nil {
   157  		// Try to pop the head of the local shard. We prefer
   158  		// the head over the tail for temporal locality of
   159  		// reuse.
   160  		//尝试从本地poolChain 中取数据
   161  		x, _ = l.shared.popHead()
   162  		if x == nil {
   163  			// 如果没有取到
   164  			// 尝试从其它P的缓冲池窃取对象
   165  			x = p.getSlow(pid)
   166  		}
   167  	}
   168  	runtime_procUnpin()
   169  	if race.Enabled {
   170  		race.Enable()
   171  		if x != nil {
   172  			race.Acquire(poolRaceAddr(x))
   173  		}
   174  	}
   175  	if x == nil && p.New != nil {
   176  		x = p.New()
   177  	}
   178  	return x
   179  }
   180  
   181  func (p *Pool) getSlow(pid int) interface{} {
   182  	// See the comment in pin regarding ordering of the loads.
   183  	size := runtime_LoadAcquintptr(&p.localSize) // load-acquire
   184  	locals := p.local                            // load-consume
   185  	// Try to steal one element from other procs.
   186  	for i := 0; i < int(size); i++ {
   187  		l := indexLocal(locals, (pid+i+1)%int(size))
   188  		// 从其它poolChain 的尾部窃取数据,取到就返回
   189  		if x, _ := l.shared.popTail(); x != nil {
   190  			return x
   191  		}
   192  	}
   193  
   194  	// Try the victim cache. We do this after attempting to steal
   195  	// from all primary caches because we want objects in the
   196  	// victim cache to age out if at all possible.
   197  	// 如果上面都取不到数据 就重试从上一轮清理的缓存victim中查找
   198  	size = atomic.LoadUintptr(&p.victimSize)
   199  	if uintptr(pid) >= size {
   200  		return nil
   201  	}
   202  	locals = p.victim
   203  	l := indexLocal(locals, pid)
   204  	if x := l.private; x != nil {
   205  		l.private = nil
   206  		return x
   207  	}
   208  	for i := 0; i < int(size); i++ {
   209  		l := indexLocal(locals, (pid+i)%int(size))
   210  		if x, _ := l.shared.popTail(); x != nil {
   211  			return x
   212  		}
   213  	}
   214  
   215  	// Mark the victim cache as empty for future gets don't bother
   216  	// with it.
   217  	atomic.StoreUintptr(&p.victimSize, 0)
   218  
   219  	return nil
   220  }
   221  
   222  // pin pins the current goroutine to P, disables preemption and
   223  // returns poolLocal pool for the P and the P's id.
   224  // Caller must call runtime_procUnpin() when done with the pool.
   225  // 返回P对应的本地缓存池poolLocal
   226  func (p *Pool) pin() (*poolLocal, int) {
   227  	// procPin 表示暂时不许P被抢占
   228  	pid := runtime_procPin()
   229  	// In pinSlow we store to local and then to localSize, here we load in opposite order.
   230  	// Since we've disabled preemption, GC cannot happen in between.
   231  	// Thus here we must observe local at least as large localSize.
   232  	// We can observe a newer/larger local, it is fine (we must observe its zero-initialized-ness).
   233  	s := runtime_LoadAcquintptr(&p.localSize) // load-acquire
   234  	l := p.local                              // load-consume
   235  	if uintptr(pid) < s {
   236  		return indexLocal(l, pid), pid
   237  	}
   238  	return p.pinSlow()
   239  }
   240  
   241  func (p *Pool) pinSlow() (*poolLocal, int) {
   242  	// Retry under the mutex.
   243  	// Can not lock the mutex while pinned.
   244  	runtime_procUnpin()
   245  	allPoolsMu.Lock()
   246  	defer allPoolsMu.Unlock()
   247  	pid := runtime_procPin()
   248  	// poolCleanup won't be called while we are pinned.
   249  	s := p.localSize
   250  	l := p.local
   251  	if uintptr(pid) < s {
   252  		return indexLocal(l, pid), pid
   253  	}
   254  	if p.local == nil {
   255  		allPools = append(allPools, p)
   256  	}
   257  	// If GOMAXPROCS changes between GCs, we re-allocate the array and lose the old one.
   258  	// 初始化local数组
   259  	size := runtime.GOMAXPROCS(0)
   260  	local := make([]poolLocal, size)
   261  	atomic.StorePointer(&p.local, unsafe.Pointer(&local[0])) // store-release
   262  	runtime_StoreReluintptr(&p.localSize, uintptr(size))     // store-release
   263  	return &local[pid], pid
   264  }
   265  
   266  func poolCleanup() {
   267  	// This function is called with the world stopped, at the beginning of a garbage collection.
   268  	// It must not allocate and probably should not call any runtime functions.
   269  
   270  	// Because the world is stopped, no pool user can be in a
   271  	// pinned section (in effect, this has all Ps pinned).
   272  
   273  	// Drop victim caches from all pools.
   274  	for _, p := range oldPools {
   275  		p.victim = nil
   276  		p.victimSize = 0
   277  	}
   278  
   279  	// Move primary cache to victim cache.
   280  	for _, p := range allPools {
   281  		p.victim = p.local
   282  		p.victimSize = p.localSize
   283  		p.local = nil
   284  		p.localSize = 0
   285  	}
   286  
   287  	// The pools with non-empty primary caches now have non-empty
   288  	// victim caches and no pools have primary caches.
   289  	oldPools, allPools = allPools, nil
   290  }
   291  
   292  var (
   293  	allPoolsMu Mutex
   294  
   295  	// allPools is the set of pools that have non-empty primary
   296  	// caches. Protected by either 1) allPoolsMu and pinning or 2)
   297  	// STW.
   298  	allPools []*Pool
   299  
   300  	// oldPools is the set of pools that may have non-empty victim
   301  	// caches. Protected by STW.
   302  	oldPools []*Pool
   303  )
   304  
   305  func init() {
   306  	runtime_registerPoolCleanup(poolCleanup)
   307  }
   308  
   309  func indexLocal(l unsafe.Pointer, i int) *poolLocal {
   310  	lp := unsafe.Pointer(uintptr(l) + uintptr(i)*unsafe.Sizeof(poolLocal{}))
   311  	return (*poolLocal)(lp)
   312  }
   313  
   314  // Implemented in runtime.
   315  func runtime_registerPoolCleanup(cleanup func())
   316  func runtime_procPin() int
   317  func runtime_procUnpin()
   318  
   319  // The below are implemented in runtime/internal/atomic and the
   320  // compiler also knows to intrinsify the symbol we linkname into this
   321  // package.
   322  
   323  //go:linkname runtime_LoadAcquintptr runtime/internal/atomic.LoadAcquintptr
   324  func runtime_LoadAcquintptr(ptr *uintptr) uintptr
   325  
   326  //go:linkname runtime_StoreReluintptr runtime/internal/atomic.StoreReluintptr
   327  func runtime_StoreReluintptr(ptr *uintptr, val uintptr) uintptr