github.com/code-reading/golang@v0.0.0-20220303082512-ba5bc0e589a3/go/src/testing/benchmark.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package testing 6 7 import ( 8 "flag" 9 "fmt" 10 "internal/race" 11 "internal/sysinfo" 12 "io" 13 "math" 14 "os" 15 "runtime" 16 "sort" 17 "strconv" 18 "strings" 19 "sync" 20 "sync/atomic" 21 "time" 22 "unicode" 23 ) 24 25 func initBenchmarkFlags() { 26 matchBenchmarks = flag.String("test.bench", "", "run only benchmarks matching `regexp`") 27 benchmarkMemory = flag.Bool("test.benchmem", false, "print memory allocations for benchmarks") 28 flag.Var(&benchTime, "test.benchtime", "run each benchmark for duration `d`") 29 } 30 31 var ( 32 matchBenchmarks *string 33 benchmarkMemory *bool 34 35 benchTime = benchTimeFlag{d: 1 * time.Second} // changed during test of testing package 36 ) 37 38 type benchTimeFlag struct { 39 d time.Duration 40 n int 41 } 42 43 func (f *benchTimeFlag) String() string { 44 if f.n > 0 { 45 return fmt.Sprintf("%dx", f.n) 46 } 47 return time.Duration(f.d).String() 48 } 49 50 func (f *benchTimeFlag) Set(s string) error { 51 if strings.HasSuffix(s, "x") { 52 n, err := strconv.ParseInt(s[:len(s)-1], 10, 0) 53 if err != nil || n <= 0 { 54 return fmt.Errorf("invalid count") 55 } 56 *f = benchTimeFlag{n: int(n)} 57 return nil 58 } 59 d, err := time.ParseDuration(s) 60 if err != nil || d <= 0 { 61 return fmt.Errorf("invalid duration") 62 } 63 *f = benchTimeFlag{d: d} 64 return nil 65 } 66 67 // Global lock to ensure only one benchmark runs at a time. 68 var benchmarkLock sync.Mutex 69 70 // Used for every benchmark for measuring memory. 71 var memStats runtime.MemStats 72 73 // InternalBenchmark is an internal type but exported because it is cross-package; 74 // it is part of the implementation of the "go test" command. 75 type InternalBenchmark struct { 76 Name string 77 F func(b *B) 78 } 79 80 // B is a type passed to Benchmark functions to manage benchmark 81 // timing and to specify the number of iterations to run. 82 // 83 // A benchmark ends when its Benchmark function returns or calls any of the methods 84 // FailNow, Fatal, Fatalf, SkipNow, Skip, or Skipf. Those methods must be called 85 // only from the goroutine running the Benchmark function. 86 // The other reporting methods, such as the variations of Log and Error, 87 // may be called simultaneously from multiple goroutines. 88 // 89 // Like in tests, benchmark logs are accumulated during execution 90 // and dumped to standard output when done. Unlike in tests, benchmark logs 91 // are always printed, so as not to hide output whose existence may be 92 // affecting benchmark results. 93 type B struct { 94 common 95 importPath string // import path of the package containing the benchmark 96 context *benchContext 97 N int 98 previousN int // number of iterations in the previous run 99 previousDuration time.Duration // total duration of the previous run 100 benchFunc func(b *B) 101 benchTime benchTimeFlag 102 bytes int64 103 missingBytes bool // one of the subbenchmarks does not have bytes set. 104 timerOn bool 105 showAllocResult bool 106 result BenchmarkResult 107 parallelism int // RunParallel creates parallelism*GOMAXPROCS goroutines 108 // The initial states of memStats.Mallocs and memStats.TotalAlloc. 109 startAllocs uint64 110 startBytes uint64 111 // The net total of this test after being run. 112 netAllocs uint64 113 netBytes uint64 114 // Extra metrics collected by ReportMetric. 115 extra map[string]float64 116 } 117 118 // StartTimer starts timing a test. This function is called automatically 119 // before a benchmark starts, but it can also be used to resume timing after 120 // a call to StopTimer. 121 func (b *B) StartTimer() { 122 if !b.timerOn { 123 runtime.ReadMemStats(&memStats) 124 b.startAllocs = memStats.Mallocs 125 b.startBytes = memStats.TotalAlloc 126 b.start = time.Now() 127 b.timerOn = true 128 } 129 } 130 131 // StopTimer stops timing a test. This can be used to pause the timer 132 // while performing complex initialization that you don't 133 // want to measure. 134 func (b *B) StopTimer() { 135 if b.timerOn { 136 b.duration += time.Since(b.start) 137 runtime.ReadMemStats(&memStats) 138 b.netAllocs += memStats.Mallocs - b.startAllocs 139 b.netBytes += memStats.TotalAlloc - b.startBytes 140 b.timerOn = false 141 } 142 } 143 144 // ResetTimer zeroes the elapsed benchmark time and memory allocation counters 145 // and deletes user-reported metrics. 146 // It does not affect whether the timer is running. 147 func (b *B) ResetTimer() { 148 if b.extra == nil { 149 // Allocate the extra map before reading memory stats. 150 // Pre-size it to make more allocation unlikely. 151 b.extra = make(map[string]float64, 16) 152 } else { 153 for k := range b.extra { 154 delete(b.extra, k) 155 } 156 } 157 if b.timerOn { 158 runtime.ReadMemStats(&memStats) 159 b.startAllocs = memStats.Mallocs 160 b.startBytes = memStats.TotalAlloc 161 b.start = time.Now() 162 } 163 b.duration = 0 164 b.netAllocs = 0 165 b.netBytes = 0 166 } 167 168 // SetBytes records the number of bytes processed in a single operation. 169 // If this is called, the benchmark will report ns/op and MB/s. 170 func (b *B) SetBytes(n int64) { b.bytes = n } 171 172 // ReportAllocs enables malloc statistics for this benchmark. 173 // It is equivalent to setting -test.benchmem, but it only affects the 174 // benchmark function that calls ReportAllocs. 175 func (b *B) ReportAllocs() { 176 b.showAllocResult = true 177 } 178 179 // runN runs a single benchmark for the specified number of iterations. 180 func (b *B) runN(n int) { 181 benchmarkLock.Lock() 182 defer benchmarkLock.Unlock() 183 defer b.runCleanup(normalPanic) 184 // Try to get a comparable environment for each run 185 // by clearing garbage from previous runs. 186 runtime.GC() 187 b.raceErrors = -race.Errors() 188 b.N = n 189 b.parallelism = 1 190 b.ResetTimer() 191 b.StartTimer() 192 b.benchFunc(b) 193 b.StopTimer() 194 b.previousN = n 195 b.previousDuration = b.duration 196 b.raceErrors += race.Errors() 197 if b.raceErrors > 0 { 198 b.Errorf("race detected during execution of benchmark") 199 } 200 } 201 202 func min(x, y int64) int64 { 203 if x > y { 204 return y 205 } 206 return x 207 } 208 209 func max(x, y int64) int64 { 210 if x < y { 211 return y 212 } 213 return x 214 } 215 216 // run1 runs the first iteration of benchFunc. It reports whether more 217 // iterations of this benchmarks should be run. 218 func (b *B) run1() bool { 219 if ctx := b.context; ctx != nil { 220 // Extend maxLen, if needed. 221 if n := len(b.name) + ctx.extLen + 1; n > ctx.maxLen { 222 ctx.maxLen = n + 8 // Add additional slack to avoid too many jumps in size. 223 } 224 } 225 go func() { 226 // Signal that we're done whether we return normally 227 // or by FailNow's runtime.Goexit. 228 defer func() { 229 b.signal <- true 230 }() 231 232 b.runN(1) 233 }() 234 <-b.signal 235 if b.failed { 236 fmt.Fprintf(b.w, "--- FAIL: %s\n%s", b.name, b.output) 237 return false 238 } 239 // Only print the output if we know we are not going to proceed. 240 // Otherwise it is printed in processBench. 241 b.mu.RLock() 242 finished := b.finished 243 b.mu.RUnlock() 244 if atomic.LoadInt32(&b.hasSub) != 0 || finished { 245 tag := "BENCH" 246 if b.skipped { 247 tag = "SKIP" 248 } 249 if b.chatty != nil && (len(b.output) > 0 || finished) { 250 b.trimOutput() 251 fmt.Fprintf(b.w, "--- %s: %s\n%s", tag, b.name, b.output) 252 } 253 return false 254 } 255 return true 256 } 257 258 var labelsOnce sync.Once 259 260 // run executes the benchmark in a separate goroutine, including all of its 261 // subbenchmarks. b must not have subbenchmarks. 262 func (b *B) run() { 263 labelsOnce.Do(func() { 264 fmt.Fprintf(b.w, "goos: %s\n", runtime.GOOS) 265 fmt.Fprintf(b.w, "goarch: %s\n", runtime.GOARCH) 266 if b.importPath != "" { 267 fmt.Fprintf(b.w, "pkg: %s\n", b.importPath) 268 } 269 if cpu := sysinfo.CPU.Name(); cpu != "" { 270 fmt.Fprintf(b.w, "cpu: %s\n", cpu) 271 } 272 }) 273 if b.context != nil { 274 // Running go test --test.bench 275 b.context.processBench(b) // Must call doBench. 276 } else { 277 // Running func Benchmark. 278 b.doBench() 279 } 280 } 281 282 func (b *B) doBench() BenchmarkResult { 283 go b.launch() 284 <-b.signal 285 return b.result 286 } 287 288 // launch launches the benchmark function. It gradually increases the number 289 // of benchmark iterations until the benchmark runs for the requested benchtime. 290 // launch is run by the doBench function as a separate goroutine. 291 // run1 must have been called on b. 292 func (b *B) launch() { 293 // Signal that we're done whether we return normally 294 // or by FailNow's runtime.Goexit. 295 defer func() { 296 b.signal <- true 297 }() 298 299 // Run the benchmark for at least the specified amount of time. 300 if b.benchTime.n > 0 { 301 b.runN(b.benchTime.n) 302 } else { 303 d := b.benchTime.d 304 for n := int64(1); !b.failed && b.duration < d && n < 1e9; { 305 last := n 306 // Predict required iterations. 307 goalns := d.Nanoseconds() 308 prevIters := int64(b.N) 309 prevns := b.duration.Nanoseconds() 310 if prevns <= 0 { 311 // Round up, to avoid div by zero. 312 prevns = 1 313 } 314 // Order of operations matters. 315 // For very fast benchmarks, prevIters ~= prevns. 316 // If you divide first, you get 0 or 1, 317 // which can hide an order of magnitude in execution time. 318 // So multiply first, then divide. 319 n = goalns * prevIters / prevns 320 // Run more iterations than we think we'll need (1.2x). 321 n += n / 5 322 // Don't grow too fast in case we had timing errors previously. 323 n = min(n, 100*last) 324 // Be sure to run at least one more than last time. 325 n = max(n, last+1) 326 // Don't run more than 1e9 times. (This also keeps n in int range on 32 bit platforms.) 327 n = min(n, 1e9) 328 b.runN(int(n)) 329 } 330 } 331 b.result = BenchmarkResult{b.N, b.duration, b.bytes, b.netAllocs, b.netBytes, b.extra} 332 } 333 334 // ReportMetric adds "n unit" to the reported benchmark results. 335 // If the metric is per-iteration, the caller should divide by b.N, 336 // and by convention units should end in "/op". 337 // ReportMetric overrides any previously reported value for the same unit. 338 // ReportMetric panics if unit is the empty string or if unit contains 339 // any whitespace. 340 // If unit is a unit normally reported by the benchmark framework itself 341 // (such as "allocs/op"), ReportMetric will override that metric. 342 // Setting "ns/op" to 0 will suppress that built-in metric. 343 func (b *B) ReportMetric(n float64, unit string) { 344 if unit == "" { 345 panic("metric unit must not be empty") 346 } 347 if strings.IndexFunc(unit, unicode.IsSpace) >= 0 { 348 panic("metric unit must not contain whitespace") 349 } 350 b.extra[unit] = n 351 } 352 353 // BenchmarkResult contains the results of a benchmark run. 354 type BenchmarkResult struct { 355 N int // The number of iterations. 356 T time.Duration // The total time taken. 357 Bytes int64 // Bytes processed in one iteration. 358 MemAllocs uint64 // The total number of memory allocations. 359 MemBytes uint64 // The total number of bytes allocated. 360 361 // Extra records additional metrics reported by ReportMetric. 362 Extra map[string]float64 363 } 364 365 // NsPerOp returns the "ns/op" metric. 366 func (r BenchmarkResult) NsPerOp() int64 { 367 if v, ok := r.Extra["ns/op"]; ok { 368 return int64(v) 369 } 370 if r.N <= 0 { 371 return 0 372 } 373 return r.T.Nanoseconds() / int64(r.N) 374 } 375 376 // mbPerSec returns the "MB/s" metric. 377 func (r BenchmarkResult) mbPerSec() float64 { 378 if v, ok := r.Extra["MB/s"]; ok { 379 return v 380 } 381 if r.Bytes <= 0 || r.T <= 0 || r.N <= 0 { 382 return 0 383 } 384 return (float64(r.Bytes) * float64(r.N) / 1e6) / r.T.Seconds() 385 } 386 387 // AllocsPerOp returns the "allocs/op" metric, 388 // which is calculated as r.MemAllocs / r.N. 389 func (r BenchmarkResult) AllocsPerOp() int64 { 390 if v, ok := r.Extra["allocs/op"]; ok { 391 return int64(v) 392 } 393 if r.N <= 0 { 394 return 0 395 } 396 return int64(r.MemAllocs) / int64(r.N) 397 } 398 399 // AllocedBytesPerOp returns the "B/op" metric, 400 // which is calculated as r.MemBytes / r.N. 401 func (r BenchmarkResult) AllocedBytesPerOp() int64 { 402 if v, ok := r.Extra["B/op"]; ok { 403 return int64(v) 404 } 405 if r.N <= 0 { 406 return 0 407 } 408 return int64(r.MemBytes) / int64(r.N) 409 } 410 411 // String returns a summary of the benchmark results. 412 // It follows the benchmark result line format from 413 // https://golang.org/design/14313-benchmark-format, not including the 414 // benchmark name. 415 // Extra metrics override built-in metrics of the same name. 416 // String does not include allocs/op or B/op, since those are reported 417 // by MemString. 418 func (r BenchmarkResult) String() string { 419 buf := new(strings.Builder) 420 fmt.Fprintf(buf, "%8d", r.N) 421 422 // Get ns/op as a float. 423 ns, ok := r.Extra["ns/op"] 424 if !ok { 425 ns = float64(r.T.Nanoseconds()) / float64(r.N) 426 } 427 if ns != 0 { 428 buf.WriteByte('\t') 429 prettyPrint(buf, ns, "ns/op") 430 } 431 432 if mbs := r.mbPerSec(); mbs != 0 { 433 fmt.Fprintf(buf, "\t%7.2f MB/s", mbs) 434 } 435 436 // Print extra metrics that aren't represented in the standard 437 // metrics. 438 var extraKeys []string 439 for k := range r.Extra { 440 switch k { 441 case "ns/op", "MB/s", "B/op", "allocs/op": 442 // Built-in metrics reported elsewhere. 443 continue 444 } 445 extraKeys = append(extraKeys, k) 446 } 447 sort.Strings(extraKeys) 448 for _, k := range extraKeys { 449 buf.WriteByte('\t') 450 prettyPrint(buf, r.Extra[k], k) 451 } 452 return buf.String() 453 } 454 455 func prettyPrint(w io.Writer, x float64, unit string) { 456 // Print all numbers with 10 places before the decimal point 457 // and small numbers with four sig figs. Field widths are 458 // chosen to fit the whole part in 10 places while aligning 459 // the decimal point of all fractional formats. 460 var format string 461 switch y := math.Abs(x); { 462 case y == 0 || y >= 999.95: 463 format = "%10.0f %s" 464 case y >= 99.995: 465 format = "%12.1f %s" 466 case y >= 9.9995: 467 format = "%13.2f %s" 468 case y >= 0.99995: 469 format = "%14.3f %s" 470 case y >= 0.099995: 471 format = "%15.4f %s" 472 case y >= 0.0099995: 473 format = "%16.5f %s" 474 case y >= 0.00099995: 475 format = "%17.6f %s" 476 default: 477 format = "%18.7f %s" 478 } 479 fmt.Fprintf(w, format, x, unit) 480 } 481 482 // MemString returns r.AllocedBytesPerOp and r.AllocsPerOp in the same format as 'go test'. 483 func (r BenchmarkResult) MemString() string { 484 return fmt.Sprintf("%8d B/op\t%8d allocs/op", 485 r.AllocedBytesPerOp(), r.AllocsPerOp()) 486 } 487 488 // benchmarkName returns full name of benchmark including procs suffix. 489 func benchmarkName(name string, n int) string { 490 if n != 1 { 491 return fmt.Sprintf("%s-%d", name, n) 492 } 493 return name 494 } 495 496 type benchContext struct { 497 match *matcher 498 499 maxLen int // The largest recorded benchmark name. 500 extLen int // Maximum extension length. 501 } 502 503 // RunBenchmarks is an internal function but exported because it is cross-package; 504 // it is part of the implementation of the "go test" command. 505 func RunBenchmarks(matchString func(pat, str string) (bool, error), benchmarks []InternalBenchmark) { 506 runBenchmarks("", matchString, benchmarks) 507 } 508 509 func runBenchmarks(importPath string, matchString func(pat, str string) (bool, error), benchmarks []InternalBenchmark) bool { 510 // If no flag was specified, don't run benchmarks. 511 if len(*matchBenchmarks) == 0 { 512 return true 513 } 514 // Collect matching benchmarks and determine longest name. 515 maxprocs := 1 516 for _, procs := range cpuList { 517 if procs > maxprocs { 518 maxprocs = procs 519 } 520 } 521 ctx := &benchContext{ 522 match: newMatcher(matchString, *matchBenchmarks, "-test.bench"), 523 extLen: len(benchmarkName("", maxprocs)), 524 } 525 var bs []InternalBenchmark 526 for _, Benchmark := range benchmarks { 527 if _, matched, _ := ctx.match.fullName(nil, Benchmark.Name); matched { 528 bs = append(bs, Benchmark) 529 benchName := benchmarkName(Benchmark.Name, maxprocs) 530 if l := len(benchName) + ctx.extLen + 1; l > ctx.maxLen { 531 ctx.maxLen = l 532 } 533 } 534 } 535 main := &B{ 536 common: common{ 537 name: "Main", 538 w: os.Stdout, 539 bench: true, 540 }, 541 importPath: importPath, 542 benchFunc: func(b *B) { 543 for _, Benchmark := range bs { 544 b.Run(Benchmark.Name, Benchmark.F) 545 } 546 }, 547 benchTime: benchTime, 548 context: ctx, 549 } 550 if Verbose() { 551 main.chatty = newChattyPrinter(main.w) 552 } 553 main.runN(1) 554 return !main.failed 555 } 556 557 // processBench runs bench b for the configured CPU counts and prints the results. 558 func (ctx *benchContext) processBench(b *B) { 559 for i, procs := range cpuList { 560 for j := uint(0); j < *count; j++ { 561 runtime.GOMAXPROCS(procs) 562 benchName := benchmarkName(b.name, procs) 563 564 // If it's chatty, we've already printed this information. 565 if b.chatty == nil { 566 fmt.Fprintf(b.w, "%-*s\t", ctx.maxLen, benchName) 567 } 568 // Recompute the running time for all but the first iteration. 569 if i > 0 || j > 0 { 570 b = &B{ 571 common: common{ 572 signal: make(chan bool), 573 name: b.name, 574 w: b.w, 575 chatty: b.chatty, 576 bench: true, 577 }, 578 benchFunc: b.benchFunc, 579 benchTime: b.benchTime, 580 } 581 b.run1() 582 } 583 r := b.doBench() 584 if b.failed { 585 // The output could be very long here, but probably isn't. 586 // We print it all, regardless, because we don't want to trim the reason 587 // the benchmark failed. 588 fmt.Fprintf(b.w, "--- FAIL: %s\n%s", benchName, b.output) 589 continue 590 } 591 results := r.String() 592 if b.chatty != nil { 593 fmt.Fprintf(b.w, "%-*s\t", ctx.maxLen, benchName) 594 } 595 if *benchmarkMemory || b.showAllocResult { 596 results += "\t" + r.MemString() 597 } 598 fmt.Fprintln(b.w, results) 599 // Unlike with tests, we ignore the -chatty flag and always print output for 600 // benchmarks since the output generation time will skew the results. 601 if len(b.output) > 0 { 602 b.trimOutput() 603 fmt.Fprintf(b.w, "--- BENCH: %s\n%s", benchName, b.output) 604 } 605 if p := runtime.GOMAXPROCS(-1); p != procs { 606 fmt.Fprintf(os.Stderr, "testing: %s left GOMAXPROCS set to %d\n", benchName, p) 607 } 608 } 609 } 610 } 611 612 // Run benchmarks f as a subbenchmark with the given name. It reports 613 // whether there were any failures. 614 // 615 // A subbenchmark is like any other benchmark. A benchmark that calls Run at 616 // least once will not be measured itself and will be called once with N=1. 617 func (b *B) Run(name string, f func(b *B)) bool { 618 // Since b has subbenchmarks, we will no longer run it as a benchmark itself. 619 // Release the lock and acquire it on exit to ensure locks stay paired. 620 atomic.StoreInt32(&b.hasSub, 1) 621 benchmarkLock.Unlock() 622 defer benchmarkLock.Lock() 623 624 benchName, ok, partial := b.name, true, false 625 if b.context != nil { 626 benchName, ok, partial = b.context.match.fullName(&b.common, name) 627 } 628 if !ok { 629 return true 630 } 631 var pc [maxStackLen]uintptr 632 n := runtime.Callers(2, pc[:]) 633 sub := &B{ 634 common: common{ 635 signal: make(chan bool), 636 name: benchName, 637 parent: &b.common, 638 level: b.level + 1, 639 creator: pc[:n], 640 w: b.w, 641 chatty: b.chatty, 642 bench: true, 643 }, 644 importPath: b.importPath, 645 benchFunc: f, 646 benchTime: b.benchTime, 647 context: b.context, 648 } 649 if partial { 650 // Partial name match, like -bench=X/Y matching BenchmarkX. 651 // Only process sub-benchmarks, if any. 652 atomic.StoreInt32(&sub.hasSub, 1) 653 } 654 655 if b.chatty != nil { 656 labelsOnce.Do(func() { 657 fmt.Printf("goos: %s\n", runtime.GOOS) 658 fmt.Printf("goarch: %s\n", runtime.GOARCH) 659 if b.importPath != "" { 660 fmt.Printf("pkg: %s\n", b.importPath) 661 } 662 if cpu := sysinfo.CPU.Name(); cpu != "" { 663 fmt.Printf("cpu: %s\n", cpu) 664 } 665 }) 666 667 fmt.Println(benchName) 668 } 669 670 if sub.run1() { 671 sub.run() 672 } 673 b.add(sub.result) 674 return !sub.failed 675 } 676 677 // add simulates running benchmarks in sequence in a single iteration. It is 678 // used to give some meaningful results in case func Benchmark is used in 679 // combination with Run. 680 func (b *B) add(other BenchmarkResult) { 681 r := &b.result 682 // The aggregated BenchmarkResults resemble running all subbenchmarks as 683 // in sequence in a single benchmark. 684 r.N = 1 685 r.T += time.Duration(other.NsPerOp()) 686 if other.Bytes == 0 { 687 // Summing Bytes is meaningless in aggregate if not all subbenchmarks 688 // set it. 689 b.missingBytes = true 690 r.Bytes = 0 691 } 692 if !b.missingBytes { 693 r.Bytes += other.Bytes 694 } 695 r.MemAllocs += uint64(other.AllocsPerOp()) 696 r.MemBytes += uint64(other.AllocedBytesPerOp()) 697 } 698 699 // trimOutput shortens the output from a benchmark, which can be very long. 700 func (b *B) trimOutput() { 701 // The output is likely to appear multiple times because the benchmark 702 // is run multiple times, but at least it will be seen. This is not a big deal 703 // because benchmarks rarely print, but just in case, we trim it if it's too long. 704 const maxNewlines = 10 705 for nlCount, j := 0, 0; j < len(b.output); j++ { 706 if b.output[j] == '\n' { 707 nlCount++ 708 if nlCount >= maxNewlines { 709 b.output = append(b.output[:j], "\n\t... [output truncated]\n"...) 710 break 711 } 712 } 713 } 714 } 715 716 // A PB is used by RunParallel for running parallel benchmarks. 717 type PB struct { 718 globalN *uint64 // shared between all worker goroutines iteration counter 719 grain uint64 // acquire that many iterations from globalN at once 720 cache uint64 // local cache of acquired iterations 721 bN uint64 // total number of iterations to execute (b.N) 722 } 723 724 // Next reports whether there are more iterations to execute. 725 func (pb *PB) Next() bool { 726 if pb.cache == 0 { 727 n := atomic.AddUint64(pb.globalN, pb.grain) 728 if n <= pb.bN { 729 pb.cache = pb.grain 730 } else if n < pb.bN+pb.grain { 731 pb.cache = pb.bN + pb.grain - n 732 } else { 733 return false 734 } 735 } 736 pb.cache-- 737 return true 738 } 739 740 // RunParallel runs a benchmark in parallel. 741 // It creates multiple goroutines and distributes b.N iterations among them. 742 // The number of goroutines defaults to GOMAXPROCS. To increase parallelism for 743 // non-CPU-bound benchmarks, call SetParallelism before RunParallel. 744 // RunParallel is usually used with the go test -cpu flag. 745 // 746 // The body function will be run in each goroutine. It should set up any 747 // goroutine-local state and then iterate until pb.Next returns false. 748 // It should not use the StartTimer, StopTimer, or ResetTimer functions, 749 // because they have global effect. It should also not call Run. 750 func (b *B) RunParallel(body func(*PB)) { 751 if b.N == 0 { 752 return // Nothing to do when probing. 753 } 754 // Calculate grain size as number of iterations that take ~100µs. 755 // 100µs is enough to amortize the overhead and provide sufficient 756 // dynamic load balancing. 757 grain := uint64(0) 758 if b.previousN > 0 && b.previousDuration > 0 { 759 grain = 1e5 * uint64(b.previousN) / uint64(b.previousDuration) 760 } 761 if grain < 1 { 762 grain = 1 763 } 764 // We expect the inner loop and function call to take at least 10ns, 765 // so do not do more than 100µs/10ns=1e4 iterations. 766 if grain > 1e4 { 767 grain = 1e4 768 } 769 770 n := uint64(0) 771 numProcs := b.parallelism * runtime.GOMAXPROCS(0) 772 var wg sync.WaitGroup 773 wg.Add(numProcs) 774 for p := 0; p < numProcs; p++ { 775 go func() { 776 defer wg.Done() 777 pb := &PB{ 778 globalN: &n, 779 grain: grain, 780 bN: uint64(b.N), 781 } 782 body(pb) 783 }() 784 } 785 wg.Wait() 786 if n <= uint64(b.N) && !b.Failed() { 787 b.Fatal("RunParallel: body exited without pb.Next() == false") 788 } 789 } 790 791 // SetParallelism sets the number of goroutines used by RunParallel to p*GOMAXPROCS. 792 // There is usually no need to call SetParallelism for CPU-bound benchmarks. 793 // If p is less than 1, this call will have no effect. 794 func (b *B) SetParallelism(p int) { 795 if p >= 1 { 796 b.parallelism = p 797 } 798 } 799 800 // Benchmark benchmarks a single function. It is useful for creating 801 // custom benchmarks that do not use the "go test" command. 802 // 803 // If f depends on testing flags, then Init must be used to register 804 // those flags before calling Benchmark and before calling flag.Parse. 805 // 806 // If f calls Run, the result will be an estimate of running all its 807 // subbenchmarks that don't call Run in sequence in a single benchmark. 808 func Benchmark(f func(b *B)) BenchmarkResult { 809 b := &B{ 810 common: common{ 811 signal: make(chan bool), 812 w: discard{}, 813 }, 814 benchFunc: f, 815 benchTime: benchTime, 816 } 817 if b.run1() { 818 b.run() 819 } 820 return b.result 821 } 822 823 type discard struct{} 824 825 func (discard) Write(b []byte) (n int, err error) { return len(b), nil }