github.com/code-reading/golang@v0.0.0-20220303082512-ba5bc0e589a3/go/src/text/template/exec.go (about) 1 // Copyright 2011 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package template 6 7 import ( 8 "fmt" 9 "internal/fmtsort" 10 "io" 11 "reflect" 12 "runtime" 13 "strings" 14 "text/template/parse" 15 ) 16 17 // maxExecDepth specifies the maximum stack depth of templates within 18 // templates. This limit is only practically reached by accidentally 19 // recursive template invocations. This limit allows us to return 20 // an error instead of triggering a stack overflow. 21 var maxExecDepth = initMaxExecDepth() 22 23 func initMaxExecDepth() int { 24 if runtime.GOARCH == "wasm" { 25 return 1000 26 } 27 return 100000 28 } 29 30 // state represents the state of an execution. It's not part of the 31 // template so that multiple executions of the same template 32 // can execute in parallel. 33 type state struct { 34 tmpl *Template 35 wr io.Writer 36 node parse.Node // current node, for errors 37 vars []variable // push-down stack of variable values. 38 depth int // the height of the stack of executing templates. 39 } 40 41 // variable holds the dynamic value of a variable such as $, $x etc. 42 type variable struct { 43 name string 44 value reflect.Value 45 } 46 47 // push pushes a new variable on the stack. 48 func (s *state) push(name string, value reflect.Value) { 49 s.vars = append(s.vars, variable{name, value}) 50 } 51 52 // mark returns the length of the variable stack. 53 func (s *state) mark() int { 54 return len(s.vars) 55 } 56 57 // pop pops the variable stack up to the mark. 58 func (s *state) pop(mark int) { 59 s.vars = s.vars[0:mark] 60 } 61 62 // setVar overwrites the last declared variable with the given name. 63 // Used by variable assignments. 64 func (s *state) setVar(name string, value reflect.Value) { 65 for i := s.mark() - 1; i >= 0; i-- { 66 if s.vars[i].name == name { 67 s.vars[i].value = value 68 return 69 } 70 } 71 s.errorf("undefined variable: %s", name) 72 } 73 74 // setTopVar overwrites the top-nth variable on the stack. Used by range iterations. 75 func (s *state) setTopVar(n int, value reflect.Value) { 76 s.vars[len(s.vars)-n].value = value 77 } 78 79 // varValue returns the value of the named variable. 80 func (s *state) varValue(name string) reflect.Value { 81 for i := s.mark() - 1; i >= 0; i-- { 82 if s.vars[i].name == name { 83 return s.vars[i].value 84 } 85 } 86 s.errorf("undefined variable: %s", name) 87 return zero 88 } 89 90 var zero reflect.Value 91 92 type missingValType struct{} 93 94 var missingVal = reflect.ValueOf(missingValType{}) 95 96 // at marks the state to be on node n, for error reporting. 97 func (s *state) at(node parse.Node) { 98 s.node = node 99 } 100 101 // doublePercent returns the string with %'s replaced by %%, if necessary, 102 // so it can be used safely inside a Printf format string. 103 func doublePercent(str string) string { 104 return strings.ReplaceAll(str, "%", "%%") 105 } 106 107 // TODO: It would be nice if ExecError was more broken down, but 108 // the way ErrorContext embeds the template name makes the 109 // processing too clumsy. 110 111 // ExecError is the custom error type returned when Execute has an 112 // error evaluating its template. (If a write error occurs, the actual 113 // error is returned; it will not be of type ExecError.) 114 type ExecError struct { 115 Name string // Name of template. 116 Err error // Pre-formatted error. 117 } 118 119 func (e ExecError) Error() string { 120 return e.Err.Error() 121 } 122 123 func (e ExecError) Unwrap() error { 124 return e.Err 125 } 126 127 // errorf records an ExecError and terminates processing. 128 func (s *state) errorf(format string, args ...interface{}) { 129 name := doublePercent(s.tmpl.Name()) 130 if s.node == nil { 131 format = fmt.Sprintf("template: %s: %s", name, format) 132 } else { 133 location, context := s.tmpl.ErrorContext(s.node) 134 format = fmt.Sprintf("template: %s: executing %q at <%s>: %s", location, name, doublePercent(context), format) 135 } 136 panic(ExecError{ 137 Name: s.tmpl.Name(), 138 Err: fmt.Errorf(format, args...), 139 }) 140 } 141 142 // writeError is the wrapper type used internally when Execute has an 143 // error writing to its output. We strip the wrapper in errRecover. 144 // Note that this is not an implementation of error, so it cannot escape 145 // from the package as an error value. 146 type writeError struct { 147 Err error // Original error. 148 } 149 150 func (s *state) writeError(err error) { 151 panic(writeError{ 152 Err: err, 153 }) 154 } 155 156 // errRecover is the handler that turns panics into returns from the top 157 // level of Parse. 158 func errRecover(errp *error) { 159 e := recover() 160 if e != nil { 161 switch err := e.(type) { 162 case runtime.Error: 163 panic(e) 164 case writeError: 165 *errp = err.Err // Strip the wrapper. 166 case ExecError: 167 *errp = err // Keep the wrapper. 168 default: 169 panic(e) 170 } 171 } 172 } 173 174 // ExecuteTemplate applies the template associated with t that has the given name 175 // to the specified data object and writes the output to wr. 176 // If an error occurs executing the template or writing its output, 177 // execution stops, but partial results may already have been written to 178 // the output writer. 179 // A template may be executed safely in parallel, although if parallel 180 // executions share a Writer the output may be interleaved. 181 func (t *Template) ExecuteTemplate(wr io.Writer, name string, data interface{}) error { 182 tmpl := t.Lookup(name) 183 if tmpl == nil { 184 return fmt.Errorf("template: no template %q associated with template %q", name, t.name) 185 } 186 return tmpl.Execute(wr, data) 187 } 188 189 // Execute applies a parsed template to the specified data object, 190 // and writes the output to wr. 191 // If an error occurs executing the template or writing its output, 192 // execution stops, but partial results may already have been written to 193 // the output writer. 194 // A template may be executed safely in parallel, although if parallel 195 // executions share a Writer the output may be interleaved. 196 // 197 // If data is a reflect.Value, the template applies to the concrete 198 // value that the reflect.Value holds, as in fmt.Print. 199 func (t *Template) Execute(wr io.Writer, data interface{}) error { 200 return t.execute(wr, data) 201 } 202 203 func (t *Template) execute(wr io.Writer, data interface{}) (err error) { 204 defer errRecover(&err) 205 value, ok := data.(reflect.Value) 206 if !ok { 207 value = reflect.ValueOf(data) 208 } 209 state := &state{ 210 tmpl: t, 211 wr: wr, 212 vars: []variable{{"$", value}}, 213 } 214 if t.Tree == nil || t.Root == nil { 215 state.errorf("%q is an incomplete or empty template", t.Name()) 216 } 217 state.walk(value, t.Root) 218 return 219 } 220 221 // DefinedTemplates returns a string listing the defined templates, 222 // prefixed by the string "; defined templates are: ". If there are none, 223 // it returns the empty string. For generating an error message here 224 // and in html/template. 225 func (t *Template) DefinedTemplates() string { 226 if t.common == nil { 227 return "" 228 } 229 var b strings.Builder 230 t.muTmpl.RLock() 231 defer t.muTmpl.RUnlock() 232 for name, tmpl := range t.tmpl { 233 if tmpl.Tree == nil || tmpl.Root == nil { 234 continue 235 } 236 if b.Len() == 0 { 237 b.WriteString("; defined templates are: ") 238 } else { 239 b.WriteString(", ") 240 } 241 fmt.Fprintf(&b, "%q", name) 242 } 243 return b.String() 244 } 245 246 // Walk functions step through the major pieces of the template structure, 247 // generating output as they go. 248 func (s *state) walk(dot reflect.Value, node parse.Node) { 249 s.at(node) 250 switch node := node.(type) { 251 case *parse.ActionNode: 252 // Do not pop variables so they persist until next end. 253 // Also, if the action declares variables, don't print the result. 254 val := s.evalPipeline(dot, node.Pipe) 255 if len(node.Pipe.Decl) == 0 { 256 s.printValue(node, val) 257 } 258 case *parse.CommentNode: 259 case *parse.IfNode: 260 s.walkIfOrWith(parse.NodeIf, dot, node.Pipe, node.List, node.ElseList) 261 case *parse.ListNode: 262 for _, node := range node.Nodes { 263 s.walk(dot, node) 264 } 265 case *parse.RangeNode: 266 s.walkRange(dot, node) 267 case *parse.TemplateNode: 268 s.walkTemplate(dot, node) 269 case *parse.TextNode: 270 if _, err := s.wr.Write(node.Text); err != nil { 271 s.writeError(err) 272 } 273 case *parse.WithNode: 274 s.walkIfOrWith(parse.NodeWith, dot, node.Pipe, node.List, node.ElseList) 275 default: 276 s.errorf("unknown node: %s", node) 277 } 278 } 279 280 // walkIfOrWith walks an 'if' or 'with' node. The two control structures 281 // are identical in behavior except that 'with' sets dot. 282 func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) { 283 defer s.pop(s.mark()) 284 val := s.evalPipeline(dot, pipe) 285 truth, ok := isTrue(indirectInterface(val)) 286 if !ok { 287 s.errorf("if/with can't use %v", val) 288 } 289 if truth { 290 if typ == parse.NodeWith { 291 s.walk(val, list) 292 } else { 293 s.walk(dot, list) 294 } 295 } else if elseList != nil { 296 s.walk(dot, elseList) 297 } 298 } 299 300 // IsTrue reports whether the value is 'true', in the sense of not the zero of its type, 301 // and whether the value has a meaningful truth value. This is the definition of 302 // truth used by if and other such actions. 303 func IsTrue(val interface{}) (truth, ok bool) { 304 return isTrue(reflect.ValueOf(val)) 305 } 306 307 func isTrue(val reflect.Value) (truth, ok bool) { 308 if !val.IsValid() { 309 // Something like var x interface{}, never set. It's a form of nil. 310 return false, true 311 } 312 switch val.Kind() { 313 case reflect.Array, reflect.Map, reflect.Slice, reflect.String: 314 truth = val.Len() > 0 315 case reflect.Bool: 316 truth = val.Bool() 317 case reflect.Complex64, reflect.Complex128: 318 truth = val.Complex() != 0 319 case reflect.Chan, reflect.Func, reflect.Ptr, reflect.Interface: 320 truth = !val.IsNil() 321 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 322 truth = val.Int() != 0 323 case reflect.Float32, reflect.Float64: 324 truth = val.Float() != 0 325 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 326 truth = val.Uint() != 0 327 case reflect.Struct: 328 truth = true // Struct values are always true. 329 default: 330 return 331 } 332 return truth, true 333 } 334 335 func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) { 336 s.at(r) 337 defer s.pop(s.mark()) 338 val, _ := indirect(s.evalPipeline(dot, r.Pipe)) 339 // mark top of stack before any variables in the body are pushed. 340 mark := s.mark() 341 oneIteration := func(index, elem reflect.Value) { 342 // Set top var (lexically the second if there are two) to the element. 343 if len(r.Pipe.Decl) > 0 { 344 s.setTopVar(1, elem) 345 } 346 // Set next var (lexically the first if there are two) to the index. 347 if len(r.Pipe.Decl) > 1 { 348 s.setTopVar(2, index) 349 } 350 s.walk(elem, r.List) 351 s.pop(mark) 352 } 353 switch val.Kind() { 354 case reflect.Array, reflect.Slice: 355 if val.Len() == 0 { 356 break 357 } 358 for i := 0; i < val.Len(); i++ { 359 oneIteration(reflect.ValueOf(i), val.Index(i)) 360 } 361 return 362 case reflect.Map: 363 if val.Len() == 0 { 364 break 365 } 366 om := fmtsort.Sort(val) 367 for i, key := range om.Key { 368 oneIteration(key, om.Value[i]) 369 } 370 return 371 case reflect.Chan: 372 if val.IsNil() { 373 break 374 } 375 if val.Type().ChanDir() == reflect.SendDir { 376 s.errorf("range over send-only channel %v", val) 377 break 378 } 379 i := 0 380 for ; ; i++ { 381 elem, ok := val.Recv() 382 if !ok { 383 break 384 } 385 oneIteration(reflect.ValueOf(i), elem) 386 } 387 if i == 0 { 388 break 389 } 390 return 391 case reflect.Invalid: 392 break // An invalid value is likely a nil map, etc. and acts like an empty map. 393 default: 394 s.errorf("range can't iterate over %v", val) 395 } 396 if r.ElseList != nil { 397 s.walk(dot, r.ElseList) 398 } 399 } 400 401 func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) { 402 s.at(t) 403 tmpl := s.tmpl.Lookup(t.Name) 404 if tmpl == nil { 405 s.errorf("template %q not defined", t.Name) 406 } 407 if s.depth == maxExecDepth { 408 s.errorf("exceeded maximum template depth (%v)", maxExecDepth) 409 } 410 // Variables declared by the pipeline persist. 411 dot = s.evalPipeline(dot, t.Pipe) 412 newState := *s 413 newState.depth++ 414 newState.tmpl = tmpl 415 // No dynamic scoping: template invocations inherit no variables. 416 newState.vars = []variable{{"$", dot}} 417 newState.walk(dot, tmpl.Root) 418 } 419 420 // Eval functions evaluate pipelines, commands, and their elements and extract 421 // values from the data structure by examining fields, calling methods, and so on. 422 // The printing of those values happens only through walk functions. 423 424 // evalPipeline returns the value acquired by evaluating a pipeline. If the 425 // pipeline has a variable declaration, the variable will be pushed on the 426 // stack. Callers should therefore pop the stack after they are finished 427 // executing commands depending on the pipeline value. 428 func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) { 429 if pipe == nil { 430 return 431 } 432 s.at(pipe) 433 value = missingVal 434 for _, cmd := range pipe.Cmds { 435 value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg. 436 // If the object has type interface{}, dig down one level to the thing inside. 437 if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 { 438 value = reflect.ValueOf(value.Interface()) // lovely! 439 } 440 } 441 for _, variable := range pipe.Decl { 442 if pipe.IsAssign { 443 s.setVar(variable.Ident[0], value) 444 } else { 445 s.push(variable.Ident[0], value) 446 } 447 } 448 return value 449 } 450 451 func (s *state) notAFunction(args []parse.Node, final reflect.Value) { 452 if len(args) > 1 || final != missingVal { 453 s.errorf("can't give argument to non-function %s", args[0]) 454 } 455 } 456 457 func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value { 458 firstWord := cmd.Args[0] 459 switch n := firstWord.(type) { 460 case *parse.FieldNode: 461 return s.evalFieldNode(dot, n, cmd.Args, final) 462 case *parse.ChainNode: 463 return s.evalChainNode(dot, n, cmd.Args, final) 464 case *parse.IdentifierNode: 465 // Must be a function. 466 return s.evalFunction(dot, n, cmd, cmd.Args, final) 467 case *parse.PipeNode: 468 // Parenthesized pipeline. The arguments are all inside the pipeline; final must be absent. 469 s.notAFunction(cmd.Args, final) 470 return s.evalPipeline(dot, n) 471 case *parse.VariableNode: 472 return s.evalVariableNode(dot, n, cmd.Args, final) 473 } 474 s.at(firstWord) 475 s.notAFunction(cmd.Args, final) 476 switch word := firstWord.(type) { 477 case *parse.BoolNode: 478 return reflect.ValueOf(word.True) 479 case *parse.DotNode: 480 return dot 481 case *parse.NilNode: 482 s.errorf("nil is not a command") 483 case *parse.NumberNode: 484 return s.idealConstant(word) 485 case *parse.StringNode: 486 return reflect.ValueOf(word.Text) 487 } 488 s.errorf("can't evaluate command %q", firstWord) 489 panic("not reached") 490 } 491 492 // idealConstant is called to return the value of a number in a context where 493 // we don't know the type. In that case, the syntax of the number tells us 494 // its type, and we use Go rules to resolve. Note there is no such thing as 495 // a uint ideal constant in this situation - the value must be of int type. 496 func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value { 497 // These are ideal constants but we don't know the type 498 // and we have no context. (If it was a method argument, 499 // we'd know what we need.) The syntax guides us to some extent. 500 s.at(constant) 501 switch { 502 case constant.IsComplex: 503 return reflect.ValueOf(constant.Complex128) // incontrovertible. 504 505 case constant.IsFloat && 506 !isHexInt(constant.Text) && !isRuneInt(constant.Text) && 507 strings.ContainsAny(constant.Text, ".eEpP"): 508 return reflect.ValueOf(constant.Float64) 509 510 case constant.IsInt: 511 n := int(constant.Int64) 512 if int64(n) != constant.Int64 { 513 s.errorf("%s overflows int", constant.Text) 514 } 515 return reflect.ValueOf(n) 516 517 case constant.IsUint: 518 s.errorf("%s overflows int", constant.Text) 519 } 520 return zero 521 } 522 523 func isRuneInt(s string) bool { 524 return len(s) > 0 && s[0] == '\'' 525 } 526 527 func isHexInt(s string) bool { 528 return len(s) > 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X') && !strings.ContainsAny(s, "pP") 529 } 530 531 func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value { 532 s.at(field) 533 return s.evalFieldChain(dot, dot, field, field.Ident, args, final) 534 } 535 536 func (s *state) evalChainNode(dot reflect.Value, chain *parse.ChainNode, args []parse.Node, final reflect.Value) reflect.Value { 537 s.at(chain) 538 if len(chain.Field) == 0 { 539 s.errorf("internal error: no fields in evalChainNode") 540 } 541 if chain.Node.Type() == parse.NodeNil { 542 s.errorf("indirection through explicit nil in %s", chain) 543 } 544 // (pipe).Field1.Field2 has pipe as .Node, fields as .Field. Eval the pipeline, then the fields. 545 pipe := s.evalArg(dot, nil, chain.Node) 546 return s.evalFieldChain(dot, pipe, chain, chain.Field, args, final) 547 } 548 549 func (s *state) evalVariableNode(dot reflect.Value, variable *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value { 550 // $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields. 551 s.at(variable) 552 value := s.varValue(variable.Ident[0]) 553 if len(variable.Ident) == 1 { 554 s.notAFunction(args, final) 555 return value 556 } 557 return s.evalFieldChain(dot, value, variable, variable.Ident[1:], args, final) 558 } 559 560 // evalFieldChain evaluates .X.Y.Z possibly followed by arguments. 561 // dot is the environment in which to evaluate arguments, while 562 // receiver is the value being walked along the chain. 563 func (s *state) evalFieldChain(dot, receiver reflect.Value, node parse.Node, ident []string, args []parse.Node, final reflect.Value) reflect.Value { 564 n := len(ident) 565 for i := 0; i < n-1; i++ { 566 receiver = s.evalField(dot, ident[i], node, nil, missingVal, receiver) 567 } 568 // Now if it's a method, it gets the arguments. 569 return s.evalField(dot, ident[n-1], node, args, final, receiver) 570 } 571 572 func (s *state) evalFunction(dot reflect.Value, node *parse.IdentifierNode, cmd parse.Node, args []parse.Node, final reflect.Value) reflect.Value { 573 s.at(node) 574 name := node.Ident 575 function, ok := findFunction(name, s.tmpl) 576 if !ok { 577 s.errorf("%q is not a defined function", name) 578 } 579 return s.evalCall(dot, function, cmd, name, args, final) 580 } 581 582 // evalField evaluates an expression like (.Field) or (.Field arg1 arg2). 583 // The 'final' argument represents the return value from the preceding 584 // value of the pipeline, if any. 585 func (s *state) evalField(dot reflect.Value, fieldName string, node parse.Node, args []parse.Node, final, receiver reflect.Value) reflect.Value { 586 if !receiver.IsValid() { 587 if s.tmpl.option.missingKey == mapError { // Treat invalid value as missing map key. 588 s.errorf("nil data; no entry for key %q", fieldName) 589 } 590 return zero 591 } 592 typ := receiver.Type() 593 receiver, isNil := indirect(receiver) 594 if receiver.Kind() == reflect.Interface && isNil { 595 // Calling a method on a nil interface can't work. The 596 // MethodByName method call below would panic. 597 s.errorf("nil pointer evaluating %s.%s", typ, fieldName) 598 return zero 599 } 600 601 // Unless it's an interface, need to get to a value of type *T to guarantee 602 // we see all methods of T and *T. 603 ptr := receiver 604 if ptr.Kind() != reflect.Interface && ptr.Kind() != reflect.Ptr && ptr.CanAddr() { 605 ptr = ptr.Addr() 606 } 607 if method := ptr.MethodByName(fieldName); method.IsValid() { 608 return s.evalCall(dot, method, node, fieldName, args, final) 609 } 610 hasArgs := len(args) > 1 || final != missingVal 611 // It's not a method; must be a field of a struct or an element of a map. 612 switch receiver.Kind() { 613 case reflect.Struct: 614 tField, ok := receiver.Type().FieldByName(fieldName) 615 if ok { 616 field := receiver.FieldByIndex(tField.Index) 617 if !tField.IsExported() { 618 s.errorf("%s is an unexported field of struct type %s", fieldName, typ) 619 } 620 // If it's a function, we must call it. 621 if hasArgs { 622 s.errorf("%s has arguments but cannot be invoked as function", fieldName) 623 } 624 return field 625 } 626 case reflect.Map: 627 // If it's a map, attempt to use the field name as a key. 628 nameVal := reflect.ValueOf(fieldName) 629 if nameVal.Type().AssignableTo(receiver.Type().Key()) { 630 if hasArgs { 631 s.errorf("%s is not a method but has arguments", fieldName) 632 } 633 result := receiver.MapIndex(nameVal) 634 if !result.IsValid() { 635 switch s.tmpl.option.missingKey { 636 case mapInvalid: 637 // Just use the invalid value. 638 case mapZeroValue: 639 result = reflect.Zero(receiver.Type().Elem()) 640 case mapError: 641 s.errorf("map has no entry for key %q", fieldName) 642 } 643 } 644 return result 645 } 646 case reflect.Ptr: 647 etyp := receiver.Type().Elem() 648 if etyp.Kind() == reflect.Struct { 649 if _, ok := etyp.FieldByName(fieldName); !ok { 650 // If there's no such field, say "can't evaluate" 651 // instead of "nil pointer evaluating". 652 break 653 } 654 } 655 if isNil { 656 s.errorf("nil pointer evaluating %s.%s", typ, fieldName) 657 } 658 } 659 s.errorf("can't evaluate field %s in type %s", fieldName, typ) 660 panic("not reached") 661 } 662 663 var ( 664 errorType = reflect.TypeOf((*error)(nil)).Elem() 665 fmtStringerType = reflect.TypeOf((*fmt.Stringer)(nil)).Elem() 666 reflectValueType = reflect.TypeOf((*reflect.Value)(nil)).Elem() 667 ) 668 669 // evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so 670 // it looks just like a function call. The arg list, if non-nil, includes (in the manner of the shell), arg[0] 671 // as the function itself. 672 func (s *state) evalCall(dot, fun reflect.Value, node parse.Node, name string, args []parse.Node, final reflect.Value) reflect.Value { 673 if args != nil { 674 args = args[1:] // Zeroth arg is function name/node; not passed to function. 675 } 676 typ := fun.Type() 677 numIn := len(args) 678 if final != missingVal { 679 numIn++ 680 } 681 numFixed := len(args) 682 if typ.IsVariadic() { 683 numFixed = typ.NumIn() - 1 // last arg is the variadic one. 684 if numIn < numFixed { 685 s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args)) 686 } 687 } else if numIn != typ.NumIn() { 688 s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), numIn) 689 } 690 if !goodFunc(typ) { 691 // TODO: This could still be a confusing error; maybe goodFunc should provide info. 692 s.errorf("can't call method/function %q with %d results", name, typ.NumOut()) 693 } 694 // Build the arg list. 695 argv := make([]reflect.Value, numIn) 696 // Args must be evaluated. Fixed args first. 697 i := 0 698 for ; i < numFixed && i < len(args); i++ { 699 argv[i] = s.evalArg(dot, typ.In(i), args[i]) 700 } 701 // Now the ... args. 702 if typ.IsVariadic() { 703 argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice. 704 for ; i < len(args); i++ { 705 argv[i] = s.evalArg(dot, argType, args[i]) 706 } 707 } 708 // Add final value if necessary. 709 if final != missingVal { 710 t := typ.In(typ.NumIn() - 1) 711 if typ.IsVariadic() { 712 if numIn-1 < numFixed { 713 // The added final argument corresponds to a fixed parameter of the function. 714 // Validate against the type of the actual parameter. 715 t = typ.In(numIn - 1) 716 } else { 717 // The added final argument corresponds to the variadic part. 718 // Validate against the type of the elements of the variadic slice. 719 t = t.Elem() 720 } 721 } 722 argv[i] = s.validateType(final, t) 723 } 724 v, err := safeCall(fun, argv) 725 // If we have an error that is not nil, stop execution and return that 726 // error to the caller. 727 if err != nil { 728 s.at(node) 729 s.errorf("error calling %s: %w", name, err) 730 } 731 if v.Type() == reflectValueType { 732 v = v.Interface().(reflect.Value) 733 } 734 return v 735 } 736 737 // canBeNil reports whether an untyped nil can be assigned to the type. See reflect.Zero. 738 func canBeNil(typ reflect.Type) bool { 739 switch typ.Kind() { 740 case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice: 741 return true 742 case reflect.Struct: 743 return typ == reflectValueType 744 } 745 return false 746 } 747 748 // validateType guarantees that the value is valid and assignable to the type. 749 func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value { 750 if !value.IsValid() { 751 if typ == nil { 752 // An untyped nil interface{}. Accept as a proper nil value. 753 return reflect.ValueOf(nil) 754 } 755 if canBeNil(typ) { 756 // Like above, but use the zero value of the non-nil type. 757 return reflect.Zero(typ) 758 } 759 s.errorf("invalid value; expected %s", typ) 760 } 761 if typ == reflectValueType && value.Type() != typ { 762 return reflect.ValueOf(value) 763 } 764 if typ != nil && !value.Type().AssignableTo(typ) { 765 if value.Kind() == reflect.Interface && !value.IsNil() { 766 value = value.Elem() 767 if value.Type().AssignableTo(typ) { 768 return value 769 } 770 // fallthrough 771 } 772 // Does one dereference or indirection work? We could do more, as we 773 // do with method receivers, but that gets messy and method receivers 774 // are much more constrained, so it makes more sense there than here. 775 // Besides, one is almost always all you need. 776 switch { 777 case value.Kind() == reflect.Ptr && value.Type().Elem().AssignableTo(typ): 778 value = value.Elem() 779 if !value.IsValid() { 780 s.errorf("dereference of nil pointer of type %s", typ) 781 } 782 case reflect.PtrTo(value.Type()).AssignableTo(typ) && value.CanAddr(): 783 value = value.Addr() 784 default: 785 s.errorf("wrong type for value; expected %s; got %s", typ, value.Type()) 786 } 787 } 788 return value 789 } 790 791 func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value { 792 s.at(n) 793 switch arg := n.(type) { 794 case *parse.DotNode: 795 return s.validateType(dot, typ) 796 case *parse.NilNode: 797 if canBeNil(typ) { 798 return reflect.Zero(typ) 799 } 800 s.errorf("cannot assign nil to %s", typ) 801 case *parse.FieldNode: 802 return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, missingVal), typ) 803 case *parse.VariableNode: 804 return s.validateType(s.evalVariableNode(dot, arg, nil, missingVal), typ) 805 case *parse.PipeNode: 806 return s.validateType(s.evalPipeline(dot, arg), typ) 807 case *parse.IdentifierNode: 808 return s.validateType(s.evalFunction(dot, arg, arg, nil, missingVal), typ) 809 case *parse.ChainNode: 810 return s.validateType(s.evalChainNode(dot, arg, nil, missingVal), typ) 811 } 812 switch typ.Kind() { 813 case reflect.Bool: 814 return s.evalBool(typ, n) 815 case reflect.Complex64, reflect.Complex128: 816 return s.evalComplex(typ, n) 817 case reflect.Float32, reflect.Float64: 818 return s.evalFloat(typ, n) 819 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 820 return s.evalInteger(typ, n) 821 case reflect.Interface: 822 if typ.NumMethod() == 0 { 823 return s.evalEmptyInterface(dot, n) 824 } 825 case reflect.Struct: 826 if typ == reflectValueType { 827 return reflect.ValueOf(s.evalEmptyInterface(dot, n)) 828 } 829 case reflect.String: 830 return s.evalString(typ, n) 831 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 832 return s.evalUnsignedInteger(typ, n) 833 } 834 s.errorf("can't handle %s for arg of type %s", n, typ) 835 panic("not reached") 836 } 837 838 func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value { 839 s.at(n) 840 if n, ok := n.(*parse.BoolNode); ok { 841 value := reflect.New(typ).Elem() 842 value.SetBool(n.True) 843 return value 844 } 845 s.errorf("expected bool; found %s", n) 846 panic("not reached") 847 } 848 849 func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value { 850 s.at(n) 851 if n, ok := n.(*parse.StringNode); ok { 852 value := reflect.New(typ).Elem() 853 value.SetString(n.Text) 854 return value 855 } 856 s.errorf("expected string; found %s", n) 857 panic("not reached") 858 } 859 860 func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value { 861 s.at(n) 862 if n, ok := n.(*parse.NumberNode); ok && n.IsInt { 863 value := reflect.New(typ).Elem() 864 value.SetInt(n.Int64) 865 return value 866 } 867 s.errorf("expected integer; found %s", n) 868 panic("not reached") 869 } 870 871 func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value { 872 s.at(n) 873 if n, ok := n.(*parse.NumberNode); ok && n.IsUint { 874 value := reflect.New(typ).Elem() 875 value.SetUint(n.Uint64) 876 return value 877 } 878 s.errorf("expected unsigned integer; found %s", n) 879 panic("not reached") 880 } 881 882 func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value { 883 s.at(n) 884 if n, ok := n.(*parse.NumberNode); ok && n.IsFloat { 885 value := reflect.New(typ).Elem() 886 value.SetFloat(n.Float64) 887 return value 888 } 889 s.errorf("expected float; found %s", n) 890 panic("not reached") 891 } 892 893 func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value { 894 if n, ok := n.(*parse.NumberNode); ok && n.IsComplex { 895 value := reflect.New(typ).Elem() 896 value.SetComplex(n.Complex128) 897 return value 898 } 899 s.errorf("expected complex; found %s", n) 900 panic("not reached") 901 } 902 903 func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value { 904 s.at(n) 905 switch n := n.(type) { 906 case *parse.BoolNode: 907 return reflect.ValueOf(n.True) 908 case *parse.DotNode: 909 return dot 910 case *parse.FieldNode: 911 return s.evalFieldNode(dot, n, nil, missingVal) 912 case *parse.IdentifierNode: 913 return s.evalFunction(dot, n, n, nil, missingVal) 914 case *parse.NilNode: 915 // NilNode is handled in evalArg, the only place that calls here. 916 s.errorf("evalEmptyInterface: nil (can't happen)") 917 case *parse.NumberNode: 918 return s.idealConstant(n) 919 case *parse.StringNode: 920 return reflect.ValueOf(n.Text) 921 case *parse.VariableNode: 922 return s.evalVariableNode(dot, n, nil, missingVal) 923 case *parse.PipeNode: 924 return s.evalPipeline(dot, n) 925 } 926 s.errorf("can't handle assignment of %s to empty interface argument", n) 927 panic("not reached") 928 } 929 930 // indirect returns the item at the end of indirection, and a bool to indicate 931 // if it's nil. If the returned bool is true, the returned value's kind will be 932 // either a pointer or interface. 933 func indirect(v reflect.Value) (rv reflect.Value, isNil bool) { 934 for ; v.Kind() == reflect.Ptr || v.Kind() == reflect.Interface; v = v.Elem() { 935 if v.IsNil() { 936 return v, true 937 } 938 } 939 return v, false 940 } 941 942 // indirectInterface returns the concrete value in an interface value, 943 // or else the zero reflect.Value. 944 // That is, if v represents the interface value x, the result is the same as reflect.ValueOf(x): 945 // the fact that x was an interface value is forgotten. 946 func indirectInterface(v reflect.Value) reflect.Value { 947 if v.Kind() != reflect.Interface { 948 return v 949 } 950 if v.IsNil() { 951 return reflect.Value{} 952 } 953 return v.Elem() 954 } 955 956 // printValue writes the textual representation of the value to the output of 957 // the template. 958 func (s *state) printValue(n parse.Node, v reflect.Value) { 959 s.at(n) 960 iface, ok := printableValue(v) 961 if !ok { 962 s.errorf("can't print %s of type %s", n, v.Type()) 963 } 964 _, err := fmt.Fprint(s.wr, iface) 965 if err != nil { 966 s.writeError(err) 967 } 968 } 969 970 // printableValue returns the, possibly indirected, interface value inside v that 971 // is best for a call to formatted printer. 972 func printableValue(v reflect.Value) (interface{}, bool) { 973 if v.Kind() == reflect.Ptr { 974 v, _ = indirect(v) // fmt.Fprint handles nil. 975 } 976 if !v.IsValid() { 977 return "<no value>", true 978 } 979 980 if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) { 981 if v.CanAddr() && (reflect.PtrTo(v.Type()).Implements(errorType) || reflect.PtrTo(v.Type()).Implements(fmtStringerType)) { 982 v = v.Addr() 983 } else { 984 switch v.Kind() { 985 case reflect.Chan, reflect.Func: 986 return nil, false 987 } 988 } 989 } 990 return v.Interface(), true 991 }