github.com/codingfuture/orig-energi3@v0.8.4/p2p/discv5/table.go (about)

     1  // Copyright 2016 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  // Package discv5 implements the RLPx v5 Topic Discovery Protocol.
    18  //
    19  // The Topic Discovery protocol provides a way to find RLPx nodes that
    20  // can be connected to. It uses a Kademlia-like protocol to maintain a
    21  // distributed database of the IDs and endpoints of all listening
    22  // nodes.
    23  package discv5
    24  
    25  import (
    26  	"crypto/rand"
    27  	"encoding/binary"
    28  	"fmt"
    29  	"net"
    30  	"sort"
    31  
    32  	"github.com/ethereum/go-ethereum/common"
    33  )
    34  
    35  const (
    36  	alpha      = 3  // Kademlia concurrency factor
    37  	bucketSize = 16 // Kademlia bucket size
    38  	hashBits   = len(common.Hash{}) * 8
    39  	nBuckets   = hashBits + 1 // Number of buckets
    40  
    41  	maxFindnodeFailures = 5
    42  )
    43  
    44  type Table struct {
    45  	count         int               // number of nodes
    46  	buckets       [nBuckets]*bucket // index of known nodes by distance
    47  	nodeAddedHook func(*Node)       // for testing
    48  	self          *Node             // metadata of the local node
    49  }
    50  
    51  // bucket contains nodes, ordered by their last activity. the entry
    52  // that was most recently active is the first element in entries.
    53  type bucket struct {
    54  	entries      []*Node
    55  	replacements []*Node
    56  }
    57  
    58  func newTable(ourID NodeID, ourAddr *net.UDPAddr) *Table {
    59  	self := NewNode(ourID, ourAddr.IP, uint16(ourAddr.Port), uint16(ourAddr.Port))
    60  	tab := &Table{self: self}
    61  	for i := range tab.buckets {
    62  		tab.buckets[i] = new(bucket)
    63  	}
    64  	return tab
    65  }
    66  
    67  const printTable = false
    68  
    69  // chooseBucketRefreshTarget selects random refresh targets to keep all Kademlia
    70  // buckets filled with live connections and keep the network topology healthy.
    71  // This requires selecting addresses closer to our own with a higher probability
    72  // in order to refresh closer buckets too.
    73  //
    74  // This algorithm approximates the distance distribution of existing nodes in the
    75  // table by selecting a random node from the table and selecting a target address
    76  // with a distance less than twice of that of the selected node.
    77  // This algorithm will be improved later to specifically target the least recently
    78  // used buckets.
    79  func (tab *Table) chooseBucketRefreshTarget() common.Hash {
    80  	entries := 0
    81  	if printTable {
    82  		fmt.Println()
    83  	}
    84  	for i, b := range &tab.buckets {
    85  		entries += len(b.entries)
    86  		if printTable {
    87  			for _, e := range b.entries {
    88  				fmt.Println(i, e.state, e.addr().String(), e.ID.String(), e.sha.Hex())
    89  			}
    90  		}
    91  	}
    92  
    93  	prefix := binary.BigEndian.Uint64(tab.self.sha[0:8])
    94  	dist := ^uint64(0)
    95  	entry := int(randUint(uint32(entries + 1)))
    96  	for _, b := range &tab.buckets {
    97  		if entry < len(b.entries) {
    98  			n := b.entries[entry]
    99  			dist = binary.BigEndian.Uint64(n.sha[0:8]) ^ prefix
   100  			break
   101  		}
   102  		entry -= len(b.entries)
   103  	}
   104  
   105  	ddist := ^uint64(0)
   106  	if dist+dist > dist {
   107  		ddist = dist
   108  	}
   109  	targetPrefix := prefix ^ randUint64n(ddist)
   110  
   111  	var target common.Hash
   112  	binary.BigEndian.PutUint64(target[0:8], targetPrefix)
   113  	rand.Read(target[8:])
   114  	return target
   115  }
   116  
   117  // readRandomNodes fills the given slice with random nodes from the
   118  // table. It will not write the same node more than once. The nodes in
   119  // the slice are copies and can be modified by the caller.
   120  func (tab *Table) readRandomNodes(buf []*Node) (n int) {
   121  	// TODO: tree-based buckets would help here
   122  	// Find all non-empty buckets and get a fresh slice of their entries.
   123  	var buckets [][]*Node
   124  	for _, b := range &tab.buckets {
   125  		if len(b.entries) > 0 {
   126  			buckets = append(buckets, b.entries)
   127  		}
   128  	}
   129  	if len(buckets) == 0 {
   130  		return 0
   131  	}
   132  	// Shuffle the buckets.
   133  	for i := uint32(len(buckets)) - 1; i > 0; i-- {
   134  		j := randUint(i)
   135  		buckets[i], buckets[j] = buckets[j], buckets[i]
   136  	}
   137  	// Move head of each bucket into buf, removing buckets that become empty.
   138  	var i, j int
   139  	for ; i < len(buf); i, j = i+1, (j+1)%len(buckets) {
   140  		b := buckets[j]
   141  		buf[i] = &(*b[0])
   142  		buckets[j] = b[1:]
   143  		if len(b) == 1 {
   144  			buckets = append(buckets[:j], buckets[j+1:]...)
   145  		}
   146  		if len(buckets) == 0 {
   147  			break
   148  		}
   149  	}
   150  	return i + 1
   151  }
   152  
   153  func randUint(max uint32) uint32 {
   154  	if max < 2 {
   155  		return 0
   156  	}
   157  	var b [4]byte
   158  	rand.Read(b[:])
   159  	return binary.BigEndian.Uint32(b[:]) % max
   160  }
   161  
   162  func randUint64n(max uint64) uint64 {
   163  	if max < 2 {
   164  		return 0
   165  	}
   166  	var b [8]byte
   167  	rand.Read(b[:])
   168  	return binary.BigEndian.Uint64(b[:]) % max
   169  }
   170  
   171  // closest returns the n nodes in the table that are closest to the
   172  // given id. The caller must hold tab.mutex.
   173  func (tab *Table) closest(target common.Hash, nresults int) *nodesByDistance {
   174  	// This is a very wasteful way to find the closest nodes but
   175  	// obviously correct. I believe that tree-based buckets would make
   176  	// this easier to implement efficiently.
   177  	close := &nodesByDistance{target: target}
   178  	for _, b := range &tab.buckets {
   179  		for _, n := range b.entries {
   180  			close.push(n, nresults)
   181  		}
   182  	}
   183  	return close
   184  }
   185  
   186  // add attempts to add the given node its corresponding bucket. If the
   187  // bucket has space available, adding the node succeeds immediately.
   188  // Otherwise, the node is added to the replacement cache for the bucket.
   189  func (tab *Table) add(n *Node) (contested *Node) {
   190  	//fmt.Println("add", n.addr().String(), n.ID.String(), n.sha.Hex())
   191  	if n.ID == tab.self.ID {
   192  		return
   193  	}
   194  	b := tab.buckets[logdist(tab.self.sha, n.sha)]
   195  	switch {
   196  	case b.bump(n):
   197  		// n exists in b.
   198  		return nil
   199  	case len(b.entries) < bucketSize:
   200  		// b has space available.
   201  		b.addFront(n)
   202  		tab.count++
   203  		if tab.nodeAddedHook != nil {
   204  			tab.nodeAddedHook(n)
   205  		}
   206  		return nil
   207  	default:
   208  		// b has no space left, add to replacement cache
   209  		// and revalidate the last entry.
   210  		// TODO: drop previous node
   211  		b.replacements = append(b.replacements, n)
   212  		if len(b.replacements) > bucketSize {
   213  			copy(b.replacements, b.replacements[1:])
   214  			b.replacements = b.replacements[:len(b.replacements)-1]
   215  		}
   216  		return b.entries[len(b.entries)-1]
   217  	}
   218  }
   219  
   220  // stuff adds nodes the table to the end of their corresponding bucket
   221  // if the bucket is not full.
   222  func (tab *Table) stuff(nodes []*Node) {
   223  outer:
   224  	for _, n := range nodes {
   225  		if n.ID == tab.self.ID {
   226  			continue // don't add self
   227  		}
   228  		bucket := tab.buckets[logdist(tab.self.sha, n.sha)]
   229  		for i := range bucket.entries {
   230  			if bucket.entries[i].ID == n.ID {
   231  				continue outer // already in bucket
   232  			}
   233  		}
   234  		if len(bucket.entries) < bucketSize {
   235  			bucket.entries = append(bucket.entries, n)
   236  			tab.count++
   237  			if tab.nodeAddedHook != nil {
   238  				tab.nodeAddedHook(n)
   239  			}
   240  		}
   241  	}
   242  }
   243  
   244  // delete removes an entry from the node table (used to evacuate
   245  // failed/non-bonded discovery peers).
   246  func (tab *Table) delete(node *Node) {
   247  	//fmt.Println("delete", node.addr().String(), node.ID.String(), node.sha.Hex())
   248  	bucket := tab.buckets[logdist(tab.self.sha, node.sha)]
   249  	for i := range bucket.entries {
   250  		if bucket.entries[i].ID == node.ID {
   251  			bucket.entries = append(bucket.entries[:i], bucket.entries[i+1:]...)
   252  			tab.count--
   253  			return
   254  		}
   255  	}
   256  }
   257  
   258  func (tab *Table) deleteReplace(node *Node) {
   259  	b := tab.buckets[logdist(tab.self.sha, node.sha)]
   260  	i := 0
   261  	for i < len(b.entries) {
   262  		if b.entries[i].ID == node.ID {
   263  			b.entries = append(b.entries[:i], b.entries[i+1:]...)
   264  			tab.count--
   265  		} else {
   266  			i++
   267  		}
   268  	}
   269  	// refill from replacement cache
   270  	// TODO: maybe use random index
   271  	if len(b.entries) < bucketSize && len(b.replacements) > 0 {
   272  		ri := len(b.replacements) - 1
   273  		b.addFront(b.replacements[ri])
   274  		tab.count++
   275  		b.replacements[ri] = nil
   276  		b.replacements = b.replacements[:ri]
   277  	}
   278  }
   279  
   280  func (b *bucket) addFront(n *Node) {
   281  	b.entries = append(b.entries, nil)
   282  	copy(b.entries[1:], b.entries)
   283  	b.entries[0] = n
   284  }
   285  
   286  func (b *bucket) bump(n *Node) bool {
   287  	for i := range b.entries {
   288  		if b.entries[i].ID == n.ID {
   289  			// move it to the front
   290  			copy(b.entries[1:], b.entries[:i])
   291  			b.entries[0] = n
   292  			return true
   293  		}
   294  	}
   295  	return false
   296  }
   297  
   298  // nodesByDistance is a list of nodes, ordered by
   299  // distance to target.
   300  type nodesByDistance struct {
   301  	entries []*Node
   302  	target  common.Hash
   303  }
   304  
   305  // push adds the given node to the list, keeping the total size below maxElems.
   306  func (h *nodesByDistance) push(n *Node, maxElems int) {
   307  	ix := sort.Search(len(h.entries), func(i int) bool {
   308  		return distcmp(h.target, h.entries[i].sha, n.sha) > 0
   309  	})
   310  	if len(h.entries) < maxElems {
   311  		h.entries = append(h.entries, n)
   312  	}
   313  	if ix == len(h.entries) {
   314  		// farther away than all nodes we already have.
   315  		// if there was room for it, the node is now the last element.
   316  	} else {
   317  		// slide existing entries down to make room
   318  		// this will overwrite the entry we just appended.
   319  		copy(h.entries[ix+1:], h.entries[ix:])
   320  		h.entries[ix] = n
   321  	}
   322  }