github.com/codingfuture/orig-energi3@v0.8.4/trie/database.go (about)

     1  // Copyright 2018 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package trie
    18  
    19  import (
    20  	"errors"
    21  	"fmt"
    22  	"io"
    23  	"sync"
    24  	"time"
    25  
    26  	"github.com/allegro/bigcache"
    27  	"github.com/ethereum/go-ethereum/common"
    28  	"github.com/ethereum/go-ethereum/ethdb"
    29  	"github.com/ethereum/go-ethereum/log"
    30  	"github.com/ethereum/go-ethereum/metrics"
    31  	"github.com/ethereum/go-ethereum/rlp"
    32  )
    33  
    34  var (
    35  	memcacheCleanHitMeter   = metrics.NewRegisteredMeter("trie/memcache/clean/hit", nil)
    36  	memcacheCleanMissMeter  = metrics.NewRegisteredMeter("trie/memcache/clean/miss", nil)
    37  	memcacheCleanReadMeter  = metrics.NewRegisteredMeter("trie/memcache/clean/read", nil)
    38  	memcacheCleanWriteMeter = metrics.NewRegisteredMeter("trie/memcache/clean/write", nil)
    39  
    40  	memcacheFlushTimeTimer  = metrics.NewRegisteredResettingTimer("trie/memcache/flush/time", nil)
    41  	memcacheFlushNodesMeter = metrics.NewRegisteredMeter("trie/memcache/flush/nodes", nil)
    42  	memcacheFlushSizeMeter  = metrics.NewRegisteredMeter("trie/memcache/flush/size", nil)
    43  
    44  	memcacheGCTimeTimer  = metrics.NewRegisteredResettingTimer("trie/memcache/gc/time", nil)
    45  	memcacheGCNodesMeter = metrics.NewRegisteredMeter("trie/memcache/gc/nodes", nil)
    46  	memcacheGCSizeMeter  = metrics.NewRegisteredMeter("trie/memcache/gc/size", nil)
    47  
    48  	memcacheCommitTimeTimer  = metrics.NewRegisteredResettingTimer("trie/memcache/commit/time", nil)
    49  	memcacheCommitNodesMeter = metrics.NewRegisteredMeter("trie/memcache/commit/nodes", nil)
    50  	memcacheCommitSizeMeter  = metrics.NewRegisteredMeter("trie/memcache/commit/size", nil)
    51  )
    52  
    53  // secureKeyPrefix is the database key prefix used to store trie node preimages.
    54  var secureKeyPrefix = []byte("secure-key-")
    55  
    56  // secureKeyLength is the length of the above prefix + 32byte hash.
    57  const secureKeyLength = 11 + 32
    58  
    59  // DatabaseReader wraps the Get and Has method of a backing store for the trie.
    60  type DatabaseReader interface {
    61  	// Get retrieves the value associated with key from the database.
    62  	Get(key []byte) (value []byte, err error)
    63  
    64  	// Has retrieves whether a key is present in the database.
    65  	Has(key []byte) (bool, error)
    66  }
    67  
    68  // Database is an intermediate write layer between the trie data structures and
    69  // the disk database. The aim is to accumulate trie writes in-memory and only
    70  // periodically flush a couple tries to disk, garbage collecting the remainder.
    71  type Database struct {
    72  	diskdb ethdb.Database // Persistent storage for matured trie nodes
    73  
    74  	cleans  *bigcache.BigCache          // GC friendly memory cache of clean node RLPs
    75  	dirties map[common.Hash]*cachedNode // Data and references relationships of dirty nodes
    76  	oldest  common.Hash                 // Oldest tracked node, flush-list head
    77  	newest  common.Hash                 // Newest tracked node, flush-list tail
    78  
    79  	preimages map[common.Hash][]byte // Preimages of nodes from the secure trie
    80  	seckeybuf [secureKeyLength]byte  // Ephemeral buffer for calculating preimage keys
    81  
    82  	gctime  time.Duration      // Time spent on garbage collection since last commit
    83  	gcnodes uint64             // Nodes garbage collected since last commit
    84  	gcsize  common.StorageSize // Data storage garbage collected since last commit
    85  
    86  	flushtime  time.Duration      // Time spent on data flushing since last commit
    87  	flushnodes uint64             // Nodes flushed since last commit
    88  	flushsize  common.StorageSize // Data storage flushed since last commit
    89  
    90  	dirtiesSize   common.StorageSize // Storage size of the dirty node cache (exc. flushlist)
    91  	preimagesSize common.StorageSize // Storage size of the preimages cache
    92  
    93  	lock sync.RWMutex
    94  }
    95  
    96  // rawNode is a simple binary blob used to differentiate between collapsed trie
    97  // nodes and already encoded RLP binary blobs (while at the same time store them
    98  // in the same cache fields).
    99  type rawNode []byte
   100  
   101  func (n rawNode) canUnload(uint16, uint16) bool { panic("this should never end up in a live trie") }
   102  func (n rawNode) cache() (hashNode, bool)       { panic("this should never end up in a live trie") }
   103  func (n rawNode) fstring(ind string) string     { panic("this should never end up in a live trie") }
   104  
   105  // rawFullNode represents only the useful data content of a full node, with the
   106  // caches and flags stripped out to minimize its data storage. This type honors
   107  // the same RLP encoding as the original parent.
   108  type rawFullNode [17]node
   109  
   110  func (n rawFullNode) canUnload(uint16, uint16) bool { panic("this should never end up in a live trie") }
   111  func (n rawFullNode) cache() (hashNode, bool)       { panic("this should never end up in a live trie") }
   112  func (n rawFullNode) fstring(ind string) string     { panic("this should never end up in a live trie") }
   113  
   114  func (n rawFullNode) EncodeRLP(w io.Writer) error {
   115  	var nodes [17]node
   116  
   117  	for i, child := range n {
   118  		if child != nil {
   119  			nodes[i] = child
   120  		} else {
   121  			nodes[i] = nilValueNode
   122  		}
   123  	}
   124  	return rlp.Encode(w, nodes)
   125  }
   126  
   127  // rawShortNode represents only the useful data content of a short node, with the
   128  // caches and flags stripped out to minimize its data storage. This type honors
   129  // the same RLP encoding as the original parent.
   130  type rawShortNode struct {
   131  	Key []byte
   132  	Val node
   133  }
   134  
   135  func (n rawShortNode) canUnload(uint16, uint16) bool { panic("this should never end up in a live trie") }
   136  func (n rawShortNode) cache() (hashNode, bool)       { panic("this should never end up in a live trie") }
   137  func (n rawShortNode) fstring(ind string) string     { panic("this should never end up in a live trie") }
   138  
   139  // cachedNode is all the information we know about a single cached node in the
   140  // memory database write layer.
   141  type cachedNode struct {
   142  	node node   // Cached collapsed trie node, or raw rlp data
   143  	size uint16 // Byte size of the useful cached data
   144  
   145  	parents  uint32                 // Number of live nodes referencing this one
   146  	children map[common.Hash]uint16 // External children referenced by this node
   147  
   148  	flushPrev common.Hash // Previous node in the flush-list
   149  	flushNext common.Hash // Next node in the flush-list
   150  }
   151  
   152  // rlp returns the raw rlp encoded blob of the cached node, either directly from
   153  // the cache, or by regenerating it from the collapsed node.
   154  func (n *cachedNode) rlp() []byte {
   155  	if node, ok := n.node.(rawNode); ok {
   156  		return node
   157  	}
   158  	blob, err := rlp.EncodeToBytes(n.node)
   159  	if err != nil {
   160  		panic(err)
   161  	}
   162  	return blob
   163  }
   164  
   165  // obj returns the decoded and expanded trie node, either directly from the cache,
   166  // or by regenerating it from the rlp encoded blob.
   167  func (n *cachedNode) obj(hash common.Hash, cachegen uint16) node {
   168  	if node, ok := n.node.(rawNode); ok {
   169  		return mustDecodeNode(hash[:], node, cachegen)
   170  	}
   171  	return expandNode(hash[:], n.node, cachegen)
   172  }
   173  
   174  // childs returns all the tracked children of this node, both the implicit ones
   175  // from inside the node as well as the explicit ones from outside the node.
   176  func (n *cachedNode) childs() []common.Hash {
   177  	children := make([]common.Hash, 0, 16)
   178  	for child := range n.children {
   179  		children = append(children, child)
   180  	}
   181  	if _, ok := n.node.(rawNode); !ok {
   182  		gatherChildren(n.node, &children)
   183  	}
   184  	return children
   185  }
   186  
   187  // gatherChildren traverses the node hierarchy of a collapsed storage node and
   188  // retrieves all the hashnode children.
   189  func gatherChildren(n node, children *[]common.Hash) {
   190  	switch n := n.(type) {
   191  	case *rawShortNode:
   192  		gatherChildren(n.Val, children)
   193  
   194  	case rawFullNode:
   195  		for i := 0; i < 16; i++ {
   196  			gatherChildren(n[i], children)
   197  		}
   198  	case hashNode:
   199  		*children = append(*children, common.BytesToHash(n))
   200  
   201  	case valueNode, nil:
   202  
   203  	default:
   204  		panic(fmt.Sprintf("unknown node type: %T", n))
   205  	}
   206  }
   207  
   208  // simplifyNode traverses the hierarchy of an expanded memory node and discards
   209  // all the internal caches, returning a node that only contains the raw data.
   210  func simplifyNode(n node) node {
   211  	switch n := n.(type) {
   212  	case *shortNode:
   213  		// Short nodes discard the flags and cascade
   214  		return &rawShortNode{Key: n.Key, Val: simplifyNode(n.Val)}
   215  
   216  	case *fullNode:
   217  		// Full nodes discard the flags and cascade
   218  		node := rawFullNode(n.Children)
   219  		for i := 0; i < len(node); i++ {
   220  			if node[i] != nil {
   221  				node[i] = simplifyNode(node[i])
   222  			}
   223  		}
   224  		return node
   225  
   226  	case valueNode, hashNode, rawNode:
   227  		return n
   228  
   229  	default:
   230  		panic(fmt.Sprintf("unknown node type: %T", n))
   231  	}
   232  }
   233  
   234  // expandNode traverses the node hierarchy of a collapsed storage node and converts
   235  // all fields and keys into expanded memory form.
   236  func expandNode(hash hashNode, n node, cachegen uint16) node {
   237  	switch n := n.(type) {
   238  	case *rawShortNode:
   239  		// Short nodes need key and child expansion
   240  		return &shortNode{
   241  			Key: compactToHex(n.Key),
   242  			Val: expandNode(nil, n.Val, cachegen),
   243  			flags: nodeFlag{
   244  				hash: hash,
   245  				gen:  cachegen,
   246  			},
   247  		}
   248  
   249  	case rawFullNode:
   250  		// Full nodes need child expansion
   251  		node := &fullNode{
   252  			flags: nodeFlag{
   253  				hash: hash,
   254  				gen:  cachegen,
   255  			},
   256  		}
   257  		for i := 0; i < len(node.Children); i++ {
   258  			if n[i] != nil {
   259  				node.Children[i] = expandNode(nil, n[i], cachegen)
   260  			}
   261  		}
   262  		return node
   263  
   264  	case valueNode, hashNode:
   265  		return n
   266  
   267  	default:
   268  		panic(fmt.Sprintf("unknown node type: %T", n))
   269  	}
   270  }
   271  
   272  // NewDatabase creates a new trie database to store ephemeral trie content before
   273  // its written out to disk or garbage collected. No read cache is created, so all
   274  // data retrievals will hit the underlying disk database.
   275  func NewDatabase(diskdb ethdb.Database) *Database {
   276  	return NewDatabaseWithCache(diskdb, 0)
   277  }
   278  
   279  // NewDatabaseWithCache creates a new trie database to store ephemeral trie content
   280  // before its written out to disk or garbage collected. It also acts as a read cache
   281  // for nodes loaded from disk.
   282  func NewDatabaseWithCache(diskdb ethdb.Database, cache int) *Database {
   283  	var cleans *bigcache.BigCache
   284  	if cache > 0 {
   285  		cleans, _ = bigcache.NewBigCache(bigcache.Config{
   286  			Shards:             1024,
   287  			LifeWindow:         time.Hour,
   288  			MaxEntriesInWindow: cache * 1024,
   289  			MaxEntrySize:       512,
   290  			HardMaxCacheSize:   cache,
   291  		})
   292  	}
   293  	return &Database{
   294  		diskdb:    diskdb,
   295  		cleans:    cleans,
   296  		dirties:   map[common.Hash]*cachedNode{{}: {}},
   297  		preimages: make(map[common.Hash][]byte),
   298  	}
   299  }
   300  
   301  // DiskDB retrieves the persistent storage backing the trie database.
   302  func (db *Database) DiskDB() DatabaseReader {
   303  	return db.diskdb
   304  }
   305  
   306  // InsertBlob writes a new reference tracked blob to the memory database if it's
   307  // yet unknown. This method should only be used for non-trie nodes that require
   308  // reference counting, since trie nodes are garbage collected directly through
   309  // their embedded children.
   310  func (db *Database) InsertBlob(hash common.Hash, blob []byte) {
   311  	db.lock.Lock()
   312  	defer db.lock.Unlock()
   313  
   314  	db.insert(hash, blob, rawNode(blob))
   315  }
   316  
   317  // insert inserts a collapsed trie node into the memory database. This method is
   318  // a more generic version of InsertBlob, supporting both raw blob insertions as
   319  // well ex trie node insertions. The blob must always be specified to allow proper
   320  // size tracking.
   321  func (db *Database) insert(hash common.Hash, blob []byte, node node) {
   322  	// If the node's already cached, skip
   323  	if _, ok := db.dirties[hash]; ok {
   324  		return
   325  	}
   326  	// Create the cached entry for this node
   327  	entry := &cachedNode{
   328  		node:      simplifyNode(node),
   329  		size:      uint16(len(blob)),
   330  		flushPrev: db.newest,
   331  	}
   332  	for _, child := range entry.childs() {
   333  		if c := db.dirties[child]; c != nil {
   334  			c.parents++
   335  		}
   336  	}
   337  	db.dirties[hash] = entry
   338  
   339  	// Update the flush-list endpoints
   340  	if db.oldest == (common.Hash{}) {
   341  		db.oldest, db.newest = hash, hash
   342  	} else {
   343  		db.dirties[db.newest].flushNext, db.newest = hash, hash
   344  	}
   345  	db.dirtiesSize += common.StorageSize(common.HashLength + entry.size)
   346  }
   347  
   348  // insertPreimage writes a new trie node pre-image to the memory database if it's
   349  // yet unknown. The method will make a copy of the slice.
   350  //
   351  // Note, this method assumes that the database's lock is held!
   352  func (db *Database) insertPreimage(hash common.Hash, preimage []byte) {
   353  	if _, ok := db.preimages[hash]; ok {
   354  		return
   355  	}
   356  	db.preimages[hash] = common.CopyBytes(preimage)
   357  	db.preimagesSize += common.StorageSize(common.HashLength + len(preimage))
   358  }
   359  
   360  // node retrieves a cached trie node from memory, or returns nil if none can be
   361  // found in the memory cache.
   362  func (db *Database) node(hash common.Hash, cachegen uint16) node {
   363  	// Retrieve the node from the clean cache if available
   364  	if db.cleans != nil {
   365  		if enc, err := db.cleans.Get(string(hash[:])); err == nil && enc != nil {
   366  			memcacheCleanHitMeter.Mark(1)
   367  			memcacheCleanReadMeter.Mark(int64(len(enc)))
   368  			return mustDecodeNode(hash[:], enc, cachegen)
   369  		}
   370  	}
   371  	// Retrieve the node from the dirty cache if available
   372  	db.lock.RLock()
   373  	dirty := db.dirties[hash]
   374  	db.lock.RUnlock()
   375  
   376  	if dirty != nil {
   377  		return dirty.obj(hash, cachegen)
   378  	}
   379  	// Content unavailable in memory, attempt to retrieve from disk
   380  	enc, err := db.diskdb.Get(hash[:])
   381  	if err != nil || enc == nil {
   382  		return nil
   383  	}
   384  	if db.cleans != nil {
   385  		db.cleans.Set(string(hash[:]), enc)
   386  		memcacheCleanMissMeter.Mark(1)
   387  		memcacheCleanWriteMeter.Mark(int64(len(enc)))
   388  	}
   389  	return mustDecodeNode(hash[:], enc, cachegen)
   390  }
   391  
   392  // Node retrieves an encoded cached trie node from memory. If it cannot be found
   393  // cached, the method queries the persistent database for the content.
   394  func (db *Database) Node(hash common.Hash) ([]byte, error) {
   395  	// It doens't make sense to retrieve the metaroot
   396  	if hash == (common.Hash{}) {
   397  		return nil, errors.New("not found")
   398  	}
   399  	// Retrieve the node from the clean cache if available
   400  	if db.cleans != nil {
   401  		if enc, err := db.cleans.Get(string(hash[:])); err == nil && enc != nil {
   402  			memcacheCleanHitMeter.Mark(1)
   403  			memcacheCleanReadMeter.Mark(int64(len(enc)))
   404  			return enc, nil
   405  		}
   406  	}
   407  	// Retrieve the node from the dirty cache if available
   408  	db.lock.RLock()
   409  	dirty := db.dirties[hash]
   410  	db.lock.RUnlock()
   411  
   412  	if dirty != nil {
   413  		return dirty.rlp(), nil
   414  	}
   415  	// Content unavailable in memory, attempt to retrieve from disk
   416  	enc, err := db.diskdb.Get(hash[:])
   417  	if err == nil && enc != nil {
   418  		if db.cleans != nil {
   419  			db.cleans.Set(string(hash[:]), enc)
   420  			memcacheCleanMissMeter.Mark(1)
   421  			memcacheCleanWriteMeter.Mark(int64(len(enc)))
   422  		}
   423  	}
   424  	return enc, err
   425  }
   426  
   427  // preimage retrieves a cached trie node pre-image from memory. If it cannot be
   428  // found cached, the method queries the persistent database for the content.
   429  func (db *Database) preimage(hash common.Hash) ([]byte, error) {
   430  	// Retrieve the node from cache if available
   431  	db.lock.RLock()
   432  	preimage := db.preimages[hash]
   433  	db.lock.RUnlock()
   434  
   435  	if preimage != nil {
   436  		return preimage, nil
   437  	}
   438  	// Content unavailable in memory, attempt to retrieve from disk
   439  	return db.diskdb.Get(db.secureKey(hash[:]))
   440  }
   441  
   442  // secureKey returns the database key for the preimage of key, as an ephemeral
   443  // buffer. The caller must not hold onto the return value because it will become
   444  // invalid on the next call.
   445  func (db *Database) secureKey(key []byte) []byte {
   446  	buf := append(db.seckeybuf[:0], secureKeyPrefix...)
   447  	buf = append(buf, key...)
   448  	return buf
   449  }
   450  
   451  // Nodes retrieves the hashes of all the nodes cached within the memory database.
   452  // This method is extremely expensive and should only be used to validate internal
   453  // states in test code.
   454  func (db *Database) Nodes() []common.Hash {
   455  	db.lock.RLock()
   456  	defer db.lock.RUnlock()
   457  
   458  	var hashes = make([]common.Hash, 0, len(db.dirties))
   459  	for hash := range db.dirties {
   460  		if hash != (common.Hash{}) { // Special case for "root" references/nodes
   461  			hashes = append(hashes, hash)
   462  		}
   463  	}
   464  	return hashes
   465  }
   466  
   467  // Reference adds a new reference from a parent node to a child node.
   468  func (db *Database) Reference(child common.Hash, parent common.Hash) {
   469  	db.lock.RLock()
   470  	defer db.lock.RUnlock()
   471  
   472  	db.reference(child, parent)
   473  }
   474  
   475  // reference is the private locked version of Reference.
   476  func (db *Database) reference(child common.Hash, parent common.Hash) {
   477  	// If the node does not exist, it's a node pulled from disk, skip
   478  	node, ok := db.dirties[child]
   479  	if !ok {
   480  		return
   481  	}
   482  	// If the reference already exists, only duplicate for roots
   483  	if db.dirties[parent].children == nil {
   484  		db.dirties[parent].children = make(map[common.Hash]uint16)
   485  	} else if _, ok = db.dirties[parent].children[child]; ok && parent != (common.Hash{}) {
   486  		return
   487  	}
   488  	node.parents++
   489  	db.dirties[parent].children[child]++
   490  }
   491  
   492  // Dereference removes an existing reference from a root node.
   493  func (db *Database) Dereference(root common.Hash) {
   494  	// Sanity check to ensure that the meta-root is not removed
   495  	if root == (common.Hash{}) {
   496  		log.Error("Attempted to dereference the trie cache meta root")
   497  		return
   498  	}
   499  	db.lock.Lock()
   500  	defer db.lock.Unlock()
   501  
   502  	nodes, storage, start := len(db.dirties), db.dirtiesSize, time.Now()
   503  	db.dereference(root, common.Hash{})
   504  
   505  	db.gcnodes += uint64(nodes - len(db.dirties))
   506  	db.gcsize += storage - db.dirtiesSize
   507  	db.gctime += time.Since(start)
   508  
   509  	memcacheGCTimeTimer.Update(time.Since(start))
   510  	memcacheGCSizeMeter.Mark(int64(storage - db.dirtiesSize))
   511  	memcacheGCNodesMeter.Mark(int64(nodes - len(db.dirties)))
   512  
   513  	log.Debug("Dereferenced trie from memory database", "nodes", nodes-len(db.dirties), "size", storage-db.dirtiesSize, "time", time.Since(start),
   514  		"gcnodes", db.gcnodes, "gcsize", db.gcsize, "gctime", db.gctime, "livenodes", len(db.dirties), "livesize", db.dirtiesSize)
   515  }
   516  
   517  // dereference is the private locked version of Dereference.
   518  func (db *Database) dereference(child common.Hash, parent common.Hash) {
   519  	// Dereference the parent-child
   520  	node := db.dirties[parent]
   521  
   522  	if node.children != nil && node.children[child] > 0 {
   523  		node.children[child]--
   524  		if node.children[child] == 0 {
   525  			delete(node.children, child)
   526  		}
   527  	}
   528  	// If the child does not exist, it's a previously committed node.
   529  	node, ok := db.dirties[child]
   530  	if !ok {
   531  		return
   532  	}
   533  	// If there are no more references to the child, delete it and cascade
   534  	if node.parents > 0 {
   535  		// This is a special cornercase where a node loaded from disk (i.e. not in the
   536  		// memcache any more) gets reinjected as a new node (short node split into full,
   537  		// then reverted into short), causing a cached node to have no parents. That is
   538  		// no problem in itself, but don't make maxint parents out of it.
   539  		node.parents--
   540  	}
   541  	if node.parents == 0 {
   542  		// Remove the node from the flush-list
   543  		switch child {
   544  		case db.oldest:
   545  			db.oldest = node.flushNext
   546  			db.dirties[node.flushNext].flushPrev = common.Hash{}
   547  		case db.newest:
   548  			db.newest = node.flushPrev
   549  			db.dirties[node.flushPrev].flushNext = common.Hash{}
   550  		default:
   551  			db.dirties[node.flushPrev].flushNext = node.flushNext
   552  			db.dirties[node.flushNext].flushPrev = node.flushPrev
   553  		}
   554  		// Dereference all children and delete the node
   555  		for _, hash := range node.childs() {
   556  			db.dereference(hash, child)
   557  		}
   558  		delete(db.dirties, child)
   559  		db.dirtiesSize -= common.StorageSize(common.HashLength + int(node.size))
   560  	}
   561  }
   562  
   563  // Cap iteratively flushes old but still referenced trie nodes until the total
   564  // memory usage goes below the given threshold.
   565  func (db *Database) Cap(limit common.StorageSize) error {
   566  	// Create a database batch to flush persistent data out. It is important that
   567  	// outside code doesn't see an inconsistent state (referenced data removed from
   568  	// memory cache during commit but not yet in persistent storage). This is ensured
   569  	// by only uncaching existing data when the database write finalizes.
   570  	db.lock.RLock()
   571  
   572  	nodes, storage, start := len(db.dirties), db.dirtiesSize, time.Now()
   573  	batch := db.diskdb.NewBatch()
   574  
   575  	// db.dirtiesSize only contains the useful data in the cache, but when reporting
   576  	// the total memory consumption, the maintenance metadata is also needed to be
   577  	// counted. For every useful node, we track 2 extra hashes as the flushlist.
   578  	size := db.dirtiesSize + common.StorageSize((len(db.dirties)-1)*2*common.HashLength)
   579  
   580  	// If the preimage cache got large enough, push to disk. If it's still small
   581  	// leave for later to deduplicate writes.
   582  	flushPreimages := db.preimagesSize > 4*1024*1024
   583  	if flushPreimages {
   584  		for hash, preimage := range db.preimages {
   585  			if err := batch.Put(db.secureKey(hash[:]), preimage); err != nil {
   586  				log.Error("Failed to commit preimage from trie database", "err", err)
   587  				db.lock.RUnlock()
   588  				return err
   589  			}
   590  			if batch.ValueSize() > ethdb.IdealBatchSize {
   591  				if err := batch.Write(); err != nil {
   592  					db.lock.RUnlock()
   593  					return err
   594  				}
   595  				batch.Reset()
   596  			}
   597  		}
   598  	}
   599  	// Keep committing nodes from the flush-list until we're below allowance
   600  	oldest := db.oldest
   601  	for size > limit && oldest != (common.Hash{}) {
   602  		// Fetch the oldest referenced node and push into the batch
   603  		node := db.dirties[oldest]
   604  		if err := batch.Put(oldest[:], node.rlp()); err != nil {
   605  			db.lock.RUnlock()
   606  			return err
   607  		}
   608  		// If we exceeded the ideal batch size, commit and reset
   609  		if batch.ValueSize() >= ethdb.IdealBatchSize {
   610  			if err := batch.Write(); err != nil {
   611  				log.Error("Failed to write flush list to disk", "err", err)
   612  				db.lock.RUnlock()
   613  				return err
   614  			}
   615  			batch.Reset()
   616  		}
   617  		// Iterate to the next flush item, or abort if the size cap was achieved. Size
   618  		// is the total size, including both the useful cached data (hash -> blob), as
   619  		// well as the flushlist metadata (2*hash). When flushing items from the cache,
   620  		// we need to reduce both.
   621  		size -= common.StorageSize(3*common.HashLength + int(node.size))
   622  		oldest = node.flushNext
   623  	}
   624  	// Flush out any remainder data from the last batch
   625  	if err := batch.Write(); err != nil {
   626  		log.Error("Failed to write flush list to disk", "err", err)
   627  		db.lock.RUnlock()
   628  		return err
   629  	}
   630  	db.lock.RUnlock()
   631  
   632  	// Write successful, clear out the flushed data
   633  	db.lock.Lock()
   634  	defer db.lock.Unlock()
   635  
   636  	if flushPreimages {
   637  		db.preimages = make(map[common.Hash][]byte)
   638  		db.preimagesSize = 0
   639  	}
   640  	for db.oldest != oldest {
   641  		node := db.dirties[db.oldest]
   642  		delete(db.dirties, db.oldest)
   643  		db.oldest = node.flushNext
   644  
   645  		db.dirtiesSize -= common.StorageSize(common.HashLength + int(node.size))
   646  	}
   647  	if db.oldest != (common.Hash{}) {
   648  		db.dirties[db.oldest].flushPrev = common.Hash{}
   649  	}
   650  	db.flushnodes += uint64(nodes - len(db.dirties))
   651  	db.flushsize += storage - db.dirtiesSize
   652  	db.flushtime += time.Since(start)
   653  
   654  	memcacheFlushTimeTimer.Update(time.Since(start))
   655  	memcacheFlushSizeMeter.Mark(int64(storage - db.dirtiesSize))
   656  	memcacheFlushNodesMeter.Mark(int64(nodes - len(db.dirties)))
   657  
   658  	log.Debug("Persisted nodes from memory database", "nodes", nodes-len(db.dirties), "size", storage-db.dirtiesSize, "time", time.Since(start),
   659  		"flushnodes", db.flushnodes, "flushsize", db.flushsize, "flushtime", db.flushtime, "livenodes", len(db.dirties), "livesize", db.dirtiesSize)
   660  
   661  	return nil
   662  }
   663  
   664  // Commit iterates over all the children of a particular node, writes them out
   665  // to disk, forcefully tearing down all references in both directions.
   666  //
   667  // As a side effect, all pre-images accumulated up to this point are also written.
   668  func (db *Database) Commit(node common.Hash, report bool) error {
   669  	// Create a database batch to flush persistent data out. It is important that
   670  	// outside code doesn't see an inconsistent state (referenced data removed from
   671  	// memory cache during commit but not yet in persistent storage). This is ensured
   672  	// by only uncaching existing data when the database write finalizes.
   673  	db.lock.RLock()
   674  
   675  	start := time.Now()
   676  	batch := db.diskdb.NewBatch()
   677  
   678  	// Move all of the accumulated preimages into a write batch
   679  	for hash, preimage := range db.preimages {
   680  		if err := batch.Put(db.secureKey(hash[:]), preimage); err != nil {
   681  			log.Error("Failed to commit preimage from trie database", "err", err)
   682  			db.lock.RUnlock()
   683  			return err
   684  		}
   685  		if batch.ValueSize() > ethdb.IdealBatchSize {
   686  			if err := batch.Write(); err != nil {
   687  				return err
   688  			}
   689  			batch.Reset()
   690  		}
   691  	}
   692  	// Move the trie itself into the batch, flushing if enough data is accumulated
   693  	nodes, storage := len(db.dirties), db.dirtiesSize
   694  	if err := db.commit(node, batch); err != nil {
   695  		log.Error("Failed to commit trie from trie database", "err", err)
   696  		db.lock.RUnlock()
   697  		return err
   698  	}
   699  	// Write batch ready, unlock for readers during persistence
   700  	if err := batch.Write(); err != nil {
   701  		log.Error("Failed to write trie to disk", "err", err)
   702  		db.lock.RUnlock()
   703  		return err
   704  	}
   705  	db.lock.RUnlock()
   706  
   707  	// Write successful, clear out the flushed data
   708  	db.lock.Lock()
   709  	defer db.lock.Unlock()
   710  
   711  	db.preimages = make(map[common.Hash][]byte)
   712  	db.preimagesSize = 0
   713  
   714  	db.uncache(node)
   715  
   716  	memcacheCommitTimeTimer.Update(time.Since(start))
   717  	memcacheCommitSizeMeter.Mark(int64(storage - db.dirtiesSize))
   718  	memcacheCommitNodesMeter.Mark(int64(nodes - len(db.dirties)))
   719  
   720  	logger := log.Info
   721  	if !report {
   722  		logger = log.Debug
   723  	}
   724  	logger("Persisted trie from memory database", "nodes", nodes-len(db.dirties)+int(db.flushnodes), "size", storage-db.dirtiesSize+db.flushsize, "time", time.Since(start)+db.flushtime,
   725  		"gcnodes", db.gcnodes, "gcsize", db.gcsize, "gctime", db.gctime, "livenodes", len(db.dirties), "livesize", db.dirtiesSize)
   726  
   727  	// Reset the garbage collection statistics
   728  	db.gcnodes, db.gcsize, db.gctime = 0, 0, 0
   729  	db.flushnodes, db.flushsize, db.flushtime = 0, 0, 0
   730  
   731  	return nil
   732  }
   733  
   734  // commit is the private locked version of Commit.
   735  func (db *Database) commit(hash common.Hash, batch ethdb.Batch) error {
   736  	// If the node does not exist, it's a previously committed node
   737  	node, ok := db.dirties[hash]
   738  	if !ok {
   739  		return nil
   740  	}
   741  	for _, child := range node.childs() {
   742  		if err := db.commit(child, batch); err != nil {
   743  			return err
   744  		}
   745  	}
   746  	if err := batch.Put(hash[:], node.rlp()); err != nil {
   747  		return err
   748  	}
   749  	// If we've reached an optimal batch size, commit and start over
   750  	if batch.ValueSize() >= ethdb.IdealBatchSize {
   751  		if err := batch.Write(); err != nil {
   752  			return err
   753  		}
   754  		batch.Reset()
   755  	}
   756  	return nil
   757  }
   758  
   759  // uncache is the post-processing step of a commit operation where the already
   760  // persisted trie is removed from the cache. The reason behind the two-phase
   761  // commit is to ensure consistent data availability while moving from memory
   762  // to disk.
   763  func (db *Database) uncache(hash common.Hash) {
   764  	// If the node does not exist, we're done on this path
   765  	node, ok := db.dirties[hash]
   766  	if !ok {
   767  		return
   768  	}
   769  	// Node still exists, remove it from the flush-list
   770  	switch hash {
   771  	case db.oldest:
   772  		db.oldest = node.flushNext
   773  		db.dirties[node.flushNext].flushPrev = common.Hash{}
   774  	case db.newest:
   775  		db.newest = node.flushPrev
   776  		db.dirties[node.flushPrev].flushNext = common.Hash{}
   777  	default:
   778  		db.dirties[node.flushPrev].flushNext = node.flushNext
   779  		db.dirties[node.flushNext].flushPrev = node.flushPrev
   780  	}
   781  	// Uncache the node's subtries and remove the node itself too
   782  	for _, child := range node.childs() {
   783  		db.uncache(child)
   784  	}
   785  	delete(db.dirties, hash)
   786  	db.dirtiesSize -= common.StorageSize(common.HashLength + int(node.size))
   787  }
   788  
   789  // Size returns the current storage size of the memory cache in front of the
   790  // persistent database layer.
   791  func (db *Database) Size() (common.StorageSize, common.StorageSize) {
   792  	db.lock.RLock()
   793  	defer db.lock.RUnlock()
   794  
   795  	// db.dirtiesSize only contains the useful data in the cache, but when reporting
   796  	// the total memory consumption, the maintenance metadata is also needed to be
   797  	// counted. For every useful node, we track 2 extra hashes as the flushlist.
   798  	var flushlistSize = common.StorageSize((len(db.dirties) - 1) * 2 * common.HashLength)
   799  	return db.dirtiesSize + flushlistSize, db.preimagesSize
   800  }
   801  
   802  // verifyIntegrity is a debug method to iterate over the entire trie stored in
   803  // memory and check whether every node is reachable from the meta root. The goal
   804  // is to find any errors that might cause memory leaks and or trie nodes to go
   805  // missing.
   806  //
   807  // This method is extremely CPU and memory intensive, only use when must.
   808  func (db *Database) verifyIntegrity() {
   809  	// Iterate over all the cached nodes and accumulate them into a set
   810  	reachable := map[common.Hash]struct{}{{}: {}}
   811  
   812  	for child := range db.dirties[common.Hash{}].children {
   813  		db.accumulate(child, reachable)
   814  	}
   815  	// Find any unreachable but cached nodes
   816  	unreachable := []string{}
   817  	for hash, node := range db.dirties {
   818  		if _, ok := reachable[hash]; !ok {
   819  			unreachable = append(unreachable, fmt.Sprintf("%x: {Node: %v, Parents: %d, Prev: %x, Next: %x}",
   820  				hash, node.node, node.parents, node.flushPrev, node.flushNext))
   821  		}
   822  	}
   823  	if len(unreachable) != 0 {
   824  		panic(fmt.Sprintf("trie cache memory leak: %v", unreachable))
   825  	}
   826  }
   827  
   828  // accumulate iterates over the trie defined by hash and accumulates all the
   829  // cached children found in memory.
   830  func (db *Database) accumulate(hash common.Hash, reachable map[common.Hash]struct{}) {
   831  	// Mark the node reachable if present in the memory cache
   832  	node, ok := db.dirties[hash]
   833  	if !ok {
   834  		return
   835  	}
   836  	reachable[hash] = struct{}{}
   837  
   838  	// Iterate over all the children and accumulate them too
   839  	for _, child := range node.childs() {
   840  		db.accumulate(child, reachable)
   841  	}
   842  }