github.com/codysnider/go-ethereum@v1.10.18-0.20220420071915-14f4ae99222a/trie/sync.go (about) 1 // Copyright 2015 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package trie 18 19 import ( 20 "errors" 21 "fmt" 22 23 "github.com/ethereum/go-ethereum/common" 24 "github.com/ethereum/go-ethereum/common/prque" 25 "github.com/ethereum/go-ethereum/core/rawdb" 26 "github.com/ethereum/go-ethereum/ethdb" 27 ) 28 29 // ErrNotRequested is returned by the trie sync when it's requested to process a 30 // node it did not request. 31 var ErrNotRequested = errors.New("not requested") 32 33 // ErrAlreadyProcessed is returned by the trie sync when it's requested to process a 34 // node it already processed previously. 35 var ErrAlreadyProcessed = errors.New("already processed") 36 37 // maxFetchesPerDepth is the maximum number of pending trie nodes per depth. The 38 // role of this value is to limit the number of trie nodes that get expanded in 39 // memory if the node was configured with a significant number of peers. 40 const maxFetchesPerDepth = 16384 41 42 // request represents a scheduled or already in-flight state retrieval request. 43 type request struct { 44 path []byte // Merkle path leading to this node for prioritization 45 hash common.Hash // Hash of the node data content to retrieve 46 data []byte // Data content of the node, cached until all subtrees complete 47 code bool // Whether this is a code entry 48 49 parents []*request // Parent state nodes referencing this entry (notify all upon completion) 50 deps int // Number of dependencies before allowed to commit this node 51 52 callback LeafCallback // Callback to invoke if a leaf node it reached on this branch 53 } 54 55 // SyncPath is a path tuple identifying a particular trie node either in a single 56 // trie (account) or a layered trie (account -> storage). 57 // 58 // Content wise the tuple either has 1 element if it addresses a node in a single 59 // trie or 2 elements if it addresses a node in a stacked trie. 60 // 61 // To support aiming arbitrary trie nodes, the path needs to support odd nibble 62 // lengths. To avoid transferring expanded hex form over the network, the last 63 // part of the tuple (which needs to index into the middle of a trie) is compact 64 // encoded. In case of a 2-tuple, the first item is always 32 bytes so that is 65 // simple binary encoded. 66 // 67 // Examples: 68 // - Path 0x9 -> {0x19} 69 // - Path 0x99 -> {0x0099} 70 // - Path 0x01234567890123456789012345678901012345678901234567890123456789019 -> {0x0123456789012345678901234567890101234567890123456789012345678901, 0x19} 71 // - Path 0x012345678901234567890123456789010123456789012345678901234567890199 -> {0x0123456789012345678901234567890101234567890123456789012345678901, 0x0099} 72 type SyncPath [][]byte 73 74 // newSyncPath converts an expanded trie path from nibble form into a compact 75 // version that can be sent over the network. 76 func newSyncPath(path []byte) SyncPath { 77 // If the hash is from the account trie, append a single item, if it 78 // is from the a storage trie, append a tuple. Note, the length 64 is 79 // clashing between account leaf and storage root. It's fine though 80 // because having a trie node at 64 depth means a hash collision was 81 // found and we're long dead. 82 if len(path) < 64 { 83 return SyncPath{hexToCompact(path)} 84 } 85 return SyncPath{hexToKeybytes(path[:64]), hexToCompact(path[64:])} 86 } 87 88 // SyncResult is a response with requested data along with it's hash. 89 type SyncResult struct { 90 Hash common.Hash // Hash of the originally unknown trie node 91 Data []byte // Data content of the retrieved node 92 } 93 94 // syncMemBatch is an in-memory buffer of successfully downloaded but not yet 95 // persisted data items. 96 type syncMemBatch struct { 97 nodes map[common.Hash][]byte // In-memory membatch of recently completed nodes 98 codes map[common.Hash][]byte // In-memory membatch of recently completed codes 99 } 100 101 // newSyncMemBatch allocates a new memory-buffer for not-yet persisted trie nodes. 102 func newSyncMemBatch() *syncMemBatch { 103 return &syncMemBatch{ 104 nodes: make(map[common.Hash][]byte), 105 codes: make(map[common.Hash][]byte), 106 } 107 } 108 109 // hasNode reports the trie node with specific hash is already cached. 110 func (batch *syncMemBatch) hasNode(hash common.Hash) bool { 111 _, ok := batch.nodes[hash] 112 return ok 113 } 114 115 // hasCode reports the contract code with specific hash is already cached. 116 func (batch *syncMemBatch) hasCode(hash common.Hash) bool { 117 _, ok := batch.codes[hash] 118 return ok 119 } 120 121 // Sync is the main state trie synchronisation scheduler, which provides yet 122 // unknown trie hashes to retrieve, accepts node data associated with said hashes 123 // and reconstructs the trie step by step until all is done. 124 type Sync struct { 125 database ethdb.KeyValueReader // Persistent database to check for existing entries 126 membatch *syncMemBatch // Memory buffer to avoid frequent database writes 127 nodeReqs map[common.Hash]*request // Pending requests pertaining to a trie node hash 128 codeReqs map[common.Hash]*request // Pending requests pertaining to a code hash 129 queue *prque.Prque // Priority queue with the pending requests 130 fetches map[int]int // Number of active fetches per trie node depth 131 } 132 133 // NewSync creates a new trie data download scheduler. 134 func NewSync(root common.Hash, database ethdb.KeyValueReader, callback LeafCallback) *Sync { 135 ts := &Sync{ 136 database: database, 137 membatch: newSyncMemBatch(), 138 nodeReqs: make(map[common.Hash]*request), 139 codeReqs: make(map[common.Hash]*request), 140 queue: prque.New(nil), 141 fetches: make(map[int]int), 142 } 143 ts.AddSubTrie(root, nil, common.Hash{}, callback) 144 return ts 145 } 146 147 // AddSubTrie registers a new trie to the sync code, rooted at the designated parent. 148 func (s *Sync) AddSubTrie(root common.Hash, path []byte, parent common.Hash, callback LeafCallback) { 149 // Short circuit if the trie is empty or already known 150 if root == emptyRoot { 151 return 152 } 153 if s.membatch.hasNode(root) { 154 return 155 } 156 // If database says this is a duplicate, then at least the trie node is 157 // present, and we hold the assumption that it's NOT legacy contract code. 158 if rawdb.HasTrieNode(s.database, root) { 159 return 160 } 161 // Assemble the new sub-trie sync request 162 req := &request{ 163 path: path, 164 hash: root, 165 callback: callback, 166 } 167 // If this sub-trie has a designated parent, link them together 168 if parent != (common.Hash{}) { 169 ancestor := s.nodeReqs[parent] 170 if ancestor == nil { 171 panic(fmt.Sprintf("sub-trie ancestor not found: %x", parent)) 172 } 173 ancestor.deps++ 174 req.parents = append(req.parents, ancestor) 175 } 176 s.schedule(req) 177 } 178 179 // AddCodeEntry schedules the direct retrieval of a contract code that should not 180 // be interpreted as a trie node, but rather accepted and stored into the database 181 // as is. 182 func (s *Sync) AddCodeEntry(hash common.Hash, path []byte, parent common.Hash) { 183 // Short circuit if the entry is empty or already known 184 if hash == emptyState { 185 return 186 } 187 if s.membatch.hasCode(hash) { 188 return 189 } 190 // If database says duplicate, the blob is present for sure. 191 // Note we only check the existence with new code scheme, fast 192 // sync is expected to run with a fresh new node. Even there 193 // exists the code with legacy format, fetch and store with 194 // new scheme anyway. 195 if rawdb.HasCodeWithPrefix(s.database, hash) { 196 return 197 } 198 // Assemble the new sub-trie sync request 199 req := &request{ 200 path: path, 201 hash: hash, 202 code: true, 203 } 204 // If this sub-trie has a designated parent, link them together 205 if parent != (common.Hash{}) { 206 ancestor := s.nodeReqs[parent] // the parent of codereq can ONLY be nodereq 207 if ancestor == nil { 208 panic(fmt.Sprintf("raw-entry ancestor not found: %x", parent)) 209 } 210 ancestor.deps++ 211 req.parents = append(req.parents, ancestor) 212 } 213 s.schedule(req) 214 } 215 216 // Missing retrieves the known missing nodes from the trie for retrieval. To aid 217 // both eth/6x style fast sync and snap/1x style state sync, the paths of trie 218 // nodes are returned too, as well as separate hash list for codes. 219 func (s *Sync) Missing(max int) (nodes []common.Hash, paths []SyncPath, codes []common.Hash) { 220 var ( 221 nodeHashes []common.Hash 222 nodePaths []SyncPath 223 codeHashes []common.Hash 224 ) 225 for !s.queue.Empty() && (max == 0 || len(nodeHashes)+len(codeHashes) < max) { 226 // Retrieve the next item in line 227 item, prio := s.queue.Peek() 228 229 // If we have too many already-pending tasks for this depth, throttle 230 depth := int(prio >> 56) 231 if s.fetches[depth] > maxFetchesPerDepth { 232 break 233 } 234 // Item is allowed to be scheduled, add it to the task list 235 s.queue.Pop() 236 s.fetches[depth]++ 237 238 hash := item.(common.Hash) 239 if req, ok := s.nodeReqs[hash]; ok { 240 nodeHashes = append(nodeHashes, hash) 241 nodePaths = append(nodePaths, newSyncPath(req.path)) 242 } else { 243 codeHashes = append(codeHashes, hash) 244 } 245 } 246 return nodeHashes, nodePaths, codeHashes 247 } 248 249 // Process injects the received data for requested item. Note it can 250 // happpen that the single response commits two pending requests(e.g. 251 // there are two requests one for code and one for node but the hash 252 // is same). In this case the second response for the same hash will 253 // be treated as "non-requested" item or "already-processed" item but 254 // there is no downside. 255 func (s *Sync) Process(result SyncResult) error { 256 // If the item was not requested either for code or node, bail out 257 if s.nodeReqs[result.Hash] == nil && s.codeReqs[result.Hash] == nil { 258 return ErrNotRequested 259 } 260 // There is an pending code request for this data, commit directly 261 var filled bool 262 if req := s.codeReqs[result.Hash]; req != nil && req.data == nil { 263 filled = true 264 req.data = result.Data 265 s.commit(req) 266 } 267 // There is an pending node request for this data, fill it. 268 if req := s.nodeReqs[result.Hash]; req != nil && req.data == nil { 269 filled = true 270 // Decode the node data content and update the request 271 node, err := decodeNode(result.Hash[:], result.Data) 272 if err != nil { 273 return err 274 } 275 req.data = result.Data 276 277 // Create and schedule a request for all the children nodes 278 requests, err := s.children(req, node) 279 if err != nil { 280 return err 281 } 282 if len(requests) == 0 && req.deps == 0 { 283 s.commit(req) 284 } else { 285 req.deps += len(requests) 286 for _, child := range requests { 287 s.schedule(child) 288 } 289 } 290 } 291 if !filled { 292 return ErrAlreadyProcessed 293 } 294 return nil 295 } 296 297 // Commit flushes the data stored in the internal membatch out to persistent 298 // storage, returning any occurred error. 299 func (s *Sync) Commit(dbw ethdb.Batch) error { 300 // Dump the membatch into a database dbw 301 for key, value := range s.membatch.nodes { 302 rawdb.WriteTrieNode(dbw, key, value) 303 } 304 for key, value := range s.membatch.codes { 305 rawdb.WriteCode(dbw, key, value) 306 } 307 // Drop the membatch data and return 308 s.membatch = newSyncMemBatch() 309 return nil 310 } 311 312 // Pending returns the number of state entries currently pending for download. 313 func (s *Sync) Pending() int { 314 return len(s.nodeReqs) + len(s.codeReqs) 315 } 316 317 // schedule inserts a new state retrieval request into the fetch queue. If there 318 // is already a pending request for this node, the new request will be discarded 319 // and only a parent reference added to the old one. 320 func (s *Sync) schedule(req *request) { 321 var reqset = s.nodeReqs 322 if req.code { 323 reqset = s.codeReqs 324 } 325 // If we're already requesting this node, add a new reference and stop 326 if old, ok := reqset[req.hash]; ok { 327 old.parents = append(old.parents, req.parents...) 328 return 329 } 330 reqset[req.hash] = req 331 332 // Schedule the request for future retrieval. This queue is shared 333 // by both node requests and code requests. It can happen that there 334 // is a trie node and code has same hash. In this case two elements 335 // with same hash and same or different depth will be pushed. But it's 336 // ok the worst case is the second response will be treated as duplicated. 337 prio := int64(len(req.path)) << 56 // depth >= 128 will never happen, storage leaves will be included in their parents 338 for i := 0; i < 14 && i < len(req.path); i++ { 339 prio |= int64(15-req.path[i]) << (52 - i*4) // 15-nibble => lexicographic order 340 } 341 s.queue.Push(req.hash, prio) 342 } 343 344 // children retrieves all the missing children of a state trie entry for future 345 // retrieval scheduling. 346 func (s *Sync) children(req *request, object node) ([]*request, error) { 347 // Gather all the children of the node, irrelevant whether known or not 348 type child struct { 349 path []byte 350 node node 351 } 352 var children []child 353 354 switch node := (object).(type) { 355 case *shortNode: 356 key := node.Key 357 if hasTerm(key) { 358 key = key[:len(key)-1] 359 } 360 children = []child{{ 361 node: node.Val, 362 path: append(append([]byte(nil), req.path...), key...), 363 }} 364 case *fullNode: 365 for i := 0; i < 17; i++ { 366 if node.Children[i] != nil { 367 children = append(children, child{ 368 node: node.Children[i], 369 path: append(append([]byte(nil), req.path...), byte(i)), 370 }) 371 } 372 } 373 default: 374 panic(fmt.Sprintf("unknown node: %+v", node)) 375 } 376 // Iterate over the children, and request all unknown ones 377 requests := make([]*request, 0, len(children)) 378 for _, child := range children { 379 // Notify any external watcher of a new key/value node 380 if req.callback != nil { 381 if node, ok := (child.node).(valueNode); ok { 382 var paths [][]byte 383 if len(child.path) == 2*common.HashLength { 384 paths = append(paths, hexToKeybytes(child.path)) 385 } else if len(child.path) == 4*common.HashLength { 386 paths = append(paths, hexToKeybytes(child.path[:2*common.HashLength])) 387 paths = append(paths, hexToKeybytes(child.path[2*common.HashLength:])) 388 } 389 if err := req.callback(paths, child.path, node, req.hash); err != nil { 390 return nil, err 391 } 392 } 393 } 394 // If the child references another node, resolve or schedule 395 if node, ok := (child.node).(hashNode); ok { 396 // Try to resolve the node from the local database 397 hash := common.BytesToHash(node) 398 if s.membatch.hasNode(hash) { 399 continue 400 } 401 // If database says duplicate, then at least the trie node is present 402 // and we hold the assumption that it's NOT legacy contract code. 403 if rawdb.HasTrieNode(s.database, hash) { 404 continue 405 } 406 // Locally unknown node, schedule for retrieval 407 requests = append(requests, &request{ 408 path: child.path, 409 hash: hash, 410 parents: []*request{req}, 411 callback: req.callback, 412 }) 413 } 414 } 415 return requests, nil 416 } 417 418 // commit finalizes a retrieval request and stores it into the membatch. If any 419 // of the referencing parent requests complete due to this commit, they are also 420 // committed themselves. 421 func (s *Sync) commit(req *request) (err error) { 422 // Write the node content to the membatch 423 if req.code { 424 s.membatch.codes[req.hash] = req.data 425 delete(s.codeReqs, req.hash) 426 s.fetches[len(req.path)]-- 427 } else { 428 s.membatch.nodes[req.hash] = req.data 429 delete(s.nodeReqs, req.hash) 430 s.fetches[len(req.path)]-- 431 } 432 // Check all parents for completion 433 for _, parent := range req.parents { 434 parent.deps-- 435 if parent.deps == 0 { 436 if err := s.commit(parent); err != nil { 437 return err 438 } 439 } 440 } 441 return nil 442 }