github.com/codysnider/go-ethereum@v1.10.18-0.20220420071915-14f4ae99222a/trie/trie.go (about)

     1  // Copyright 2014 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  // Package trie implements Merkle Patricia Tries.
    18  package trie
    19  
    20  import (
    21  	"bytes"
    22  	"errors"
    23  	"fmt"
    24  	"sync"
    25  
    26  	"github.com/ethereum/go-ethereum/common"
    27  	"github.com/ethereum/go-ethereum/core/rawdb"
    28  	"github.com/ethereum/go-ethereum/core/types"
    29  	"github.com/ethereum/go-ethereum/crypto"
    30  	"github.com/ethereum/go-ethereum/log"
    31  	"github.com/ethereum/go-ethereum/rlp"
    32  )
    33  
    34  var (
    35  	// emptyRoot is the known root hash of an empty trie.
    36  	emptyRoot = common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421")
    37  
    38  	// emptyState is the known hash of an empty state trie entry.
    39  	emptyState = crypto.Keccak256Hash(nil)
    40  )
    41  
    42  // LeafCallback is a callback type invoked when a trie operation reaches a leaf
    43  // node.
    44  //
    45  // The paths is a path tuple identifying a particular trie node either in a single
    46  // trie (account) or a layered trie (account -> storage). Each path in the tuple
    47  // is in the raw format(32 bytes).
    48  //
    49  // The hexpath is a composite hexary path identifying the trie node. All the key
    50  // bytes are converted to the hexary nibbles and composited with the parent path
    51  // if the trie node is in a layered trie.
    52  //
    53  // It's used by state sync and commit to allow handling external references
    54  // between account and storage tries. And also it's used in the state healing
    55  // for extracting the raw states(leaf nodes) with corresponding paths.
    56  type LeafCallback func(paths [][]byte, hexpath []byte, leaf []byte, parent common.Hash) error
    57  
    58  // Trie is a Merkle Patricia Trie.
    59  // The zero value is an empty trie with no database.
    60  // Use New to create a trie that sits on top of a database.
    61  //
    62  // Trie is not safe for concurrent use.
    63  type Trie struct {
    64  	db   *Database
    65  	root node
    66  
    67  	// Keep track of the number leaves which have been inserted since the last
    68  	// hashing operation. This number will not directly map to the number of
    69  	// actually unhashed nodes
    70  	unhashed int
    71  
    72  	// tracer is the state diff tracer can be used to track newly added/deleted
    73  	// trie node. It will be reset after each commit operation.
    74  	tracer *tracer
    75  }
    76  
    77  // newFlag returns the cache flag value for a newly created node.
    78  func (t *Trie) newFlag() nodeFlag {
    79  	return nodeFlag{dirty: true}
    80  }
    81  
    82  // Copy returns a copy of Trie.
    83  func (t *Trie) Copy() *Trie {
    84  	return &Trie{
    85  		db:       t.db,
    86  		root:     t.root,
    87  		unhashed: t.unhashed,
    88  		tracer:   t.tracer.copy(),
    89  	}
    90  }
    91  
    92  // New creates a trie with an existing root node from db.
    93  //
    94  // If root is the zero hash or the sha3 hash of an empty string, the
    95  // trie is initially empty and does not require a database. Otherwise,
    96  // New will panic if db is nil and returns a MissingNodeError if root does
    97  // not exist in the database. Accessing the trie loads nodes from db on demand.
    98  func New(root common.Hash, db *Database) (*Trie, error) {
    99  	if db == nil {
   100  		panic("trie.New called without a database")
   101  	}
   102  	trie := &Trie{
   103  		db: db,
   104  		//tracer: newTracer(),
   105  	}
   106  	if root != (common.Hash{}) && root != emptyRoot {
   107  		rootnode, err := trie.resolveHash(root[:], nil)
   108  		if err != nil {
   109  			return nil, err
   110  		}
   111  		trie.root = rootnode
   112  	}
   113  	return trie, nil
   114  }
   115  
   116  // newWithRootNode initializes the trie with the given root node.
   117  // It's only used by range prover.
   118  func newWithRootNode(root node) *Trie {
   119  	return &Trie{
   120  		root: root,
   121  		//tracer: newTracer(),
   122  		db: NewDatabase(rawdb.NewMemoryDatabase()),
   123  	}
   124  }
   125  
   126  // NodeIterator returns an iterator that returns nodes of the trie. Iteration starts at
   127  // the key after the given start key.
   128  func (t *Trie) NodeIterator(start []byte) NodeIterator {
   129  	return newNodeIterator(t, start)
   130  }
   131  
   132  // Get returns the value for key stored in the trie.
   133  // The value bytes must not be modified by the caller.
   134  func (t *Trie) Get(key []byte) []byte {
   135  	res, err := t.TryGet(key)
   136  	if err != nil {
   137  		log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
   138  	}
   139  	return res
   140  }
   141  
   142  // TryGet returns the value for key stored in the trie.
   143  // The value bytes must not be modified by the caller.
   144  // If a node was not found in the database, a MissingNodeError is returned.
   145  func (t *Trie) TryGet(key []byte) ([]byte, error) {
   146  	value, newroot, didResolve, err := t.tryGet(t.root, keybytesToHex(key), 0)
   147  	if err == nil && didResolve {
   148  		t.root = newroot
   149  	}
   150  	return value, err
   151  }
   152  
   153  func (t *Trie) tryGet(origNode node, key []byte, pos int) (value []byte, newnode node, didResolve bool, err error) {
   154  	switch n := (origNode).(type) {
   155  	case nil:
   156  		return nil, nil, false, nil
   157  	case valueNode:
   158  		return n, n, false, nil
   159  	case *shortNode:
   160  		if len(key)-pos < len(n.Key) || !bytes.Equal(n.Key, key[pos:pos+len(n.Key)]) {
   161  			// key not found in trie
   162  			return nil, n, false, nil
   163  		}
   164  		value, newnode, didResolve, err = t.tryGet(n.Val, key, pos+len(n.Key))
   165  		if err == nil && didResolve {
   166  			n = n.copy()
   167  			n.Val = newnode
   168  		}
   169  		return value, n, didResolve, err
   170  	case *fullNode:
   171  		value, newnode, didResolve, err = t.tryGet(n.Children[key[pos]], key, pos+1)
   172  		if err == nil && didResolve {
   173  			n = n.copy()
   174  			n.Children[key[pos]] = newnode
   175  		}
   176  		return value, n, didResolve, err
   177  	case hashNode:
   178  		child, err := t.resolveHash(n, key[:pos])
   179  		if err != nil {
   180  			return nil, n, true, err
   181  		}
   182  		value, newnode, _, err := t.tryGet(child, key, pos)
   183  		return value, newnode, true, err
   184  	default:
   185  		panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode))
   186  	}
   187  }
   188  
   189  // TryGetNode attempts to retrieve a trie node by compact-encoded path. It is not
   190  // possible to use keybyte-encoding as the path might contain odd nibbles.
   191  func (t *Trie) TryGetNode(path []byte) ([]byte, int, error) {
   192  	item, newroot, resolved, err := t.tryGetNode(t.root, compactToHex(path), 0)
   193  	if err != nil {
   194  		return nil, resolved, err
   195  	}
   196  	if resolved > 0 {
   197  		t.root = newroot
   198  	}
   199  	if item == nil {
   200  		return nil, resolved, nil
   201  	}
   202  	return item, resolved, err
   203  }
   204  
   205  func (t *Trie) tryGetNode(origNode node, path []byte, pos int) (item []byte, newnode node, resolved int, err error) {
   206  	// If non-existent path requested, abort
   207  	if origNode == nil {
   208  		return nil, nil, 0, nil
   209  	}
   210  	// If we reached the requested path, return the current node
   211  	if pos >= len(path) {
   212  		// Although we most probably have the original node expanded, encoding
   213  		// that into consensus form can be nasty (needs to cascade down) and
   214  		// time consuming. Instead, just pull the hash up from disk directly.
   215  		var hash hashNode
   216  		if node, ok := origNode.(hashNode); ok {
   217  			hash = node
   218  		} else {
   219  			hash, _ = origNode.cache()
   220  		}
   221  		if hash == nil {
   222  			return nil, origNode, 0, errors.New("non-consensus node")
   223  		}
   224  		blob, err := t.db.Node(common.BytesToHash(hash))
   225  		return blob, origNode, 1, err
   226  	}
   227  	// Path still needs to be traversed, descend into children
   228  	switch n := (origNode).(type) {
   229  	case valueNode:
   230  		// Path prematurely ended, abort
   231  		return nil, nil, 0, nil
   232  
   233  	case *shortNode:
   234  		if len(path)-pos < len(n.Key) || !bytes.Equal(n.Key, path[pos:pos+len(n.Key)]) {
   235  			// Path branches off from short node
   236  			return nil, n, 0, nil
   237  		}
   238  		item, newnode, resolved, err = t.tryGetNode(n.Val, path, pos+len(n.Key))
   239  		if err == nil && resolved > 0 {
   240  			n = n.copy()
   241  			n.Val = newnode
   242  		}
   243  		return item, n, resolved, err
   244  
   245  	case *fullNode:
   246  		item, newnode, resolved, err = t.tryGetNode(n.Children[path[pos]], path, pos+1)
   247  		if err == nil && resolved > 0 {
   248  			n = n.copy()
   249  			n.Children[path[pos]] = newnode
   250  		}
   251  		return item, n, resolved, err
   252  
   253  	case hashNode:
   254  		child, err := t.resolveHash(n, path[:pos])
   255  		if err != nil {
   256  			return nil, n, 1, err
   257  		}
   258  		item, newnode, resolved, err := t.tryGetNode(child, path, pos)
   259  		return item, newnode, resolved + 1, err
   260  
   261  	default:
   262  		panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode))
   263  	}
   264  }
   265  
   266  // Update associates key with value in the trie. Subsequent calls to
   267  // Get will return value. If value has length zero, any existing value
   268  // is deleted from the trie and calls to Get will return nil.
   269  //
   270  // The value bytes must not be modified by the caller while they are
   271  // stored in the trie.
   272  func (t *Trie) Update(key, value []byte) {
   273  	if err := t.TryUpdate(key, value); err != nil {
   274  		log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
   275  	}
   276  }
   277  
   278  func (t *Trie) TryUpdateAccount(key []byte, acc *types.StateAccount) error {
   279  	data, err := rlp.EncodeToBytes(acc)
   280  	if err != nil {
   281  		return fmt.Errorf("can't encode object at %x: %w", key[:], err)
   282  	}
   283  	return t.TryUpdate(key, data)
   284  }
   285  
   286  // TryUpdate associates key with value in the trie. Subsequent calls to
   287  // Get will return value. If value has length zero, any existing value
   288  // is deleted from the trie and calls to Get will return nil.
   289  //
   290  // The value bytes must not be modified by the caller while they are
   291  // stored in the trie.
   292  //
   293  // If a node was not found in the database, a MissingNodeError is returned.
   294  func (t *Trie) TryUpdate(key, value []byte) error {
   295  	t.unhashed++
   296  	k := keybytesToHex(key)
   297  	if len(value) != 0 {
   298  		_, n, err := t.insert(t.root, nil, k, valueNode(value))
   299  		if err != nil {
   300  			return err
   301  		}
   302  		t.root = n
   303  	} else {
   304  		_, n, err := t.delete(t.root, nil, k)
   305  		if err != nil {
   306  			return err
   307  		}
   308  		t.root = n
   309  	}
   310  	return nil
   311  }
   312  
   313  func (t *Trie) insert(n node, prefix, key []byte, value node) (bool, node, error) {
   314  	if len(key) == 0 {
   315  		if v, ok := n.(valueNode); ok {
   316  			return !bytes.Equal(v, value.(valueNode)), value, nil
   317  		}
   318  		return true, value, nil
   319  	}
   320  	switch n := n.(type) {
   321  	case *shortNode:
   322  		matchlen := prefixLen(key, n.Key)
   323  		// If the whole key matches, keep this short node as is
   324  		// and only update the value.
   325  		if matchlen == len(n.Key) {
   326  			dirty, nn, err := t.insert(n.Val, append(prefix, key[:matchlen]...), key[matchlen:], value)
   327  			if !dirty || err != nil {
   328  				return false, n, err
   329  			}
   330  			return true, &shortNode{n.Key, nn, t.newFlag()}, nil
   331  		}
   332  		// Otherwise branch out at the index where they differ.
   333  		branch := &fullNode{flags: t.newFlag()}
   334  		var err error
   335  		_, branch.Children[n.Key[matchlen]], err = t.insert(nil, append(prefix, n.Key[:matchlen+1]...), n.Key[matchlen+1:], n.Val)
   336  		if err != nil {
   337  			return false, nil, err
   338  		}
   339  		_, branch.Children[key[matchlen]], err = t.insert(nil, append(prefix, key[:matchlen+1]...), key[matchlen+1:], value)
   340  		if err != nil {
   341  			return false, nil, err
   342  		}
   343  		// Replace this shortNode with the branch if it occurs at index 0.
   344  		if matchlen == 0 {
   345  			return true, branch, nil
   346  		}
   347  		// New branch node is created as a child of the original short node.
   348  		// Track the newly inserted node in the tracer. The node identifier
   349  		// passed is the path from the root node.
   350  		t.tracer.onInsert(append(prefix, key[:matchlen]...))
   351  
   352  		// Replace it with a short node leading up to the branch.
   353  		return true, &shortNode{key[:matchlen], branch, t.newFlag()}, nil
   354  
   355  	case *fullNode:
   356  		dirty, nn, err := t.insert(n.Children[key[0]], append(prefix, key[0]), key[1:], value)
   357  		if !dirty || err != nil {
   358  			return false, n, err
   359  		}
   360  		n = n.copy()
   361  		n.flags = t.newFlag()
   362  		n.Children[key[0]] = nn
   363  		return true, n, nil
   364  
   365  	case nil:
   366  		// New short node is created and track it in the tracer. The node identifier
   367  		// passed is the path from the root node. Note the valueNode won't be tracked
   368  		// since it's always embedded in its parent.
   369  		t.tracer.onInsert(prefix)
   370  
   371  		return true, &shortNode{key, value, t.newFlag()}, nil
   372  
   373  	case hashNode:
   374  		// We've hit a part of the trie that isn't loaded yet. Load
   375  		// the node and insert into it. This leaves all child nodes on
   376  		// the path to the value in the trie.
   377  		rn, err := t.resolveHash(n, prefix)
   378  		if err != nil {
   379  			return false, nil, err
   380  		}
   381  		dirty, nn, err := t.insert(rn, prefix, key, value)
   382  		if !dirty || err != nil {
   383  			return false, rn, err
   384  		}
   385  		return true, nn, nil
   386  
   387  	default:
   388  		panic(fmt.Sprintf("%T: invalid node: %v", n, n))
   389  	}
   390  }
   391  
   392  // Delete removes any existing value for key from the trie.
   393  func (t *Trie) Delete(key []byte) {
   394  	if err := t.TryDelete(key); err != nil {
   395  		log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
   396  	}
   397  }
   398  
   399  // TryDelete removes any existing value for key from the trie.
   400  // If a node was not found in the database, a MissingNodeError is returned.
   401  func (t *Trie) TryDelete(key []byte) error {
   402  	t.unhashed++
   403  	k := keybytesToHex(key)
   404  	_, n, err := t.delete(t.root, nil, k)
   405  	if err != nil {
   406  		return err
   407  	}
   408  	t.root = n
   409  	return nil
   410  }
   411  
   412  // delete returns the new root of the trie with key deleted.
   413  // It reduces the trie to minimal form by simplifying
   414  // nodes on the way up after deleting recursively.
   415  func (t *Trie) delete(n node, prefix, key []byte) (bool, node, error) {
   416  	switch n := n.(type) {
   417  	case *shortNode:
   418  		matchlen := prefixLen(key, n.Key)
   419  		if matchlen < len(n.Key) {
   420  			return false, n, nil // don't replace n on mismatch
   421  		}
   422  		if matchlen == len(key) {
   423  			// The matched short node is deleted entirely and track
   424  			// it in the deletion set. The same the valueNode doesn't
   425  			// need to be tracked at all since it's always embedded.
   426  			t.tracer.onDelete(prefix)
   427  
   428  			return true, nil, nil // remove n entirely for whole matches
   429  		}
   430  		// The key is longer than n.Key. Remove the remaining suffix
   431  		// from the subtrie. Child can never be nil here since the
   432  		// subtrie must contain at least two other values with keys
   433  		// longer than n.Key.
   434  		dirty, child, err := t.delete(n.Val, append(prefix, key[:len(n.Key)]...), key[len(n.Key):])
   435  		if !dirty || err != nil {
   436  			return false, n, err
   437  		}
   438  		switch child := child.(type) {
   439  		case *shortNode:
   440  			// The child shortNode is merged into its parent, track
   441  			// is deleted as well.
   442  			t.tracer.onDelete(append(prefix, n.Key...))
   443  
   444  			// Deleting from the subtrie reduced it to another
   445  			// short node. Merge the nodes to avoid creating a
   446  			// shortNode{..., shortNode{...}}. Use concat (which
   447  			// always creates a new slice) instead of append to
   448  			// avoid modifying n.Key since it might be shared with
   449  			// other nodes.
   450  			return true, &shortNode{concat(n.Key, child.Key...), child.Val, t.newFlag()}, nil
   451  		default:
   452  			return true, &shortNode{n.Key, child, t.newFlag()}, nil
   453  		}
   454  
   455  	case *fullNode:
   456  		dirty, nn, err := t.delete(n.Children[key[0]], append(prefix, key[0]), key[1:])
   457  		if !dirty || err != nil {
   458  			return false, n, err
   459  		}
   460  		n = n.copy()
   461  		n.flags = t.newFlag()
   462  		n.Children[key[0]] = nn
   463  
   464  		// Because n is a full node, it must've contained at least two children
   465  		// before the delete operation. If the new child value is non-nil, n still
   466  		// has at least two children after the deletion, and cannot be reduced to
   467  		// a short node.
   468  		if nn != nil {
   469  			return true, n, nil
   470  		}
   471  		// Reduction:
   472  		// Check how many non-nil entries are left after deleting and
   473  		// reduce the full node to a short node if only one entry is
   474  		// left. Since n must've contained at least two children
   475  		// before deletion (otherwise it would not be a full node) n
   476  		// can never be reduced to nil.
   477  		//
   478  		// When the loop is done, pos contains the index of the single
   479  		// value that is left in n or -2 if n contains at least two
   480  		// values.
   481  		pos := -1
   482  		for i, cld := range &n.Children {
   483  			if cld != nil {
   484  				if pos == -1 {
   485  					pos = i
   486  				} else {
   487  					pos = -2
   488  					break
   489  				}
   490  			}
   491  		}
   492  		if pos >= 0 {
   493  			if pos != 16 {
   494  				// If the remaining entry is a short node, it replaces
   495  				// n and its key gets the missing nibble tacked to the
   496  				// front. This avoids creating an invalid
   497  				// shortNode{..., shortNode{...}}.  Since the entry
   498  				// might not be loaded yet, resolve it just for this
   499  				// check.
   500  				cnode, err := t.resolve(n.Children[pos], prefix)
   501  				if err != nil {
   502  					return false, nil, err
   503  				}
   504  				if cnode, ok := cnode.(*shortNode); ok {
   505  					// Replace the entire full node with the short node.
   506  					// Mark the original short node as deleted since the
   507  					// value is embedded into the parent now.
   508  					t.tracer.onDelete(append(prefix, byte(pos)))
   509  
   510  					k := append([]byte{byte(pos)}, cnode.Key...)
   511  					return true, &shortNode{k, cnode.Val, t.newFlag()}, nil
   512  				}
   513  			}
   514  			// Otherwise, n is replaced by a one-nibble short node
   515  			// containing the child.
   516  			return true, &shortNode{[]byte{byte(pos)}, n.Children[pos], t.newFlag()}, nil
   517  		}
   518  		// n still contains at least two values and cannot be reduced.
   519  		return true, n, nil
   520  
   521  	case valueNode:
   522  		return true, nil, nil
   523  
   524  	case nil:
   525  		return false, nil, nil
   526  
   527  	case hashNode:
   528  		// We've hit a part of the trie that isn't loaded yet. Load
   529  		// the node and delete from it. This leaves all child nodes on
   530  		// the path to the value in the trie.
   531  		rn, err := t.resolveHash(n, prefix)
   532  		if err != nil {
   533  			return false, nil, err
   534  		}
   535  		dirty, nn, err := t.delete(rn, prefix, key)
   536  		if !dirty || err != nil {
   537  			return false, rn, err
   538  		}
   539  		return true, nn, nil
   540  
   541  	default:
   542  		panic(fmt.Sprintf("%T: invalid node: %v (%v)", n, n, key))
   543  	}
   544  }
   545  
   546  func concat(s1 []byte, s2 ...byte) []byte {
   547  	r := make([]byte, len(s1)+len(s2))
   548  	copy(r, s1)
   549  	copy(r[len(s1):], s2)
   550  	return r
   551  }
   552  
   553  func (t *Trie) resolve(n node, prefix []byte) (node, error) {
   554  	if n, ok := n.(hashNode); ok {
   555  		return t.resolveHash(n, prefix)
   556  	}
   557  	return n, nil
   558  }
   559  
   560  func (t *Trie) resolveHash(n hashNode, prefix []byte) (node, error) {
   561  	hash := common.BytesToHash(n)
   562  	if node := t.db.node(hash); node != nil {
   563  		return node, nil
   564  	}
   565  	return nil, &MissingNodeError{NodeHash: hash, Path: prefix}
   566  }
   567  
   568  func (t *Trie) resolveBlob(n hashNode, prefix []byte) ([]byte, error) {
   569  	hash := common.BytesToHash(n)
   570  	blob, _ := t.db.Node(hash)
   571  	if len(blob) != 0 {
   572  		return blob, nil
   573  	}
   574  	return nil, &MissingNodeError{NodeHash: hash, Path: prefix}
   575  }
   576  
   577  // Hash returns the root hash of the trie. It does not write to the
   578  // database and can be used even if the trie doesn't have one.
   579  func (t *Trie) Hash() common.Hash {
   580  	hash, cached, _ := t.hashRoot()
   581  	t.root = cached
   582  	return common.BytesToHash(hash.(hashNode))
   583  }
   584  
   585  // Commit writes all nodes to the trie's memory database, tracking the internal
   586  // and external (for account tries) references.
   587  func (t *Trie) Commit(onleaf LeafCallback) (common.Hash, int, error) {
   588  	if t.db == nil {
   589  		panic("commit called on trie with nil database")
   590  	}
   591  	defer t.tracer.reset()
   592  
   593  	if t.root == nil {
   594  		return emptyRoot, 0, nil
   595  	}
   596  	// Derive the hash for all dirty nodes first. We hold the assumption
   597  	// in the following procedure that all nodes are hashed.
   598  	rootHash := t.Hash()
   599  	h := newCommitter()
   600  	defer returnCommitterToPool(h)
   601  
   602  	// Do a quick check if we really need to commit, before we spin
   603  	// up goroutines. This can happen e.g. if we load a trie for reading storage
   604  	// values, but don't write to it.
   605  	if _, dirty := t.root.cache(); !dirty {
   606  		return rootHash, 0, nil
   607  	}
   608  	var wg sync.WaitGroup
   609  	if onleaf != nil {
   610  		h.onleaf = onleaf
   611  		h.leafCh = make(chan *leaf, leafChanSize)
   612  		wg.Add(1)
   613  		go func() {
   614  			defer wg.Done()
   615  			h.commitLoop(t.db)
   616  		}()
   617  	}
   618  	newRoot, committed, err := h.Commit(t.root, t.db)
   619  	if onleaf != nil {
   620  		// The leafch is created in newCommitter if there was an onleaf callback
   621  		// provided. The commitLoop only _reads_ from it, and the commit
   622  		// operation was the sole writer. Therefore, it's safe to close this
   623  		// channel here.
   624  		close(h.leafCh)
   625  		wg.Wait()
   626  	}
   627  	if err != nil {
   628  		return common.Hash{}, 0, err
   629  	}
   630  	t.root = newRoot
   631  	return rootHash, committed, nil
   632  }
   633  
   634  // hashRoot calculates the root hash of the given trie
   635  func (t *Trie) hashRoot() (node, node, error) {
   636  	if t.root == nil {
   637  		return hashNode(emptyRoot.Bytes()), nil, nil
   638  	}
   639  	// If the number of changes is below 100, we let one thread handle it
   640  	h := newHasher(t.unhashed >= 100)
   641  	defer returnHasherToPool(h)
   642  	hashed, cached := h.hash(t.root, true)
   643  	t.unhashed = 0
   644  	return hashed, cached, nil
   645  }
   646  
   647  // Reset drops the referenced root node and cleans all internal state.
   648  func (t *Trie) Reset() {
   649  	t.root = nil
   650  	t.unhashed = 0
   651  	t.tracer.reset()
   652  }