github.com/comwrg/go/src@v0.0.0-20220319063731-c238d0440370/crypto/elliptic/p224.go (about) 1 // Copyright 2012 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package elliptic 6 7 // This is a constant-time, 32-bit implementation of P224. See FIPS 186-3, 8 // section D.2.2. 9 // 10 // See https://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background. 11 12 import ( 13 "math/big" 14 ) 15 16 var p224 p224Curve 17 18 type p224Curve struct { 19 *CurveParams 20 gx, gy, b p224FieldElement 21 } 22 23 func initP224() { 24 // See FIPS 186-3, section D.2.2 25 p224.CurveParams = &CurveParams{Name: "P-224"} 26 p224.P, _ = new(big.Int).SetString("26959946667150639794667015087019630673557916260026308143510066298881", 10) 27 p224.N, _ = new(big.Int).SetString("26959946667150639794667015087019625940457807714424391721682722368061", 10) 28 p224.B, _ = new(big.Int).SetString("b4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4", 16) 29 p224.Gx, _ = new(big.Int).SetString("b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21", 16) 30 p224.Gy, _ = new(big.Int).SetString("bd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34", 16) 31 p224.BitSize = 224 32 33 p224FromBig(&p224.gx, p224.Gx) 34 p224FromBig(&p224.gy, p224.Gy) 35 p224FromBig(&p224.b, p224.B) 36 } 37 38 // P224 returns a Curve which implements P-224 (see FIPS 186-3, section D.2.2). 39 // 40 // The cryptographic operations are implemented using constant-time algorithms. 41 func P224() Curve { 42 initonce.Do(initAll) 43 return p224 44 } 45 46 func (curve p224Curve) Params() *CurveParams { 47 return curve.CurveParams 48 } 49 50 func (curve p224Curve) IsOnCurve(bigX, bigY *big.Int) bool { 51 if bigX.Sign() < 0 || bigX.Cmp(curve.P) >= 0 || 52 bigY.Sign() < 0 || bigY.Cmp(curve.P) >= 0 { 53 return false 54 } 55 56 var x, y p224FieldElement 57 p224FromBig(&x, bigX) 58 p224FromBig(&y, bigY) 59 60 // y² = x³ - 3x + b 61 var tmp p224LargeFieldElement 62 var x3 p224FieldElement 63 p224Square(&x3, &x, &tmp) 64 p224Mul(&x3, &x3, &x, &tmp) 65 66 for i := 0; i < 8; i++ { 67 x[i] *= 3 68 } 69 p224Sub(&x3, &x3, &x) 70 p224Reduce(&x3) 71 p224Add(&x3, &x3, &curve.b) 72 p224Contract(&x3, &x3) 73 74 p224Square(&y, &y, &tmp) 75 p224Contract(&y, &y) 76 77 for i := 0; i < 8; i++ { 78 if y[i] != x3[i] { 79 return false 80 } 81 } 82 return true 83 } 84 85 func (p224Curve) Add(bigX1, bigY1, bigX2, bigY2 *big.Int) (x, y *big.Int) { 86 var x1, y1, z1, x2, y2, z2, x3, y3, z3 p224FieldElement 87 88 p224FromBig(&x1, bigX1) 89 p224FromBig(&y1, bigY1) 90 if bigX1.Sign() != 0 || bigY1.Sign() != 0 { 91 z1[0] = 1 92 } 93 p224FromBig(&x2, bigX2) 94 p224FromBig(&y2, bigY2) 95 if bigX2.Sign() != 0 || bigY2.Sign() != 0 { 96 z2[0] = 1 97 } 98 99 p224AddJacobian(&x3, &y3, &z3, &x1, &y1, &z1, &x2, &y2, &z2) 100 return p224ToAffine(&x3, &y3, &z3) 101 } 102 103 func (p224Curve) Double(bigX1, bigY1 *big.Int) (x, y *big.Int) { 104 var x1, y1, z1, x2, y2, z2 p224FieldElement 105 106 p224FromBig(&x1, bigX1) 107 p224FromBig(&y1, bigY1) 108 z1[0] = 1 109 110 p224DoubleJacobian(&x2, &y2, &z2, &x1, &y1, &z1) 111 return p224ToAffine(&x2, &y2, &z2) 112 } 113 114 func (p224Curve) ScalarMult(bigX1, bigY1 *big.Int, scalar []byte) (x, y *big.Int) { 115 var x1, y1, z1, x2, y2, z2 p224FieldElement 116 117 p224FromBig(&x1, bigX1) 118 p224FromBig(&y1, bigY1) 119 z1[0] = 1 120 121 p224ScalarMult(&x2, &y2, &z2, &x1, &y1, &z1, scalar) 122 return p224ToAffine(&x2, &y2, &z2) 123 } 124 125 func (curve p224Curve) ScalarBaseMult(scalar []byte) (x, y *big.Int) { 126 var z1, x2, y2, z2 p224FieldElement 127 128 z1[0] = 1 129 p224ScalarMult(&x2, &y2, &z2, &curve.gx, &curve.gy, &z1, scalar) 130 return p224ToAffine(&x2, &y2, &z2) 131 } 132 133 // Field element functions. 134 // 135 // The field that we're dealing with is ℤ/pℤ where p = 2**224 - 2**96 + 1. 136 // 137 // Field elements are represented by a FieldElement, which is a typedef to an 138 // array of 8 uint32's. The value of a FieldElement, a, is: 139 // a[0] + 2**28·a[1] + 2**56·a[1] + ... + 2**196·a[7] 140 // 141 // Using 28-bit limbs means that there's only 4 bits of headroom, which is less 142 // than we would really like. But it has the useful feature that we hit 2**224 143 // exactly, making the reflections during a reduce much nicer. 144 type p224FieldElement [8]uint32 145 146 // p224P is the order of the field, represented as a p224FieldElement. 147 var p224P = [8]uint32{1, 0, 0, 0xffff000, 0xfffffff, 0xfffffff, 0xfffffff, 0xfffffff} 148 149 // p224IsZero returns 1 if a == 0 mod p and 0 otherwise. 150 // 151 // a[i] < 2**29 152 func p224IsZero(a *p224FieldElement) uint32 { 153 // Since a p224FieldElement contains 224 bits there are two possible 154 // representations of 0: 0 and p. 155 var minimal p224FieldElement 156 p224Contract(&minimal, a) 157 158 var isZero, isP uint32 159 for i, v := range minimal { 160 isZero |= v 161 isP |= v - p224P[i] 162 } 163 164 // If either isZero or isP is 0, then we should return 1. 165 isZero |= isZero >> 16 166 isZero |= isZero >> 8 167 isZero |= isZero >> 4 168 isZero |= isZero >> 2 169 isZero |= isZero >> 1 170 171 isP |= isP >> 16 172 isP |= isP >> 8 173 isP |= isP >> 4 174 isP |= isP >> 2 175 isP |= isP >> 1 176 177 // For isZero and isP, the LSB is 0 iff all the bits are zero. 178 result := isZero & isP 179 result = (^result) & 1 180 181 return result 182 } 183 184 // p224Add computes *out = a+b 185 // 186 // a[i] + b[i] < 2**32 187 func p224Add(out, a, b *p224FieldElement) { 188 for i := 0; i < 8; i++ { 189 out[i] = a[i] + b[i] 190 } 191 } 192 193 const two31p3 = 1<<31 + 1<<3 194 const two31m3 = 1<<31 - 1<<3 195 const two31m15m3 = 1<<31 - 1<<15 - 1<<3 196 197 // p224ZeroModP31 is 0 mod p where bit 31 is set in all limbs so that we can 198 // subtract smaller amounts without underflow. See the section "Subtraction" in 199 // [1] for reasoning. 200 var p224ZeroModP31 = []uint32{two31p3, two31m3, two31m3, two31m15m3, two31m3, two31m3, two31m3, two31m3} 201 202 // p224Sub computes *out = a-b 203 // 204 // a[i], b[i] < 2**30 205 // out[i] < 2**32 206 func p224Sub(out, a, b *p224FieldElement) { 207 for i := 0; i < 8; i++ { 208 out[i] = a[i] + p224ZeroModP31[i] - b[i] 209 } 210 } 211 212 // LargeFieldElement also represents an element of the field. The limbs are 213 // still spaced 28-bits apart and in little-endian order. So the limbs are at 214 // 0, 28, 56, ..., 392 bits, each 64-bits wide. 215 type p224LargeFieldElement [15]uint64 216 217 const two63p35 = 1<<63 + 1<<35 218 const two63m35 = 1<<63 - 1<<35 219 const two63m35m19 = 1<<63 - 1<<35 - 1<<19 220 221 // p224ZeroModP63 is 0 mod p where bit 63 is set in all limbs. See the section 222 // "Subtraction" in [1] for why. 223 var p224ZeroModP63 = [8]uint64{two63p35, two63m35, two63m35, two63m35, two63m35m19, two63m35, two63m35, two63m35} 224 225 const bottom12Bits = 0xfff 226 const bottom28Bits = 0xfffffff 227 228 // p224Mul computes *out = a*b 229 // 230 // a[i] < 2**29, b[i] < 2**30 (or vice versa) 231 // out[i] < 2**29 232 func p224Mul(out, a, b *p224FieldElement, tmp *p224LargeFieldElement) { 233 for i := 0; i < 15; i++ { 234 tmp[i] = 0 235 } 236 237 for i := 0; i < 8; i++ { 238 for j := 0; j < 8; j++ { 239 tmp[i+j] += uint64(a[i]) * uint64(b[j]) 240 } 241 } 242 243 p224ReduceLarge(out, tmp) 244 } 245 246 // Square computes *out = a*a 247 // 248 // a[i] < 2**29 249 // out[i] < 2**29 250 func p224Square(out, a *p224FieldElement, tmp *p224LargeFieldElement) { 251 for i := 0; i < 15; i++ { 252 tmp[i] = 0 253 } 254 255 for i := 0; i < 8; i++ { 256 for j := 0; j <= i; j++ { 257 r := uint64(a[i]) * uint64(a[j]) 258 if i == j { 259 tmp[i+j] += r 260 } else { 261 tmp[i+j] += r << 1 262 } 263 } 264 } 265 266 p224ReduceLarge(out, tmp) 267 } 268 269 // ReduceLarge converts a p224LargeFieldElement to a p224FieldElement. 270 // 271 // in[i] < 2**62 272 func p224ReduceLarge(out *p224FieldElement, in *p224LargeFieldElement) { 273 for i := 0; i < 8; i++ { 274 in[i] += p224ZeroModP63[i] 275 } 276 277 // Eliminate the coefficients at 2**224 and greater. 278 for i := 14; i >= 8; i-- { 279 in[i-8] -= in[i] 280 in[i-5] += (in[i] & 0xffff) << 12 281 in[i-4] += in[i] >> 16 282 } 283 in[8] = 0 284 // in[0..8] < 2**64 285 286 // As the values become small enough, we start to store them in |out| 287 // and use 32-bit operations. 288 for i := 1; i < 8; i++ { 289 in[i+1] += in[i] >> 28 290 out[i] = uint32(in[i] & bottom28Bits) 291 } 292 in[0] -= in[8] 293 out[3] += uint32(in[8]&0xffff) << 12 294 out[4] += uint32(in[8] >> 16) 295 // in[0] < 2**64 296 // out[3] < 2**29 297 // out[4] < 2**29 298 // out[1,2,5..7] < 2**28 299 300 out[0] = uint32(in[0] & bottom28Bits) 301 out[1] += uint32((in[0] >> 28) & bottom28Bits) 302 out[2] += uint32(in[0] >> 56) 303 // out[0] < 2**28 304 // out[1..4] < 2**29 305 // out[5..7] < 2**28 306 } 307 308 // Reduce reduces the coefficients of a to smaller bounds. 309 // 310 // On entry: a[i] < 2**31 + 2**30 311 // On exit: a[i] < 2**29 312 func p224Reduce(a *p224FieldElement) { 313 for i := 0; i < 7; i++ { 314 a[i+1] += a[i] >> 28 315 a[i] &= bottom28Bits 316 } 317 top := a[7] >> 28 318 a[7] &= bottom28Bits 319 320 // top < 2**4 321 mask := top 322 mask |= mask >> 2 323 mask |= mask >> 1 324 mask <<= 31 325 mask = uint32(int32(mask) >> 31) 326 // Mask is all ones if top != 0, all zero otherwise 327 328 a[0] -= top 329 a[3] += top << 12 330 331 // We may have just made a[0] negative but, if we did, then we must 332 // have added something to a[3], this it's > 2**12. Therefore we can 333 // carry down to a[0]. 334 a[3] -= 1 & mask 335 a[2] += mask & (1<<28 - 1) 336 a[1] += mask & (1<<28 - 1) 337 a[0] += mask & (1 << 28) 338 } 339 340 // p224Invert calculates *out = in**-1 by computing in**(2**224 - 2**96 - 1), 341 // i.e. Fermat's little theorem. 342 func p224Invert(out, in *p224FieldElement) { 343 var f1, f2, f3, f4 p224FieldElement 344 var c p224LargeFieldElement 345 346 p224Square(&f1, in, &c) // 2 347 p224Mul(&f1, &f1, in, &c) // 2**2 - 1 348 p224Square(&f1, &f1, &c) // 2**3 - 2 349 p224Mul(&f1, &f1, in, &c) // 2**3 - 1 350 p224Square(&f2, &f1, &c) // 2**4 - 2 351 p224Square(&f2, &f2, &c) // 2**5 - 4 352 p224Square(&f2, &f2, &c) // 2**6 - 8 353 p224Mul(&f1, &f1, &f2, &c) // 2**6 - 1 354 p224Square(&f2, &f1, &c) // 2**7 - 2 355 for i := 0; i < 5; i++ { // 2**12 - 2**6 356 p224Square(&f2, &f2, &c) 357 } 358 p224Mul(&f2, &f2, &f1, &c) // 2**12 - 1 359 p224Square(&f3, &f2, &c) // 2**13 - 2 360 for i := 0; i < 11; i++ { // 2**24 - 2**12 361 p224Square(&f3, &f3, &c) 362 } 363 p224Mul(&f2, &f3, &f2, &c) // 2**24 - 1 364 p224Square(&f3, &f2, &c) // 2**25 - 2 365 for i := 0; i < 23; i++ { // 2**48 - 2**24 366 p224Square(&f3, &f3, &c) 367 } 368 p224Mul(&f3, &f3, &f2, &c) // 2**48 - 1 369 p224Square(&f4, &f3, &c) // 2**49 - 2 370 for i := 0; i < 47; i++ { // 2**96 - 2**48 371 p224Square(&f4, &f4, &c) 372 } 373 p224Mul(&f3, &f3, &f4, &c) // 2**96 - 1 374 p224Square(&f4, &f3, &c) // 2**97 - 2 375 for i := 0; i < 23; i++ { // 2**120 - 2**24 376 p224Square(&f4, &f4, &c) 377 } 378 p224Mul(&f2, &f4, &f2, &c) // 2**120 - 1 379 for i := 0; i < 6; i++ { // 2**126 - 2**6 380 p224Square(&f2, &f2, &c) 381 } 382 p224Mul(&f1, &f1, &f2, &c) // 2**126 - 1 383 p224Square(&f1, &f1, &c) // 2**127 - 2 384 p224Mul(&f1, &f1, in, &c) // 2**127 - 1 385 for i := 0; i < 97; i++ { // 2**224 - 2**97 386 p224Square(&f1, &f1, &c) 387 } 388 p224Mul(out, &f1, &f3, &c) // 2**224 - 2**96 - 1 389 } 390 391 // p224Contract converts a FieldElement to its unique, minimal form. 392 // 393 // On entry, in[i] < 2**29 394 // On exit, out[i] < 2**28 and out < p 395 func p224Contract(out, in *p224FieldElement) { 396 copy(out[:], in[:]) 397 398 // First, carry the bits above 28 to the higher limb. 399 for i := 0; i < 7; i++ { 400 out[i+1] += out[i] >> 28 401 out[i] &= bottom28Bits 402 } 403 top := out[7] >> 28 404 out[7] &= bottom28Bits 405 406 // Use the reduction identity to carry the overflow. 407 // 408 // a + top * 2²²⁴ = a + top * 2⁹⁶ - top 409 out[0] -= top 410 out[3] += top << 12 411 412 // We may just have made out[0] negative. So we carry down. If we made 413 // out[0] negative then we know that out[3] is sufficiently positive 414 // because we just added to it. 415 for i := 0; i < 3; i++ { 416 mask := uint32(int32(out[i]) >> 31) 417 out[i] += (1 << 28) & mask 418 out[i+1] -= 1 & mask 419 } 420 421 // We might have pushed out[3] over 2**28 so we perform another, partial, 422 // carry chain. 423 for i := 3; i < 7; i++ { 424 out[i+1] += out[i] >> 28 425 out[i] &= bottom28Bits 426 } 427 top = out[7] >> 28 428 out[7] &= bottom28Bits 429 430 // Eliminate top while maintaining the same value mod p. 431 out[0] -= top 432 out[3] += top << 12 433 434 // There are two cases to consider for out[3]: 435 // 1) The first time that we eliminated top, we didn't push out[3] over 436 // 2**28. In this case, the partial carry chain didn't change any values 437 // and top is now zero. 438 // 2) We did push out[3] over 2**28 the first time that we eliminated top. 439 // The first value of top was in [0..2], therefore, after overflowing 440 // and being reduced by the second carry chain, out[3] <= 2<<12 - 1. 441 // In both cases, out[3] cannot have overflowed when we eliminated top for 442 // the second time. 443 444 // Again, we may just have made out[0] negative, so do the same carry down. 445 // As before, if we made out[0] negative then we know that out[3] is 446 // sufficiently positive. 447 for i := 0; i < 3; i++ { 448 mask := uint32(int32(out[i]) >> 31) 449 out[i] += (1 << 28) & mask 450 out[i+1] -= 1 & mask 451 } 452 453 // Now we see if the value is >= p and, if so, subtract p. 454 455 // First we build a mask from the top four limbs, which must all be 456 // equal to bottom28Bits if the whole value is >= p. If top4AllOnes 457 // ends up with any zero bits in the bottom 28 bits, then this wasn't 458 // true. 459 top4AllOnes := uint32(0xffffffff) 460 for i := 4; i < 8; i++ { 461 top4AllOnes &= out[i] 462 } 463 top4AllOnes |= 0xf0000000 464 // Now we replicate any zero bits to all the bits in top4AllOnes. 465 top4AllOnes &= top4AllOnes >> 16 466 top4AllOnes &= top4AllOnes >> 8 467 top4AllOnes &= top4AllOnes >> 4 468 top4AllOnes &= top4AllOnes >> 2 469 top4AllOnes &= top4AllOnes >> 1 470 top4AllOnes = uint32(int32(top4AllOnes<<31) >> 31) 471 472 // Now we test whether the bottom three limbs are non-zero. 473 bottom3NonZero := out[0] | out[1] | out[2] 474 bottom3NonZero |= bottom3NonZero >> 16 475 bottom3NonZero |= bottom3NonZero >> 8 476 bottom3NonZero |= bottom3NonZero >> 4 477 bottom3NonZero |= bottom3NonZero >> 2 478 bottom3NonZero |= bottom3NonZero >> 1 479 bottom3NonZero = uint32(int32(bottom3NonZero<<31) >> 31) 480 481 // Assuming top4AllOnes != 0, everything depends on the value of out[3]. 482 // If it's > 0xffff000 then the whole value is > p 483 // If it's = 0xffff000 and bottom3NonZero != 0, then the whole value is >= p 484 // If it's < 0xffff000, then the whole value is < p 485 n := 0xffff000 - out[3] 486 out3Equal := n 487 out3Equal |= out3Equal >> 16 488 out3Equal |= out3Equal >> 8 489 out3Equal |= out3Equal >> 4 490 out3Equal |= out3Equal >> 2 491 out3Equal |= out3Equal >> 1 492 out3Equal = ^uint32(int32(out3Equal<<31) >> 31) 493 494 // If out[3] > 0xffff000 then n's MSB will be one. 495 out3GT := uint32(int32(n) >> 31) 496 497 mask := top4AllOnes & ((out3Equal & bottom3NonZero) | out3GT) 498 out[0] -= 1 & mask 499 out[3] -= 0xffff000 & mask 500 out[4] -= 0xfffffff & mask 501 out[5] -= 0xfffffff & mask 502 out[6] -= 0xfffffff & mask 503 out[7] -= 0xfffffff & mask 504 505 // Do one final carry down, in case we made out[0] negative. One of 506 // out[0..3] needs to be positive and able to absorb the -1 or the value 507 // would have been < p, and the subtraction wouldn't have happened. 508 for i := 0; i < 3; i++ { 509 mask := uint32(int32(out[i]) >> 31) 510 out[i] += (1 << 28) & mask 511 out[i+1] -= 1 & mask 512 } 513 } 514 515 // Group element functions. 516 // 517 // These functions deal with group elements. The group is an elliptic curve 518 // group with a = -3 defined in FIPS 186-3, section D.2.2. 519 520 // p224AddJacobian computes *out = a+b where a != b. 521 func p224AddJacobian(x3, y3, z3, x1, y1, z1, x2, y2, z2 *p224FieldElement) { 522 // See https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-p224Add-2007-bl 523 var z1z1, z2z2, u1, u2, s1, s2, h, i, j, r, v p224FieldElement 524 var c p224LargeFieldElement 525 526 z1IsZero := p224IsZero(z1) 527 z2IsZero := p224IsZero(z2) 528 529 // Z1Z1 = Z1² 530 p224Square(&z1z1, z1, &c) 531 // Z2Z2 = Z2² 532 p224Square(&z2z2, z2, &c) 533 // U1 = X1*Z2Z2 534 p224Mul(&u1, x1, &z2z2, &c) 535 // U2 = X2*Z1Z1 536 p224Mul(&u2, x2, &z1z1, &c) 537 // S1 = Y1*Z2*Z2Z2 538 p224Mul(&s1, z2, &z2z2, &c) 539 p224Mul(&s1, y1, &s1, &c) 540 // S2 = Y2*Z1*Z1Z1 541 p224Mul(&s2, z1, &z1z1, &c) 542 p224Mul(&s2, y2, &s2, &c) 543 // H = U2-U1 544 p224Sub(&h, &u2, &u1) 545 p224Reduce(&h) 546 xEqual := p224IsZero(&h) 547 // I = (2*H)² 548 for j := 0; j < 8; j++ { 549 i[j] = h[j] << 1 550 } 551 p224Reduce(&i) 552 p224Square(&i, &i, &c) 553 // J = H*I 554 p224Mul(&j, &h, &i, &c) 555 // r = 2*(S2-S1) 556 p224Sub(&r, &s2, &s1) 557 p224Reduce(&r) 558 yEqual := p224IsZero(&r) 559 if xEqual == 1 && yEqual == 1 && z1IsZero == 0 && z2IsZero == 0 { 560 p224DoubleJacobian(x3, y3, z3, x1, y1, z1) 561 return 562 } 563 for i := 0; i < 8; i++ { 564 r[i] <<= 1 565 } 566 p224Reduce(&r) 567 // V = U1*I 568 p224Mul(&v, &u1, &i, &c) 569 // Z3 = ((Z1+Z2)²-Z1Z1-Z2Z2)*H 570 p224Add(&z1z1, &z1z1, &z2z2) 571 p224Add(&z2z2, z1, z2) 572 p224Reduce(&z2z2) 573 p224Square(&z2z2, &z2z2, &c) 574 p224Sub(z3, &z2z2, &z1z1) 575 p224Reduce(z3) 576 p224Mul(z3, z3, &h, &c) 577 // X3 = r²-J-2*V 578 for i := 0; i < 8; i++ { 579 z1z1[i] = v[i] << 1 580 } 581 p224Add(&z1z1, &j, &z1z1) 582 p224Reduce(&z1z1) 583 p224Square(x3, &r, &c) 584 p224Sub(x3, x3, &z1z1) 585 p224Reduce(x3) 586 // Y3 = r*(V-X3)-2*S1*J 587 for i := 0; i < 8; i++ { 588 s1[i] <<= 1 589 } 590 p224Mul(&s1, &s1, &j, &c) 591 p224Sub(&z1z1, &v, x3) 592 p224Reduce(&z1z1) 593 p224Mul(&z1z1, &z1z1, &r, &c) 594 p224Sub(y3, &z1z1, &s1) 595 p224Reduce(y3) 596 597 p224CopyConditional(x3, x2, z1IsZero) 598 p224CopyConditional(x3, x1, z2IsZero) 599 p224CopyConditional(y3, y2, z1IsZero) 600 p224CopyConditional(y3, y1, z2IsZero) 601 p224CopyConditional(z3, z2, z1IsZero) 602 p224CopyConditional(z3, z1, z2IsZero) 603 } 604 605 // p224DoubleJacobian computes *out = a+a. 606 func p224DoubleJacobian(x3, y3, z3, x1, y1, z1 *p224FieldElement) { 607 var delta, gamma, beta, alpha, t p224FieldElement 608 var c p224LargeFieldElement 609 610 p224Square(&delta, z1, &c) 611 p224Square(&gamma, y1, &c) 612 p224Mul(&beta, x1, &gamma, &c) 613 614 // alpha = 3*(X1-delta)*(X1+delta) 615 p224Add(&t, x1, &delta) 616 for i := 0; i < 8; i++ { 617 t[i] += t[i] << 1 618 } 619 p224Reduce(&t) 620 p224Sub(&alpha, x1, &delta) 621 p224Reduce(&alpha) 622 p224Mul(&alpha, &alpha, &t, &c) 623 624 // Z3 = (Y1+Z1)²-gamma-delta 625 p224Add(z3, y1, z1) 626 p224Reduce(z3) 627 p224Square(z3, z3, &c) 628 p224Sub(z3, z3, &gamma) 629 p224Reduce(z3) 630 p224Sub(z3, z3, &delta) 631 p224Reduce(z3) 632 633 // X3 = alpha²-8*beta 634 for i := 0; i < 8; i++ { 635 delta[i] = beta[i] << 3 636 } 637 p224Reduce(&delta) 638 p224Square(x3, &alpha, &c) 639 p224Sub(x3, x3, &delta) 640 p224Reduce(x3) 641 642 // Y3 = alpha*(4*beta-X3)-8*gamma² 643 for i := 0; i < 8; i++ { 644 beta[i] <<= 2 645 } 646 p224Sub(&beta, &beta, x3) 647 p224Reduce(&beta) 648 p224Square(&gamma, &gamma, &c) 649 for i := 0; i < 8; i++ { 650 gamma[i] <<= 3 651 } 652 p224Reduce(&gamma) 653 p224Mul(y3, &alpha, &beta, &c) 654 p224Sub(y3, y3, &gamma) 655 p224Reduce(y3) 656 } 657 658 // p224CopyConditional sets *out = *in iff the least-significant-bit of control 659 // is true, and it runs in constant time. 660 func p224CopyConditional(out, in *p224FieldElement, control uint32) { 661 control <<= 31 662 control = uint32(int32(control) >> 31) 663 664 for i := 0; i < 8; i++ { 665 out[i] ^= (out[i] ^ in[i]) & control 666 } 667 } 668 669 func p224ScalarMult(outX, outY, outZ, inX, inY, inZ *p224FieldElement, scalar []byte) { 670 var xx, yy, zz p224FieldElement 671 for i := 0; i < 8; i++ { 672 outX[i] = 0 673 outY[i] = 0 674 outZ[i] = 0 675 } 676 677 for _, byte := range scalar { 678 for bitNum := uint(0); bitNum < 8; bitNum++ { 679 p224DoubleJacobian(outX, outY, outZ, outX, outY, outZ) 680 bit := uint32((byte >> (7 - bitNum)) & 1) 681 p224AddJacobian(&xx, &yy, &zz, inX, inY, inZ, outX, outY, outZ) 682 p224CopyConditional(outX, &xx, bit) 683 p224CopyConditional(outY, &yy, bit) 684 p224CopyConditional(outZ, &zz, bit) 685 } 686 } 687 } 688 689 // p224ToAffine converts from Jacobian to affine form. 690 func p224ToAffine(x, y, z *p224FieldElement) (*big.Int, *big.Int) { 691 var zinv, zinvsq, outx, outy p224FieldElement 692 var tmp p224LargeFieldElement 693 694 if isPointAtInfinity := p224IsZero(z); isPointAtInfinity == 1 { 695 return new(big.Int), new(big.Int) 696 } 697 698 p224Invert(&zinv, z) 699 p224Square(&zinvsq, &zinv, &tmp) 700 p224Mul(x, x, &zinvsq, &tmp) 701 p224Mul(&zinvsq, &zinvsq, &zinv, &tmp) 702 p224Mul(y, y, &zinvsq, &tmp) 703 704 p224Contract(&outx, x) 705 p224Contract(&outy, y) 706 return p224ToBig(&outx), p224ToBig(&outy) 707 } 708 709 // get28BitsFromEnd returns the least-significant 28 bits from buf>>shift, 710 // where buf is interpreted as a big-endian number. 711 func get28BitsFromEnd(buf []byte, shift uint) (uint32, []byte) { 712 var ret uint32 713 714 for i := uint(0); i < 4; i++ { 715 var b byte 716 if l := len(buf); l > 0 { 717 b = buf[l-1] 718 // We don't remove the byte if we're about to return and we're not 719 // reading all of it. 720 if i != 3 || shift == 4 { 721 buf = buf[:l-1] 722 } 723 } 724 ret |= uint32(b) << (8 * i) >> shift 725 } 726 ret &= bottom28Bits 727 return ret, buf 728 } 729 730 // p224FromBig sets *out = *in. 731 func p224FromBig(out *p224FieldElement, in *big.Int) { 732 bytes := in.Bytes() 733 out[0], bytes = get28BitsFromEnd(bytes, 0) 734 out[1], bytes = get28BitsFromEnd(bytes, 4) 735 out[2], bytes = get28BitsFromEnd(bytes, 0) 736 out[3], bytes = get28BitsFromEnd(bytes, 4) 737 out[4], bytes = get28BitsFromEnd(bytes, 0) 738 out[5], bytes = get28BitsFromEnd(bytes, 4) 739 out[6], bytes = get28BitsFromEnd(bytes, 0) 740 out[7], bytes = get28BitsFromEnd(bytes, 4) 741 } 742 743 // p224ToBig returns in as a big.Int. 744 func p224ToBig(in *p224FieldElement) *big.Int { 745 var buf [28]byte 746 buf[27] = byte(in[0]) 747 buf[26] = byte(in[0] >> 8) 748 buf[25] = byte(in[0] >> 16) 749 buf[24] = byte(((in[0] >> 24) & 0x0f) | (in[1]<<4)&0xf0) 750 751 buf[23] = byte(in[1] >> 4) 752 buf[22] = byte(in[1] >> 12) 753 buf[21] = byte(in[1] >> 20) 754 755 buf[20] = byte(in[2]) 756 buf[19] = byte(in[2] >> 8) 757 buf[18] = byte(in[2] >> 16) 758 buf[17] = byte(((in[2] >> 24) & 0x0f) | (in[3]<<4)&0xf0) 759 760 buf[16] = byte(in[3] >> 4) 761 buf[15] = byte(in[3] >> 12) 762 buf[14] = byte(in[3] >> 20) 763 764 buf[13] = byte(in[4]) 765 buf[12] = byte(in[4] >> 8) 766 buf[11] = byte(in[4] >> 16) 767 buf[10] = byte(((in[4] >> 24) & 0x0f) | (in[5]<<4)&0xf0) 768 769 buf[9] = byte(in[5] >> 4) 770 buf[8] = byte(in[5] >> 12) 771 buf[7] = byte(in[5] >> 20) 772 773 buf[6] = byte(in[6]) 774 buf[5] = byte(in[6] >> 8) 775 buf[4] = byte(in[6] >> 16) 776 buf[3] = byte(((in[6] >> 24) & 0x0f) | (in[7]<<4)&0xf0) 777 778 buf[2] = byte(in[7] >> 4) 779 buf[1] = byte(in[7] >> 12) 780 buf[0] = byte(in[7] >> 20) 781 782 return new(big.Int).SetBytes(buf[:]) 783 }