github.com/consensys/gnark-crypto@v0.14.0/ecc/bls12-381/g2.go (about) 1 // Copyright 2020 Consensys Software Inc. 2 // 3 // Licensed under the Apache License, Version 2.0 (the "License"); 4 // you may not use this file except in compliance with the License. 5 // You may obtain a copy of the License at 6 // 7 // http://www.apache.org/licenses/LICENSE-2.0 8 // 9 // Unless required by applicable law or agreed to in writing, software 10 // distributed under the License is distributed on an "AS IS" BASIS, 11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 // See the License for the specific language governing permissions and 13 // limitations under the License. 14 15 // Code generated by consensys/gnark-crypto DO NOT EDIT 16 17 package bls12381 18 19 import ( 20 "crypto/rand" 21 "github.com/consensys/gnark-crypto/ecc" 22 "github.com/consensys/gnark-crypto/ecc/bls12-381/fr" 23 "github.com/consensys/gnark-crypto/ecc/bls12-381/internal/fptower" 24 "github.com/consensys/gnark-crypto/internal/parallel" 25 "math/big" 26 "runtime" 27 ) 28 29 // G2Affine is a point in affine coordinates (x,y) 30 type G2Affine struct { 31 X, Y fptower.E2 32 } 33 34 // G2Jac is a point in Jacobian coordinates (x=X/Z², y=Y/Z³) 35 type G2Jac struct { 36 X, Y, Z fptower.E2 37 } 38 39 // g2JacExtended is a point in extended Jacobian coordinates (x=X/ZZ, y=Y/ZZZ, ZZ³=ZZZ²) 40 type g2JacExtended struct { 41 X, Y, ZZ, ZZZ fptower.E2 42 } 43 44 // g2Proj point in projective coordinates 45 type g2Proj struct { 46 x, y, z fptower.E2 47 } 48 49 // ------------------------------------------------------------------------------------------------- 50 // Affine coordinates 51 52 // Set sets p to a in affine coordinates. 53 func (p *G2Affine) Set(a *G2Affine) *G2Affine { 54 p.X, p.Y = a.X, a.Y 55 return p 56 } 57 58 // setInfinity sets p to the infinity point, which is encoded as (0,0). 59 // N.B.: (0,0) is never on the curve for j=0 curves (Y²=X³+B). 60 func (p *G2Affine) setInfinity() *G2Affine { 61 p.X.SetZero() 62 p.Y.SetZero() 63 return p 64 } 65 66 // ScalarMultiplication computes and returns p = [s]a 67 // where p and a are affine points. 68 func (p *G2Affine) ScalarMultiplication(a *G2Affine, s *big.Int) *G2Affine { 69 var _p G2Jac 70 _p.FromAffine(a) 71 _p.mulGLV(&_p, s) 72 p.FromJacobian(&_p) 73 return p 74 } 75 76 // ScalarMultiplicationBase computes and returns p = [s]g 77 // where g is the affine point generating the prime subgroup. 78 func (p *G2Affine) ScalarMultiplicationBase(s *big.Int) *G2Affine { 79 var _p G2Jac 80 _p.mulGLV(&g2Gen, s) 81 p.FromJacobian(&_p) 82 return p 83 } 84 85 // Add adds two points in affine coordinates. 86 // It uses the Jacobian addition with a.Z=b.Z=1 and converts the result to affine coordinates. 87 // 88 // https://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-mmadd-2007-bl 89 func (p *G2Affine) Add(a, b *G2Affine) *G2Affine { 90 var q G2Jac 91 // a is infinity, return b 92 if a.IsInfinity() { 93 p.Set(b) 94 return p 95 } 96 // b is infinity, return a 97 if b.IsInfinity() { 98 p.Set(a) 99 return p 100 } 101 if a.X.Equal(&b.X) { 102 // if b == a, we double instead 103 if a.Y.Equal(&b.Y) { 104 q.DoubleMixed(a) 105 return p.FromJacobian(&q) 106 } else { 107 // if b == -a, we return 0 108 return p.setInfinity() 109 } 110 } 111 var H, HH, I, J, r, V fptower.E2 112 H.Sub(&b.X, &a.X) 113 HH.Square(&H) 114 I.Double(&HH).Double(&I) 115 J.Mul(&H, &I) 116 r.Sub(&b.Y, &a.Y) 117 r.Double(&r) 118 V.Mul(&a.X, &I) 119 q.X.Square(&r). 120 Sub(&q.X, &J). 121 Sub(&q.X, &V). 122 Sub(&q.X, &V) 123 q.Y.Sub(&V, &q.X). 124 Mul(&q.Y, &r) 125 J.Mul(&a.Y, &J).Double(&J) 126 q.Y.Sub(&q.Y, &J) 127 q.Z.Double(&H) 128 129 return p.FromJacobian(&q) 130 } 131 132 // Double doubles a point in affine coordinates. 133 // It converts the point to Jacobian coordinates, doubles it using Jacobian 134 // addition with a.Z=1, and converts it back to affine coordinates. 135 // 136 // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-mdbl-2007-bl 137 func (p *G2Affine) Double(a *G2Affine) *G2Affine { 138 var q G2Jac 139 q.FromAffine(a) 140 q.DoubleMixed(a) 141 p.FromJacobian(&q) 142 return p 143 } 144 145 // Sub subtracts two points in affine coordinates. 146 // It uses a similar approach to Add, but negates the second point before adding. 147 func (p *G2Affine) Sub(a, b *G2Affine) *G2Affine { 148 var bneg G2Affine 149 bneg.Neg(b) 150 p.Add(a, &bneg) 151 return p 152 } 153 154 // Equal tests if two points in affine coordinates are equal. 155 func (p *G2Affine) Equal(a *G2Affine) bool { 156 return p.X.Equal(&a.X) && p.Y.Equal(&a.Y) 157 } 158 159 // Neg sets p to the affine negative point -a = (a.X, -a.Y). 160 func (p *G2Affine) Neg(a *G2Affine) *G2Affine { 161 p.X = a.X 162 p.Y.Neg(&a.Y) 163 return p 164 } 165 166 // FromJacobian converts a point p1 from Jacobian to affine coordinates. 167 func (p *G2Affine) FromJacobian(p1 *G2Jac) *G2Affine { 168 169 var a, b fptower.E2 170 171 if p1.Z.IsZero() { 172 p.X.SetZero() 173 p.Y.SetZero() 174 return p 175 } 176 177 a.Inverse(&p1.Z) 178 b.Square(&a) 179 p.X.Mul(&p1.X, &b) 180 p.Y.Mul(&p1.Y, &b).Mul(&p.Y, &a) 181 182 return p 183 } 184 185 // String returns the string representation E(x,y) of the affine point p or "O" if it is infinity. 186 func (p *G2Affine) String() string { 187 if p.IsInfinity() { 188 return "O" 189 } 190 return "E([" + p.X.String() + "," + p.Y.String() + "])" 191 } 192 193 // IsInfinity checks if the affine point p is infinity, which is encoded as (0,0). 194 // N.B.: (0,0) is never on the curve for j=0 curves (Y²=X³+B). 195 func (p *G2Affine) IsInfinity() bool { 196 return p.X.IsZero() && p.Y.IsZero() 197 } 198 199 // IsOnCurve returns true if the affine point p in on the curve. 200 func (p *G2Affine) IsOnCurve() bool { 201 var point G2Jac 202 point.FromAffine(p) 203 return point.IsOnCurve() // call this function to handle infinity point 204 } 205 206 // IsInSubGroup returns true if the affine point p is in the correct subgroup, false otherwise. 207 func (p *G2Affine) IsInSubGroup() bool { 208 var _p G2Jac 209 _p.FromAffine(p) 210 return _p.IsInSubGroup() 211 } 212 213 // ------------------------------------------------------------------------------------------------- 214 // Jacobian coordinates 215 216 // Set sets p to a in Jacobian coordinates. 217 func (p *G2Jac) Set(q *G2Jac) *G2Jac { 218 p.X, p.Y, p.Z = q.X, q.Y, q.Z 219 return p 220 } 221 222 // Equal tests if two points in Jacobian coordinates are equal. 223 func (p *G2Jac) Equal(q *G2Jac) bool { 224 // If one point is infinity, the other must also be infinity. 225 if p.Z.IsZero() { 226 return q.Z.IsZero() 227 } 228 // If the other point is infinity, return false since we can't 229 // the following checks would be incorrect. 230 if q.Z.IsZero() { 231 return false 232 } 233 234 var pZSquare, aZSquare fptower.E2 235 pZSquare.Square(&p.Z) 236 aZSquare.Square(&q.Z) 237 238 var lhs, rhs fptower.E2 239 lhs.Mul(&p.X, &aZSquare) 240 rhs.Mul(&q.X, &pZSquare) 241 if !lhs.Equal(&rhs) { 242 return false 243 } 244 lhs.Mul(&p.Y, &aZSquare).Mul(&lhs, &q.Z) 245 rhs.Mul(&q.Y, &pZSquare).Mul(&rhs, &p.Z) 246 247 return lhs.Equal(&rhs) 248 } 249 250 // Neg sets p to the Jacobian negative point -q = (q.X, -q.Y, q.Z). 251 func (p *G2Jac) Neg(q *G2Jac) *G2Jac { 252 *p = *q 253 p.Y.Neg(&q.Y) 254 return p 255 } 256 257 // AddAssign sets p to p+a in Jacobian coordinates. 258 // 259 // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl 260 func (p *G2Jac) AddAssign(q *G2Jac) *G2Jac { 261 262 // p is infinity, return q 263 if p.Z.IsZero() { 264 p.Set(q) 265 return p 266 } 267 268 // q is infinity, return p 269 if q.Z.IsZero() { 270 return p 271 } 272 273 var Z1Z1, Z2Z2, U1, U2, S1, S2, H, I, J, r, V fptower.E2 274 Z1Z1.Square(&q.Z) 275 Z2Z2.Square(&p.Z) 276 U1.Mul(&q.X, &Z2Z2) 277 U2.Mul(&p.X, &Z1Z1) 278 S1.Mul(&q.Y, &p.Z). 279 Mul(&S1, &Z2Z2) 280 S2.Mul(&p.Y, &q.Z). 281 Mul(&S2, &Z1Z1) 282 283 // if p == q, we double instead 284 if U1.Equal(&U2) && S1.Equal(&S2) { 285 return p.DoubleAssign() 286 } 287 288 H.Sub(&U2, &U1) 289 I.Double(&H). 290 Square(&I) 291 J.Mul(&H, &I) 292 r.Sub(&S2, &S1).Double(&r) 293 V.Mul(&U1, &I) 294 p.X.Square(&r). 295 Sub(&p.X, &J). 296 Sub(&p.X, &V). 297 Sub(&p.X, &V) 298 p.Y.Sub(&V, &p.X). 299 Mul(&p.Y, &r) 300 S1.Mul(&S1, &J).Double(&S1) 301 p.Y.Sub(&p.Y, &S1) 302 p.Z.Add(&p.Z, &q.Z) 303 p.Z.Square(&p.Z). 304 Sub(&p.Z, &Z1Z1). 305 Sub(&p.Z, &Z2Z2). 306 Mul(&p.Z, &H) 307 308 return p 309 } 310 311 // SubAssign sets p to p-a in Jacobian coordinates. 312 // It uses a similar approach to AddAssign, but negates the point a before adding. 313 func (p *G2Jac) SubAssign(q *G2Jac) *G2Jac { 314 var tmp G2Jac 315 tmp.Set(q) 316 tmp.Y.Neg(&tmp.Y) 317 p.AddAssign(&tmp) 318 return p 319 } 320 321 // Double sets p to [2]q in Jacobian coordinates. 322 // 323 // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2007-bl 324 func (p *G2Jac) DoubleMixed(a *G2Affine) *G2Jac { 325 var XX, YY, YYYY, S, M, T fptower.E2 326 XX.Square(&a.X) 327 YY.Square(&a.Y) 328 YYYY.Square(&YY) 329 S.Add(&a.X, &YY). 330 Square(&S). 331 Sub(&S, &XX). 332 Sub(&S, &YYYY). 333 Double(&S) 334 M.Double(&XX). 335 Add(&M, &XX) // -> + A, but A=0 here 336 T.Square(&M). 337 Sub(&T, &S). 338 Sub(&T, &S) 339 p.X.Set(&T) 340 p.Y.Sub(&S, &T). 341 Mul(&p.Y, &M) 342 YYYY.Double(&YYYY). 343 Double(&YYYY). 344 Double(&YYYY) 345 p.Y.Sub(&p.Y, &YYYY) 346 p.Z.Double(&a.Y) 347 348 return p 349 } 350 351 // AddMixed sets p to p+a in Jacobian coordinates, where a.Z = 1. 352 // 353 // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-madd-2007-bl 354 func (p *G2Jac) AddMixed(a *G2Affine) *G2Jac { 355 356 //if a is infinity return p 357 if a.IsInfinity() { 358 return p 359 } 360 // p is infinity, return a 361 if p.Z.IsZero() { 362 p.X = a.X 363 p.Y = a.Y 364 p.Z.SetOne() 365 return p 366 } 367 368 var Z1Z1, U2, S2, H, HH, I, J, r, V fptower.E2 369 Z1Z1.Square(&p.Z) 370 U2.Mul(&a.X, &Z1Z1) 371 S2.Mul(&a.Y, &p.Z). 372 Mul(&S2, &Z1Z1) 373 374 // if p == a, we double instead 375 if U2.Equal(&p.X) && S2.Equal(&p.Y) { 376 return p.DoubleMixed(a) 377 } 378 379 H.Sub(&U2, &p.X) 380 HH.Square(&H) 381 I.Double(&HH).Double(&I) 382 J.Mul(&H, &I) 383 r.Sub(&S2, &p.Y).Double(&r) 384 V.Mul(&p.X, &I) 385 p.X.Square(&r). 386 Sub(&p.X, &J). 387 Sub(&p.X, &V). 388 Sub(&p.X, &V) 389 J.Mul(&J, &p.Y).Double(&J) 390 p.Y.Sub(&V, &p.X). 391 Mul(&p.Y, &r) 392 p.Y.Sub(&p.Y, &J) 393 p.Z.Add(&p.Z, &H) 394 p.Z.Square(&p.Z). 395 Sub(&p.Z, &Z1Z1). 396 Sub(&p.Z, &HH) 397 398 return p 399 } 400 401 // Double sets p to [2]q in Jacobian coordinates. 402 // 403 // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2007-bl 404 func (p *G2Jac) Double(q *G2Jac) *G2Jac { 405 p.Set(q) 406 p.DoubleAssign() 407 return p 408 } 409 410 // DoubleAssign doubles p in Jacobian coordinates. 411 // 412 // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2007-bl 413 func (p *G2Jac) DoubleAssign() *G2Jac { 414 415 var XX, YY, YYYY, ZZ, S, M, T fptower.E2 416 417 XX.Square(&p.X) 418 YY.Square(&p.Y) 419 YYYY.Square(&YY) 420 ZZ.Square(&p.Z) 421 S.Add(&p.X, &YY) 422 S.Square(&S). 423 Sub(&S, &XX). 424 Sub(&S, &YYYY). 425 Double(&S) 426 M.Double(&XX).Add(&M, &XX) 427 p.Z.Add(&p.Z, &p.Y). 428 Square(&p.Z). 429 Sub(&p.Z, &YY). 430 Sub(&p.Z, &ZZ) 431 T.Square(&M) 432 p.X = T 433 T.Double(&S) 434 p.X.Sub(&p.X, &T) 435 p.Y.Sub(&S, &p.X). 436 Mul(&p.Y, &M) 437 YYYY.Double(&YYYY).Double(&YYYY).Double(&YYYY) 438 p.Y.Sub(&p.Y, &YYYY) 439 440 return p 441 } 442 443 // ScalarMultiplication computes and returns p = [s]a 444 // where p and a are Jacobian points. 445 // using the GLV technique. 446 // see https://www.iacr.org/archive/crypto2001/21390189.pdf 447 func (p *G2Jac) ScalarMultiplication(q *G2Jac, s *big.Int) *G2Jac { 448 return p.mulGLV(q, s) 449 } 450 451 // ScalarMultiplicationBase computes and returns p = [s]g 452 // where g is the prime subgroup generator. 453 func (p *G2Jac) ScalarMultiplicationBase(s *big.Int) *G2Jac { 454 return p.mulGLV(&g2Gen, s) 455 456 } 457 458 // String converts p to affine coordinates and returns its string representation E(x,y) or "O" if it is infinity. 459 func (p *G2Jac) String() string { 460 _p := G2Affine{} 461 _p.FromJacobian(p) 462 return _p.String() 463 } 464 465 // FromAffine converts a point a from affine to Jacobian coordinates. 466 func (p *G2Jac) FromAffine(a *G2Affine) *G2Jac { 467 if a.IsInfinity() { 468 p.Z.SetZero() 469 p.X.SetOne() 470 p.Y.SetOne() 471 return p 472 } 473 p.Z.SetOne() 474 p.X.Set(&a.X) 475 p.Y.Set(&a.Y) 476 return p 477 } 478 479 // IsOnCurve returns true if the Jacobian point p in on the curve. 480 func (p *G2Jac) IsOnCurve() bool { 481 var left, right, tmp, ZZ fptower.E2 482 left.Square(&p.Y) 483 right.Square(&p.X).Mul(&right, &p.X) 484 ZZ.Square(&p.Z) 485 tmp.Square(&ZZ).Mul(&tmp, &ZZ) 486 tmp.MulBybTwistCurveCoeff(&tmp) 487 right.Add(&right, &tmp) 488 return left.Equal(&right) 489 } 490 491 // IsInSubGroup returns true if p is on the r-torsion, false otherwise. 492 // https://eprint.iacr.org/2021/1130.pdf, sec.4 493 // and https://eprint.iacr.org/2022/352.pdf, sec. 4.2 494 // ψ(p) = [x₀]P 495 func (p *G2Jac) IsInSubGroup() bool { 496 var res, tmp G2Jac 497 tmp.psi(p) 498 res.ScalarMultiplication(p, &xGen). 499 AddAssign(&tmp) 500 501 return res.IsOnCurve() && res.Z.IsZero() 502 } 503 504 // mulWindowed computes the 2-bits windowed double-and-add scalar 505 // multiplication p=[s]q in Jacobian coordinates. 506 func (p *G2Jac) mulWindowed(q *G2Jac, s *big.Int) *G2Jac { 507 508 var res G2Jac 509 var ops [3]G2Jac 510 511 ops[0].Set(q) 512 if s.Sign() == -1 { 513 ops[0].Neg(&ops[0]) 514 } 515 res.Set(&g2Infinity) 516 ops[1].Double(&ops[0]) 517 ops[2].Set(&ops[0]).AddAssign(&ops[1]) 518 519 b := s.Bytes() 520 for i := range b { 521 w := b[i] 522 mask := byte(0xc0) 523 for j := 0; j < 4; j++ { 524 res.DoubleAssign().DoubleAssign() 525 c := (w & mask) >> (6 - 2*j) 526 if c != 0 { 527 res.AddAssign(&ops[c-1]) 528 } 529 mask = mask >> 2 530 } 531 } 532 p.Set(&res) 533 534 return p 535 536 } 537 538 // psi sets p to ψ(q) = u o π o u⁻¹ where u:E'→E is the isomorphism from the twist to the curve E and π is the Frobenius map. 539 func (p *G2Jac) psi(q *G2Jac) *G2Jac { 540 p.Set(q) 541 p.X.Conjugate(&p.X).Mul(&p.X, &endo.u) 542 p.Y.Conjugate(&p.Y).Mul(&p.Y, &endo.v) 543 p.Z.Conjugate(&p.Z) 544 return p 545 } 546 547 // phi sets p to ϕ(a) where ϕ: (x,y) → (w x,y), 548 // where w is a third root of unity. 549 func (p *G2Jac) phi(q *G2Jac) *G2Jac { 550 p.Set(q) 551 p.X.MulByElement(&p.X, &thirdRootOneG2) 552 return p 553 } 554 555 // mulGLV computes the scalar multiplication using a windowed-GLV method 556 // 557 // see https://www.iacr.org/archive/crypto2001/21390189.pdf 558 func (p *G2Jac) mulGLV(q *G2Jac, s *big.Int) *G2Jac { 559 560 var table [15]G2Jac 561 var res G2Jac 562 var k1, k2 fr.Element 563 564 res.Set(&g2Infinity) 565 566 // table[b3b2b1b0-1] = b3b2 ⋅ ϕ(q) + b1b0*q 567 table[0].Set(q) 568 table[3].phi(q) 569 570 // split the scalar, modifies ±q, ϕ(q) accordingly 571 k := ecc.SplitScalar(s, &glvBasis) 572 573 if k[0].Sign() == -1 { 574 k[0].Neg(&k[0]) 575 table[0].Neg(&table[0]) 576 } 577 if k[1].Sign() == -1 { 578 k[1].Neg(&k[1]) 579 table[3].Neg(&table[3]) 580 } 581 582 // precompute table (2 bits sliding window) 583 // table[b3b2b1b0-1] = b3b2 ⋅ ϕ(q) + b1b0 ⋅ q if b3b2b1b0 != 0 584 table[1].Double(&table[0]) 585 table[2].Set(&table[1]).AddAssign(&table[0]) 586 table[4].Set(&table[3]).AddAssign(&table[0]) 587 table[5].Set(&table[3]).AddAssign(&table[1]) 588 table[6].Set(&table[3]).AddAssign(&table[2]) 589 table[7].Double(&table[3]) 590 table[8].Set(&table[7]).AddAssign(&table[0]) 591 table[9].Set(&table[7]).AddAssign(&table[1]) 592 table[10].Set(&table[7]).AddAssign(&table[2]) 593 table[11].Set(&table[7]).AddAssign(&table[3]) 594 table[12].Set(&table[11]).AddAssign(&table[0]) 595 table[13].Set(&table[11]).AddAssign(&table[1]) 596 table[14].Set(&table[11]).AddAssign(&table[2]) 597 598 // bounds on the lattice base vectors guarantee that k1, k2 are len(r)/2 or len(r)/2+1 bits long max 599 // this is because we use a probabilistic scalar decomposition that replaces a division by a right-shift 600 k1 = k1.SetBigInt(&k[0]).Bits() 601 k2 = k2.SetBigInt(&k[1]).Bits() 602 603 // we don't target constant-timeness so we check first if we increase the bounds or not 604 maxBit := k1.BitLen() 605 if k2.BitLen() > maxBit { 606 maxBit = k2.BitLen() 607 } 608 hiWordIndex := (maxBit - 1) / 64 609 610 // loop starts from len(k1)/2 or len(k1)/2+1 due to the bounds 611 for i := hiWordIndex; i >= 0; i-- { 612 mask := uint64(3) << 62 613 for j := 0; j < 32; j++ { 614 res.Double(&res).Double(&res) 615 b1 := (k1[i] & mask) >> (62 - 2*j) 616 b2 := (k2[i] & mask) >> (62 - 2*j) 617 if b1|b2 != 0 { 618 s := (b2<<2 | b1) 619 res.AddAssign(&table[s-1]) 620 } 621 mask = mask >> 2 622 } 623 } 624 625 p.Set(&res) 626 return p 627 } 628 629 // ClearCofactor maps a point in curve to r-torsion 630 func (p *G2Affine) ClearCofactor(a *G2Affine) *G2Affine { 631 var _p G2Jac 632 _p.FromAffine(a) 633 _p.ClearCofactor(&_p) 634 p.FromJacobian(&_p) 635 return p 636 } 637 638 // ClearCofactor maps a point in curve to r-torsion 639 func (p *G2Jac) ClearCofactor(q *G2Jac) *G2Jac { 640 // https://eprint.iacr.org/2017/419.pdf, 4.1 641 var xg, xxg, res, t G2Jac 642 xg.ScalarMultiplication(q, &xGen).Neg(&xg) 643 xxg.ScalarMultiplication(&xg, &xGen).Neg(&xxg) 644 645 res.Set(&xxg). 646 SubAssign(&xg). 647 SubAssign(q) 648 649 t.Set(&xg). 650 SubAssign(q). 651 psi(&t) 652 653 res.AddAssign(&t) 654 655 t.Double(q) 656 t.X.MulByElement(&t.X, &thirdRootOneG1) 657 658 res.SubAssign(&t) 659 660 p.Set(&res) 661 662 return p 663 664 } 665 666 // ------------------------------------------------------------------------------------------------- 667 // extended Jacobian coordinates 668 669 // Set sets p to a in extended Jacobian coordinates. 670 func (p *g2JacExtended) Set(q *g2JacExtended) *g2JacExtended { 671 p.X, p.Y, p.ZZ, p.ZZZ = q.X, q.Y, q.ZZ, q.ZZZ 672 return p 673 } 674 675 // setInfinity sets p to the infinity point (1,1,0,0). 676 func (p *g2JacExtended) setInfinity() *g2JacExtended { 677 p.X.SetOne() 678 p.Y.SetOne() 679 p.ZZ = fptower.E2{} 680 p.ZZZ = fptower.E2{} 681 return p 682 } 683 684 // IsInfinity checks if the p is infinity, i.e. p.ZZ=0. 685 func (p *g2JacExtended) IsInfinity() bool { 686 return p.ZZ.IsZero() 687 } 688 689 // fromJacExtended converts an extended Jacobian point to an affine point. 690 func (p *G2Affine) fromJacExtended(q *g2JacExtended) *G2Affine { 691 if q.ZZ.IsZero() { 692 p.X = fptower.E2{} 693 p.Y = fptower.E2{} 694 return p 695 } 696 p.X.Inverse(&q.ZZ).Mul(&p.X, &q.X) 697 p.Y.Inverse(&q.ZZZ).Mul(&p.Y, &q.Y) 698 return p 699 } 700 701 // fromJacExtended converts an extended Jacobian point to a Jacobian point. 702 func (p *G2Jac) fromJacExtended(q *g2JacExtended) *G2Jac { 703 if q.ZZ.IsZero() { 704 p.Set(&g2Infinity) 705 return p 706 } 707 p.X.Mul(&q.ZZ, &q.X).Mul(&p.X, &q.ZZ) 708 p.Y.Mul(&q.ZZZ, &q.Y).Mul(&p.Y, &q.ZZZ) 709 p.Z.Set(&q.ZZZ) 710 return p 711 } 712 713 // unsafeFromJacExtended converts an extended Jacobian point, distinct from Infinity, to a Jacobian point. 714 func (p *G2Jac) unsafeFromJacExtended(q *g2JacExtended) *G2Jac { 715 p.X.Square(&q.ZZ).Mul(&p.X, &q.X) 716 p.Y.Square(&q.ZZZ).Mul(&p.Y, &q.Y) 717 p.Z = q.ZZZ 718 return p 719 } 720 721 // add sets p to p+q in extended Jacobian coordinates. 722 // 723 // https://www.hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#addition-add-2008-s 724 func (p *g2JacExtended) add(q *g2JacExtended) *g2JacExtended { 725 //if q is infinity return p 726 if q.ZZ.IsZero() { 727 return p 728 } 729 // p is infinity, return q 730 if p.ZZ.IsZero() { 731 p.Set(q) 732 return p 733 } 734 735 var A, B, U1, U2, S1, S2 fptower.E2 736 737 // p2: q, p1: p 738 U2.Mul(&q.X, &p.ZZ) 739 U1.Mul(&p.X, &q.ZZ) 740 A.Sub(&U2, &U1) 741 S2.Mul(&q.Y, &p.ZZZ) 742 S1.Mul(&p.Y, &q.ZZZ) 743 B.Sub(&S2, &S1) 744 745 if A.IsZero() { 746 if B.IsZero() { 747 return p.double(q) 748 749 } 750 p.ZZ = fptower.E2{} 751 p.ZZZ = fptower.E2{} 752 return p 753 } 754 755 var P, R, PP, PPP, Q, V fptower.E2 756 P.Sub(&U2, &U1) 757 R.Sub(&S2, &S1) 758 PP.Square(&P) 759 PPP.Mul(&P, &PP) 760 Q.Mul(&U1, &PP) 761 V.Mul(&S1, &PPP) 762 763 p.X.Square(&R). 764 Sub(&p.X, &PPP). 765 Sub(&p.X, &Q). 766 Sub(&p.X, &Q) 767 p.Y.Sub(&Q, &p.X). 768 Mul(&p.Y, &R). 769 Sub(&p.Y, &V) 770 p.ZZ.Mul(&p.ZZ, &q.ZZ). 771 Mul(&p.ZZ, &PP) 772 p.ZZZ.Mul(&p.ZZZ, &q.ZZZ). 773 Mul(&p.ZZZ, &PPP) 774 775 return p 776 } 777 778 // double sets p to [2]q in Jacobian extended coordinates. 779 // 780 // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#doubling-dbl-2008-s-1 781 // N.B.: since we consider any point on Z=0 as the point at infinity 782 // this doubling formula works for infinity points as well. 783 func (p *g2JacExtended) double(q *g2JacExtended) *g2JacExtended { 784 var U, V, W, S, XX, M fptower.E2 785 786 U.Double(&q.Y) 787 V.Square(&U) 788 W.Mul(&U, &V) 789 S.Mul(&q.X, &V) 790 XX.Square(&q.X) 791 M.Double(&XX). 792 Add(&M, &XX) // -> + A, but A=0 here 793 U.Mul(&W, &q.Y) 794 795 p.X.Square(&M). 796 Sub(&p.X, &S). 797 Sub(&p.X, &S) 798 p.Y.Sub(&S, &p.X). 799 Mul(&p.Y, &M). 800 Sub(&p.Y, &U) 801 p.ZZ.Mul(&V, &q.ZZ) 802 p.ZZZ.Mul(&W, &q.ZZZ) 803 804 return p 805 } 806 807 // addMixed sets p to p+q in extended Jacobian coordinates, where a.ZZ=1. 808 // 809 // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#addition-madd-2008-s 810 func (p *g2JacExtended) addMixed(a *G2Affine) *g2JacExtended { 811 812 //if a is infinity return p 813 if a.IsInfinity() { 814 return p 815 } 816 // p is infinity, return a 817 if p.ZZ.IsZero() { 818 p.X = a.X 819 p.Y = a.Y 820 p.ZZ.SetOne() 821 p.ZZZ.SetOne() 822 return p 823 } 824 825 var P, R fptower.E2 826 827 // p2: a, p1: p 828 P.Mul(&a.X, &p.ZZ) 829 P.Sub(&P, &p.X) 830 831 R.Mul(&a.Y, &p.ZZZ) 832 R.Sub(&R, &p.Y) 833 834 if P.IsZero() { 835 if R.IsZero() { 836 return p.doubleMixed(a) 837 838 } 839 p.ZZ = fptower.E2{} 840 p.ZZZ = fptower.E2{} 841 return p 842 } 843 844 var PP, PPP, Q, Q2, RR, X3, Y3 fptower.E2 845 846 PP.Square(&P) 847 PPP.Mul(&P, &PP) 848 Q.Mul(&p.X, &PP) 849 RR.Square(&R) 850 X3.Sub(&RR, &PPP) 851 Q2.Double(&Q) 852 p.X.Sub(&X3, &Q2) 853 Y3.Sub(&Q, &p.X).Mul(&Y3, &R) 854 R.Mul(&p.Y, &PPP) 855 p.Y.Sub(&Y3, &R) 856 p.ZZ.Mul(&p.ZZ, &PP) 857 p.ZZZ.Mul(&p.ZZZ, &PPP) 858 859 return p 860 861 } 862 863 // subMixed works the same as addMixed, but negates a.Y. 864 // 865 // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#addition-madd-2008-s 866 func (p *g2JacExtended) subMixed(a *G2Affine) *g2JacExtended { 867 868 //if a is infinity return p 869 if a.IsInfinity() { 870 return p 871 } 872 // p is infinity, return a 873 if p.ZZ.IsZero() { 874 p.X = a.X 875 p.Y.Neg(&a.Y) 876 p.ZZ.SetOne() 877 p.ZZZ.SetOne() 878 return p 879 } 880 881 var P, R fptower.E2 882 883 // p2: a, p1: p 884 P.Mul(&a.X, &p.ZZ) 885 P.Sub(&P, &p.X) 886 887 R.Mul(&a.Y, &p.ZZZ) 888 R.Neg(&R) 889 R.Sub(&R, &p.Y) 890 891 if P.IsZero() { 892 if R.IsZero() { 893 return p.doubleNegMixed(a) 894 895 } 896 p.ZZ = fptower.E2{} 897 p.ZZZ = fptower.E2{} 898 return p 899 } 900 901 var PP, PPP, Q, Q2, RR, X3, Y3 fptower.E2 902 903 PP.Square(&P) 904 PPP.Mul(&P, &PP) 905 Q.Mul(&p.X, &PP) 906 RR.Square(&R) 907 X3.Sub(&RR, &PPP) 908 Q2.Double(&Q) 909 p.X.Sub(&X3, &Q2) 910 Y3.Sub(&Q, &p.X).Mul(&Y3, &R) 911 R.Mul(&p.Y, &PPP) 912 p.Y.Sub(&Y3, &R) 913 p.ZZ.Mul(&p.ZZ, &PP) 914 p.ZZZ.Mul(&p.ZZZ, &PPP) 915 916 return p 917 918 } 919 920 // doubleNegMixed works the same as double, but negates q.Y. 921 func (p *g2JacExtended) doubleNegMixed(a *G2Affine) *g2JacExtended { 922 923 var U, V, W, S, XX, M, S2, L fptower.E2 924 925 U.Double(&a.Y) 926 U.Neg(&U) 927 V.Square(&U) 928 W.Mul(&U, &V) 929 S.Mul(&a.X, &V) 930 XX.Square(&a.X) 931 M.Double(&XX). 932 Add(&M, &XX) // -> + A, but A=0 here 933 S2.Double(&S) 934 L.Mul(&W, &a.Y) 935 936 p.X.Square(&M). 937 Sub(&p.X, &S2) 938 p.Y.Sub(&S, &p.X). 939 Mul(&p.Y, &M). 940 Add(&p.Y, &L) 941 p.ZZ.Set(&V) 942 p.ZZZ.Set(&W) 943 944 return p 945 } 946 947 // doubleMixed sets p to [2]a in Jacobian extended coordinates, where a.ZZ=1. 948 // 949 // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#doubling-dbl-2008-s-1 950 func (p *g2JacExtended) doubleMixed(a *G2Affine) *g2JacExtended { 951 952 var U, V, W, S, XX, M, S2, L fptower.E2 953 954 U.Double(&a.Y) 955 V.Square(&U) 956 W.Mul(&U, &V) 957 S.Mul(&a.X, &V) 958 XX.Square(&a.X) 959 M.Double(&XX). 960 Add(&M, &XX) // -> + A, but A=0 here 961 S2.Double(&S) 962 L.Mul(&W, &a.Y) 963 964 p.X.Square(&M). 965 Sub(&p.X, &S2) 966 p.Y.Sub(&S, &p.X). 967 Mul(&p.Y, &M). 968 Sub(&p.Y, &L) 969 p.ZZ.Set(&V) 970 p.ZZZ.Set(&W) 971 972 return p 973 } 974 975 // ------------------------------------------------------------------------------------------------- 976 // Homogenous projective coordinates 977 978 // Set sets p to a in projective coordinates. 979 func (p *g2Proj) Set(q *g2Proj) *g2Proj { 980 p.x, p.y, p.z = q.x, q.y, q.z 981 return p 982 } 983 984 // Neg sets p to the projective negative point -q = (q.X, -q.Y). 985 func (p *g2Proj) Neg(q *g2Proj) *g2Proj { 986 *p = *q 987 p.y.Neg(&q.y) 988 return p 989 } 990 991 // FromAffine converts q in affine to p in projective coordinates. 992 func (p *g2Proj) FromAffine(a *G2Affine) *g2Proj { 993 if a.X.IsZero() && a.Y.IsZero() { 994 p.z.SetZero() 995 p.x.SetOne() 996 p.y.SetOne() 997 return p 998 } 999 p.z.SetOne() 1000 p.x.Set(&a.X) 1001 p.y.Set(&a.Y) 1002 return p 1003 } 1004 1005 // BatchScalarMultiplicationG2 multiplies the same base by all scalars 1006 // and return resulting points in affine coordinates 1007 // uses a simple windowed-NAF-like multiplication algorithm. 1008 func BatchScalarMultiplicationG2(base *G2Affine, scalars []fr.Element) []G2Affine { 1009 // approximate cost in group ops is 1010 // cost = 2^{c-1} + n(scalar.nbBits+nbChunks) 1011 1012 nbPoints := uint64(len(scalars)) 1013 min := ^uint64(0) 1014 bestC := 0 1015 for c := 2; c <= 16; c++ { 1016 cost := uint64(1 << (c - 1)) // pre compute the table 1017 nbChunks := computeNbChunks(uint64(c)) 1018 cost += nbPoints * (uint64(c) + 1) * nbChunks // doublings + point add 1019 if cost < min { 1020 min = cost 1021 bestC = c 1022 } 1023 } 1024 c := uint64(bestC) // window size 1025 nbChunks := int(computeNbChunks(c)) 1026 1027 // last window may be slightly larger than c; in which case we need to compute one 1028 // extra element in the baseTable 1029 maxC := lastC(c) 1030 if c > maxC { 1031 maxC = c 1032 } 1033 1034 // precompute all powers of base for our window 1035 // note here that if performance is critical, we can implement as in the msmX methods 1036 // this allocation to be on the stack 1037 baseTable := make([]G2Jac, (1 << (maxC - 1))) 1038 baseTable[0].FromAffine(base) 1039 for i := 1; i < len(baseTable); i++ { 1040 baseTable[i] = baseTable[i-1] 1041 baseTable[i].AddMixed(base) 1042 } 1043 toReturn := make([]G2Affine, len(scalars)) 1044 1045 // partition the scalars into digits 1046 digits, _ := partitionScalars(scalars, c, runtime.NumCPU()) 1047 1048 // for each digit, take value in the base table, double it c time, voilà. 1049 parallel.Execute(len(scalars), func(start, end int) { 1050 var p G2Jac 1051 for i := start; i < end; i++ { 1052 p.Set(&g2Infinity) 1053 for chunk := nbChunks - 1; chunk >= 0; chunk-- { 1054 if chunk != nbChunks-1 { 1055 for j := uint64(0); j < c; j++ { 1056 p.DoubleAssign() 1057 } 1058 } 1059 offset := chunk * len(scalars) 1060 digit := digits[i+offset] 1061 1062 if digit == 0 { 1063 continue 1064 } 1065 1066 // if msbWindow bit is set, we need to subtract 1067 if digit&1 == 0 { 1068 // add 1069 p.AddAssign(&baseTable[(digit>>1)-1]) 1070 } else { 1071 // sub 1072 t := baseTable[digit>>1] 1073 t.Neg(&t) 1074 p.AddAssign(&t) 1075 } 1076 } 1077 1078 // set our result point 1079 toReturn[i].FromJacobian(&p) 1080 1081 } 1082 }) 1083 return toReturn 1084 } 1085 1086 // batchAddG2Affine adds affine points using the Montgomery batch inversion trick. 1087 // Special cases (doubling, infinity) must be filtered out before this call. 1088 func batchAddG2Affine[TP pG2Affine, TPP ppG2Affine, TC cG2Affine](R *TPP, P *TP, batchSize int) { 1089 var lambda, lambdain TC 1090 1091 // add part 1092 for j := 0; j < batchSize; j++ { 1093 lambdain[j].Sub(&(*P)[j].X, &(*R)[j].X) 1094 } 1095 1096 // invert denominator using montgomery batch invert technique 1097 { 1098 var accumulator fptower.E2 1099 lambda[0].SetOne() 1100 accumulator.Set(&lambdain[0]) 1101 1102 for i := 1; i < batchSize; i++ { 1103 lambda[i] = accumulator 1104 accumulator.Mul(&accumulator, &lambdain[i]) 1105 } 1106 1107 accumulator.Inverse(&accumulator) 1108 1109 for i := batchSize - 1; i > 0; i-- { 1110 lambda[i].Mul(&lambda[i], &accumulator) 1111 accumulator.Mul(&accumulator, &lambdain[i]) 1112 } 1113 lambda[0].Set(&accumulator) 1114 } 1115 1116 var d fptower.E2 1117 var rr G2Affine 1118 1119 // add part 1120 for j := 0; j < batchSize; j++ { 1121 // computa lambda 1122 d.Sub(&(*P)[j].Y, &(*R)[j].Y) 1123 lambda[j].Mul(&lambda[j], &d) 1124 1125 // compute X, Y 1126 rr.X.Square(&lambda[j]) 1127 rr.X.Sub(&rr.X, &(*R)[j].X) 1128 rr.X.Sub(&rr.X, &(*P)[j].X) 1129 d.Sub(&(*R)[j].X, &rr.X) 1130 rr.Y.Mul(&lambda[j], &d) 1131 rr.Y.Sub(&rr.Y, &(*R)[j].Y) 1132 (*R)[j].Set(&rr) 1133 } 1134 } 1135 1136 // RandomOnG2 produces a random point in G2 1137 // using standard map-to-curve methods, which means the relative discrete log 1138 // of the generated point with respect to the canonical generator is not known. 1139 func RandomOnG2() (G2Affine, error) { 1140 if gBytes, err := randomFrSizedBytes(); err != nil { 1141 return G2Affine{}, err 1142 } else { 1143 return HashToG2(gBytes, []byte("random on g2")) 1144 } 1145 } 1146 1147 func randomFrSizedBytes() ([]byte, error) { 1148 res := make([]byte, fr.Bytes) 1149 _, err := rand.Read(res) 1150 return res, err 1151 }