github.com/consensys/gnark-crypto@v0.14.0/ecc/bls12-381/internal/fptower/e2_bls381.go (about) 1 // Copyright 2020 ConsenSys AG 2 // 3 // Licensed under the Apache License, Version 2.0 (the "License"); 4 // you may not use this file except in compliance with the License. 5 // You may obtain a copy of the License at 6 // 7 // http://www.apache.org/licenses/LICENSE-2.0 8 // 9 // Unless required by applicable law or agreed to in writing, software 10 // distributed under the License is distributed on an "AS IS" BASIS, 11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 // See the License for the specific language governing permissions and 13 // limitations under the License. 14 15 package fptower 16 17 import "github.com/consensys/gnark-crypto/ecc/bls12-381/fp" 18 19 // used with !amd64, make staticcheck happier. 20 var ( 21 _ = mulGenericE2 22 _ = squareGenericE2 23 ) 24 25 // mulGenericE2 sets z to the E2-product of x,y, returns z 26 // note: do not rename, this is referenced in the x86 assembly impl 27 func mulGenericE2(z, x, y *E2) { 28 var a, b, c fp.Element 29 a.Add(&x.A0, &x.A1) 30 b.Add(&y.A0, &y.A1) 31 a.Mul(&a, &b) 32 b.Mul(&x.A0, &y.A0) 33 c.Mul(&x.A1, &y.A1) 34 z.A1.Sub(&a, &b).Sub(&z.A1, &c) 35 z.A0.Sub(&b, &c) 36 } 37 38 // Square sets z to the E2-product of x,x returns z 39 func squareGenericE2(z, x *E2) *E2 { 40 // adapted from algo 22 https://eprint.iacr.org/2010/354.pdf 41 var a, b fp.Element 42 a.Add(&x.A0, &x.A1) 43 b.Sub(&x.A0, &x.A1) 44 a.Mul(&a, &b) 45 b.Mul(&x.A0, &x.A1).Double(&b) 46 z.A0.Set(&a) 47 z.A1.Set(&b) 48 return z 49 } 50 51 var twoInv = fp.Element{ 52 1730508156817200468, 53 9606178027640717313, 54 7150789853162776431, 55 7936136305760253186, 56 15245073033536294050, 57 1728177566264616342, 58 } 59 60 // MulByNonResidueInv multiplies a E2 by (1,1)^{-1} 61 func (z *E2) MulByNonResidueInv(x *E2) *E2 { 62 63 var tmp fp.Element 64 tmp.Add(&x.A0, &x.A1) 65 z.A1.Sub(&x.A1, &x.A0).Mul(&z.A1, &twoInv) 66 z.A0.Set(&tmp).Mul(&z.A0, &twoInv) 67 68 return z 69 } 70 71 // Inverse sets z to the E2-inverse of x, returns z 72 // 73 // if x == 0, sets and returns z = x 74 func (z *E2) Inverse(x *E2) *E2 { 75 // Algorithm 8 from https://eprint.iacr.org/2010/354.pdf 76 var t0, t1 fp.Element 77 t0.Square(&x.A0) 78 t1.Square(&x.A1) 79 t0.Add(&t0, &t1) 80 t1.Inverse(&t0) 81 z.A0.Mul(&x.A0, &t1) 82 z.A1.Mul(&x.A1, &t1).Neg(&z.A1) 83 84 return z 85 } 86 87 // norm sets x to the norm of z 88 func (z *E2) norm(x *fp.Element) { 89 var tmp fp.Element 90 x.Square(&z.A0) 91 tmp.Square(&z.A1) 92 x.Add(x, &tmp) 93 } 94 95 // MulBybTwistCurveCoeff multiplies by 4(1,1) 96 func (z *E2) MulBybTwistCurveCoeff(x *E2) *E2 { 97 98 var res E2 99 res.A0.Sub(&x.A0, &x.A1) 100 res.A1.Add(&x.A0, &x.A1) 101 z.Double(&res). 102 Double(z) 103 104 return z 105 }