github.com/consensys/gnark-crypto@v0.14.0/ecc/bls24-315/multiexp.go (about) 1 // Copyright 2020 Consensys Software Inc. 2 // 3 // Licensed under the Apache License, Version 2.0 (the "License"); 4 // you may not use this file except in compliance with the License. 5 // You may obtain a copy of the License at 6 // 7 // http://www.apache.org/licenses/LICENSE-2.0 8 // 9 // Unless required by applicable law or agreed to in writing, software 10 // distributed under the License is distributed on an "AS IS" BASIS, 11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 // See the License for the specific language governing permissions and 13 // limitations under the License. 14 15 // Code generated by consensys/gnark-crypto DO NOT EDIT 16 17 package bls24315 18 19 import ( 20 "errors" 21 "github.com/consensys/gnark-crypto/ecc" 22 "github.com/consensys/gnark-crypto/ecc/bls24-315/fr" 23 "github.com/consensys/gnark-crypto/internal/parallel" 24 "math" 25 "runtime" 26 ) 27 28 // MultiExp implements section 4 of https://eprint.iacr.org/2012/549.pdf 29 // 30 // This call return an error if len(scalars) != len(points) or if provided config is invalid. 31 func (p *G1Affine) MultiExp(points []G1Affine, scalars []fr.Element, config ecc.MultiExpConfig) (*G1Affine, error) { 32 var _p G1Jac 33 if _, err := _p.MultiExp(points, scalars, config); err != nil { 34 return nil, err 35 } 36 p.FromJacobian(&_p) 37 return p, nil 38 } 39 40 // MultiExp implements section 4 of https://eprint.iacr.org/2012/549.pdf 41 // 42 // This call return an error if len(scalars) != len(points) or if provided config is invalid. 43 func (p *G1Jac) MultiExp(points []G1Affine, scalars []fr.Element, config ecc.MultiExpConfig) (*G1Jac, error) { 44 // TODO @gbotrel replace the ecc.MultiExpConfig by a Option pattern for maintainability. 45 // note: 46 // each of the msmCX method is the same, except for the c constant it declares 47 // duplicating (through template generation) these methods allows to declare the buckets on the stack 48 // the choice of c needs to be improved: 49 // there is a theoretical value that gives optimal asymptotics 50 // but in practice, other factors come into play, including: 51 // * if c doesn't divide 64, the word size, then we're bound to select bits over 2 words of our scalars, instead of 1 52 // * number of CPUs 53 // * cache friendliness (which depends on the host, G1 or G2... ) 54 // --> for example, on BN254, a G1 point fits into one cache line of 64bytes, but a G2 point don't. 55 56 // for each msmCX 57 // step 1 58 // we compute, for each scalars over c-bit wide windows, nbChunk digits 59 // if the digit is larger than 2^{c-1}, then, we borrow 2^c from the next window and subtract 60 // 2^{c} to the current digit, making it negative. 61 // negative digits will be processed in the next step as adding -G into the bucket instead of G 62 // (computing -G is cheap, and this saves us half of the buckets) 63 // step 2 64 // buckets are declared on the stack 65 // notice that we have 2^{c-1} buckets instead of 2^{c} (see step1) 66 // we use jacobian extended formulas here as they are faster than mixed addition 67 // msmProcessChunk places points into buckets base on their selector and return the weighted bucket sum in given channel 68 // step 3 69 // reduce the buckets weighed sums into our result (msmReduceChunk) 70 71 // ensure len(points) == len(scalars) 72 nbPoints := len(points) 73 if nbPoints != len(scalars) { 74 return nil, errors.New("len(points) != len(scalars)") 75 } 76 77 // if nbTasks is not set, use all available CPUs 78 if config.NbTasks <= 0 { 79 config.NbTasks = runtime.NumCPU() * 2 80 } else if config.NbTasks > 1024 { 81 return nil, errors.New("invalid config: config.NbTasks > 1024") 82 } 83 84 // here, we compute the best C for nbPoints 85 // we split recursively until nbChunks(c) >= nbTasks, 86 bestC := func(nbPoints int) uint64 { 87 // implemented msmC methods (the c we use must be in this slice) 88 implementedCs := []uint64{4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} 89 var C uint64 90 // approximate cost (in group operations) 91 // cost = bits/c * (nbPoints + 2^{c}) 92 // this needs to be verified empirically. 93 // for example, on a MBP 2016, for G2 MultiExp > 8M points, hand picking c gives better results 94 min := math.MaxFloat64 95 for _, c := range implementedCs { 96 cc := (fr.Bits + 1) * (nbPoints + (1 << c)) 97 cost := float64(cc) / float64(c) 98 if cost < min { 99 min = cost 100 C = c 101 } 102 } 103 return C 104 } 105 106 C := bestC(nbPoints) 107 nbChunks := int(computeNbChunks(C)) 108 109 // should we recursively split the msm in half? (see below) 110 // we want to minimize the execution time of the algorithm; 111 // splitting the msm will **add** operations, but if it allows to use more CPU, it might be worth it. 112 113 // costFunction returns a metric that represent the "wall time" of the algorithm 114 costFunction := func(nbTasks, nbCpus, costPerTask int) int { 115 // cost for the reduction of all tasks (msmReduceChunk) 116 totalCost := nbTasks 117 118 // cost for the computation of each task (msmProcessChunk) 119 for nbTasks >= nbCpus { 120 nbTasks -= nbCpus 121 totalCost += costPerTask 122 } 123 if nbTasks > 0 { 124 totalCost += costPerTask 125 } 126 return totalCost 127 } 128 129 // costPerTask is the approximate number of group ops per task 130 costPerTask := func(c uint64, nbPoints int) int { return (nbPoints + int((1 << c))) } 131 132 costPreSplit := costFunction(nbChunks, config.NbTasks, costPerTask(C, nbPoints)) 133 134 cPostSplit := bestC(nbPoints / 2) 135 nbChunksPostSplit := int(computeNbChunks(cPostSplit)) 136 costPostSplit := costFunction(nbChunksPostSplit*2, config.NbTasks, costPerTask(cPostSplit, nbPoints/2)) 137 138 // if the cost of the split msm is lower than the cost of the non split msm, we split 139 if costPostSplit < costPreSplit { 140 config.NbTasks = int(math.Ceil(float64(config.NbTasks) / 2.0)) 141 var _p G1Jac 142 chDone := make(chan struct{}, 1) 143 go func() { 144 _p.MultiExp(points[:nbPoints/2], scalars[:nbPoints/2], config) 145 close(chDone) 146 }() 147 p.MultiExp(points[nbPoints/2:], scalars[nbPoints/2:], config) 148 <-chDone 149 p.AddAssign(&_p) 150 return p, nil 151 } 152 153 // if we don't split, we use the best C we found 154 _innerMsmG1(p, C, points, scalars, config) 155 156 return p, nil 157 } 158 159 func _innerMsmG1(p *G1Jac, c uint64, points []G1Affine, scalars []fr.Element, config ecc.MultiExpConfig) *G1Jac { 160 // partition the scalars 161 digits, chunkStats := partitionScalars(scalars, c, config.NbTasks) 162 163 nbChunks := computeNbChunks(c) 164 165 // for each chunk, spawn one go routine that'll loop through all the scalars in the 166 // corresponding bit-window 167 // note that buckets is an array allocated on the stack and this is critical for performance 168 169 // each go routine sends its result in chChunks[i] channel 170 chChunks := make([]chan g1JacExtended, nbChunks) 171 for i := 0; i < len(chChunks); i++ { 172 chChunks[i] = make(chan g1JacExtended, 1) 173 } 174 175 // we use a semaphore to limit the number of go routines running concurrently 176 // (only if nbTasks < nbCPU) 177 var sem chan struct{} 178 if config.NbTasks < runtime.NumCPU() { 179 // we add nbChunks because if chunk is overweight we split it in two 180 sem = make(chan struct{}, config.NbTasks+int(nbChunks)) 181 for i := 0; i < config.NbTasks; i++ { 182 sem <- struct{}{} 183 } 184 defer func() { 185 close(sem) 186 }() 187 } 188 189 // the last chunk may be processed with a different method than the rest, as it could be smaller. 190 n := len(points) 191 for j := int(nbChunks - 1); j >= 0; j-- { 192 processChunk := getChunkProcessorG1(c, chunkStats[j]) 193 if j == int(nbChunks-1) { 194 processChunk = getChunkProcessorG1(lastC(c), chunkStats[j]) 195 } 196 if chunkStats[j].weight >= 115 { 197 // we split this in more go routines since this chunk has more work to do than the others. 198 // else what would happen is this go routine would finish much later than the others. 199 chSplit := make(chan g1JacExtended, 2) 200 split := n / 2 201 202 if sem != nil { 203 sem <- struct{}{} // add another token to the semaphore, since we split in two. 204 } 205 go processChunk(uint64(j), chSplit, c, points[:split], digits[j*n:(j*n)+split], sem) 206 go processChunk(uint64(j), chSplit, c, points[split:], digits[(j*n)+split:(j+1)*n], sem) 207 go func(chunkID int) { 208 s1 := <-chSplit 209 s2 := <-chSplit 210 close(chSplit) 211 s1.add(&s2) 212 chChunks[chunkID] <- s1 213 }(j) 214 continue 215 } 216 go processChunk(uint64(j), chChunks[j], c, points, digits[j*n:(j+1)*n], sem) 217 } 218 219 return msmReduceChunkG1Affine(p, int(c), chChunks[:]) 220 } 221 222 // getChunkProcessorG1 decides, depending on c window size and statistics for the chunk 223 // to return the best algorithm to process the chunk. 224 func getChunkProcessorG1(c uint64, stat chunkStat) func(chunkID uint64, chRes chan<- g1JacExtended, c uint64, points []G1Affine, digits []uint16, sem chan struct{}) { 225 switch c { 226 227 case 2: 228 return processChunkG1Jacobian[bucketg1JacExtendedC2] 229 case 4: 230 return processChunkG1Jacobian[bucketg1JacExtendedC4] 231 case 5: 232 return processChunkG1Jacobian[bucketg1JacExtendedC5] 233 case 6: 234 return processChunkG1Jacobian[bucketg1JacExtendedC6] 235 case 7: 236 return processChunkG1Jacobian[bucketg1JacExtendedC7] 237 case 8: 238 return processChunkG1Jacobian[bucketg1JacExtendedC8] 239 case 9: 240 return processChunkG1Jacobian[bucketg1JacExtendedC9] 241 case 10: 242 const batchSize = 80 243 // here we could check some chunk statistic (deviation, ...) to determine if calling 244 // the batch affine version is worth it. 245 if stat.nbBucketFilled < batchSize { 246 // clear indicator that batch affine method is not appropriate here. 247 return processChunkG1Jacobian[bucketg1JacExtendedC10] 248 } 249 return processChunkG1BatchAffine[bucketg1JacExtendedC10, bucketG1AffineC10, bitSetC10, pG1AffineC10, ppG1AffineC10, qG1AffineC10, cG1AffineC10] 250 case 11: 251 const batchSize = 150 252 // here we could check some chunk statistic (deviation, ...) to determine if calling 253 // the batch affine version is worth it. 254 if stat.nbBucketFilled < batchSize { 255 // clear indicator that batch affine method is not appropriate here. 256 return processChunkG1Jacobian[bucketg1JacExtendedC11] 257 } 258 return processChunkG1BatchAffine[bucketg1JacExtendedC11, bucketG1AffineC11, bitSetC11, pG1AffineC11, ppG1AffineC11, qG1AffineC11, cG1AffineC11] 259 case 12: 260 const batchSize = 200 261 // here we could check some chunk statistic (deviation, ...) to determine if calling 262 // the batch affine version is worth it. 263 if stat.nbBucketFilled < batchSize { 264 // clear indicator that batch affine method is not appropriate here. 265 return processChunkG1Jacobian[bucketg1JacExtendedC12] 266 } 267 return processChunkG1BatchAffine[bucketg1JacExtendedC12, bucketG1AffineC12, bitSetC12, pG1AffineC12, ppG1AffineC12, qG1AffineC12, cG1AffineC12] 268 case 13: 269 const batchSize = 350 270 // here we could check some chunk statistic (deviation, ...) to determine if calling 271 // the batch affine version is worth it. 272 if stat.nbBucketFilled < batchSize { 273 // clear indicator that batch affine method is not appropriate here. 274 return processChunkG1Jacobian[bucketg1JacExtendedC13] 275 } 276 return processChunkG1BatchAffine[bucketg1JacExtendedC13, bucketG1AffineC13, bitSetC13, pG1AffineC13, ppG1AffineC13, qG1AffineC13, cG1AffineC13] 277 case 14: 278 const batchSize = 400 279 // here we could check some chunk statistic (deviation, ...) to determine if calling 280 // the batch affine version is worth it. 281 if stat.nbBucketFilled < batchSize { 282 // clear indicator that batch affine method is not appropriate here. 283 return processChunkG1Jacobian[bucketg1JacExtendedC14] 284 } 285 return processChunkG1BatchAffine[bucketg1JacExtendedC14, bucketG1AffineC14, bitSetC14, pG1AffineC14, ppG1AffineC14, qG1AffineC14, cG1AffineC14] 286 case 15: 287 const batchSize = 500 288 // here we could check some chunk statistic (deviation, ...) to determine if calling 289 // the batch affine version is worth it. 290 if stat.nbBucketFilled < batchSize { 291 // clear indicator that batch affine method is not appropriate here. 292 return processChunkG1Jacobian[bucketg1JacExtendedC15] 293 } 294 return processChunkG1BatchAffine[bucketg1JacExtendedC15, bucketG1AffineC15, bitSetC15, pG1AffineC15, ppG1AffineC15, qG1AffineC15, cG1AffineC15] 295 case 16: 296 const batchSize = 640 297 // here we could check some chunk statistic (deviation, ...) to determine if calling 298 // the batch affine version is worth it. 299 if stat.nbBucketFilled < batchSize { 300 // clear indicator that batch affine method is not appropriate here. 301 return processChunkG1Jacobian[bucketg1JacExtendedC16] 302 } 303 return processChunkG1BatchAffine[bucketg1JacExtendedC16, bucketG1AffineC16, bitSetC16, pG1AffineC16, ppG1AffineC16, qG1AffineC16, cG1AffineC16] 304 default: 305 // panic("will not happen c != previous values is not generated by templates") 306 return processChunkG1Jacobian[bucketg1JacExtendedC16] 307 } 308 } 309 310 // msmReduceChunkG1Affine reduces the weighted sum of the buckets into the result of the multiExp 311 func msmReduceChunkG1Affine(p *G1Jac, c int, chChunks []chan g1JacExtended) *G1Jac { 312 var _p g1JacExtended 313 totalj := <-chChunks[len(chChunks)-1] 314 _p.Set(&totalj) 315 for j := len(chChunks) - 2; j >= 0; j-- { 316 for l := 0; l < c; l++ { 317 _p.double(&_p) 318 } 319 totalj := <-chChunks[j] 320 _p.add(&totalj) 321 } 322 323 return p.unsafeFromJacExtended(&_p) 324 } 325 326 // Fold computes the multi-exponentiation \sum_{i=0}^{len(points)-1} points[i] * 327 // combinationCoeff^i and stores the result in p. It returns error in case 328 // configuration is invalid. 329 func (p *G1Affine) Fold(points []G1Affine, combinationCoeff fr.Element, config ecc.MultiExpConfig) (*G1Affine, error) { 330 var _p G1Jac 331 if _, err := _p.Fold(points, combinationCoeff, config); err != nil { 332 return nil, err 333 } 334 p.FromJacobian(&_p) 335 return p, nil 336 } 337 338 // Fold computes the multi-exponentiation \sum_{i=0}^{len(points)-1} points[i] * 339 // combinationCoeff^i and stores the result in p. It returns error in case 340 // configuration is invalid. 341 func (p *G1Jac) Fold(points []G1Affine, combinationCoeff fr.Element, config ecc.MultiExpConfig) (*G1Jac, error) { 342 scalars := make([]fr.Element, len(points)) 343 scalar := fr.NewElement(1) 344 for i := 0; i < len(points); i++ { 345 scalars[i].Set(&scalar) 346 scalar.Mul(&scalar, &combinationCoeff) 347 } 348 return p.MultiExp(points, scalars, config) 349 } 350 351 // MultiExp implements section 4 of https://eprint.iacr.org/2012/549.pdf 352 // 353 // This call return an error if len(scalars) != len(points) or if provided config is invalid. 354 func (p *G2Affine) MultiExp(points []G2Affine, scalars []fr.Element, config ecc.MultiExpConfig) (*G2Affine, error) { 355 var _p G2Jac 356 if _, err := _p.MultiExp(points, scalars, config); err != nil { 357 return nil, err 358 } 359 p.FromJacobian(&_p) 360 return p, nil 361 } 362 363 // MultiExp implements section 4 of https://eprint.iacr.org/2012/549.pdf 364 // 365 // This call return an error if len(scalars) != len(points) or if provided config is invalid. 366 func (p *G2Jac) MultiExp(points []G2Affine, scalars []fr.Element, config ecc.MultiExpConfig) (*G2Jac, error) { 367 // TODO @gbotrel replace the ecc.MultiExpConfig by a Option pattern for maintainability. 368 // note: 369 // each of the msmCX method is the same, except for the c constant it declares 370 // duplicating (through template generation) these methods allows to declare the buckets on the stack 371 // the choice of c needs to be improved: 372 // there is a theoretical value that gives optimal asymptotics 373 // but in practice, other factors come into play, including: 374 // * if c doesn't divide 64, the word size, then we're bound to select bits over 2 words of our scalars, instead of 1 375 // * number of CPUs 376 // * cache friendliness (which depends on the host, G1 or G2... ) 377 // --> for example, on BN254, a G1 point fits into one cache line of 64bytes, but a G2 point don't. 378 379 // for each msmCX 380 // step 1 381 // we compute, for each scalars over c-bit wide windows, nbChunk digits 382 // if the digit is larger than 2^{c-1}, then, we borrow 2^c from the next window and subtract 383 // 2^{c} to the current digit, making it negative. 384 // negative digits will be processed in the next step as adding -G into the bucket instead of G 385 // (computing -G is cheap, and this saves us half of the buckets) 386 // step 2 387 // buckets are declared on the stack 388 // notice that we have 2^{c-1} buckets instead of 2^{c} (see step1) 389 // we use jacobian extended formulas here as they are faster than mixed addition 390 // msmProcessChunk places points into buckets base on their selector and return the weighted bucket sum in given channel 391 // step 3 392 // reduce the buckets weighed sums into our result (msmReduceChunk) 393 394 // ensure len(points) == len(scalars) 395 nbPoints := len(points) 396 if nbPoints != len(scalars) { 397 return nil, errors.New("len(points) != len(scalars)") 398 } 399 400 // if nbTasks is not set, use all available CPUs 401 if config.NbTasks <= 0 { 402 config.NbTasks = runtime.NumCPU() * 2 403 } else if config.NbTasks > 1024 { 404 return nil, errors.New("invalid config: config.NbTasks > 1024") 405 } 406 407 // here, we compute the best C for nbPoints 408 // we split recursively until nbChunks(c) >= nbTasks, 409 bestC := func(nbPoints int) uint64 { 410 // implemented msmC methods (the c we use must be in this slice) 411 implementedCs := []uint64{4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} 412 var C uint64 413 // approximate cost (in group operations) 414 // cost = bits/c * (nbPoints + 2^{c}) 415 // this needs to be verified empirically. 416 // for example, on a MBP 2016, for G2 MultiExp > 8M points, hand picking c gives better results 417 min := math.MaxFloat64 418 for _, c := range implementedCs { 419 cc := (fr.Bits + 1) * (nbPoints + (1 << c)) 420 cost := float64(cc) / float64(c) 421 if cost < min { 422 min = cost 423 C = c 424 } 425 } 426 return C 427 } 428 429 C := bestC(nbPoints) 430 nbChunks := int(computeNbChunks(C)) 431 432 // should we recursively split the msm in half? (see below) 433 // we want to minimize the execution time of the algorithm; 434 // splitting the msm will **add** operations, but if it allows to use more CPU, it might be worth it. 435 436 // costFunction returns a metric that represent the "wall time" of the algorithm 437 costFunction := func(nbTasks, nbCpus, costPerTask int) int { 438 // cost for the reduction of all tasks (msmReduceChunk) 439 totalCost := nbTasks 440 441 // cost for the computation of each task (msmProcessChunk) 442 for nbTasks >= nbCpus { 443 nbTasks -= nbCpus 444 totalCost += costPerTask 445 } 446 if nbTasks > 0 { 447 totalCost += costPerTask 448 } 449 return totalCost 450 } 451 452 // costPerTask is the approximate number of group ops per task 453 costPerTask := func(c uint64, nbPoints int) int { return (nbPoints + int((1 << c))) } 454 455 costPreSplit := costFunction(nbChunks, config.NbTasks, costPerTask(C, nbPoints)) 456 457 cPostSplit := bestC(nbPoints / 2) 458 nbChunksPostSplit := int(computeNbChunks(cPostSplit)) 459 costPostSplit := costFunction(nbChunksPostSplit*2, config.NbTasks, costPerTask(cPostSplit, nbPoints/2)) 460 461 // if the cost of the split msm is lower than the cost of the non split msm, we split 462 if costPostSplit < costPreSplit { 463 config.NbTasks = int(math.Ceil(float64(config.NbTasks) / 2.0)) 464 var _p G2Jac 465 chDone := make(chan struct{}, 1) 466 go func() { 467 _p.MultiExp(points[:nbPoints/2], scalars[:nbPoints/2], config) 468 close(chDone) 469 }() 470 p.MultiExp(points[nbPoints/2:], scalars[nbPoints/2:], config) 471 <-chDone 472 p.AddAssign(&_p) 473 return p, nil 474 } 475 476 // if we don't split, we use the best C we found 477 _innerMsmG2(p, C, points, scalars, config) 478 479 return p, nil 480 } 481 482 func _innerMsmG2(p *G2Jac, c uint64, points []G2Affine, scalars []fr.Element, config ecc.MultiExpConfig) *G2Jac { 483 // partition the scalars 484 digits, chunkStats := partitionScalars(scalars, c, config.NbTasks) 485 486 nbChunks := computeNbChunks(c) 487 488 // for each chunk, spawn one go routine that'll loop through all the scalars in the 489 // corresponding bit-window 490 // note that buckets is an array allocated on the stack and this is critical for performance 491 492 // each go routine sends its result in chChunks[i] channel 493 chChunks := make([]chan g2JacExtended, nbChunks) 494 for i := 0; i < len(chChunks); i++ { 495 chChunks[i] = make(chan g2JacExtended, 1) 496 } 497 498 // we use a semaphore to limit the number of go routines running concurrently 499 // (only if nbTasks < nbCPU) 500 var sem chan struct{} 501 if config.NbTasks < runtime.NumCPU() { 502 // we add nbChunks because if chunk is overweight we split it in two 503 sem = make(chan struct{}, config.NbTasks+int(nbChunks)) 504 for i := 0; i < config.NbTasks; i++ { 505 sem <- struct{}{} 506 } 507 defer func() { 508 close(sem) 509 }() 510 } 511 512 // the last chunk may be processed with a different method than the rest, as it could be smaller. 513 n := len(points) 514 for j := int(nbChunks - 1); j >= 0; j-- { 515 processChunk := getChunkProcessorG2(c, chunkStats[j]) 516 if j == int(nbChunks-1) { 517 processChunk = getChunkProcessorG2(lastC(c), chunkStats[j]) 518 } 519 if chunkStats[j].weight >= 115 { 520 // we split this in more go routines since this chunk has more work to do than the others. 521 // else what would happen is this go routine would finish much later than the others. 522 chSplit := make(chan g2JacExtended, 2) 523 split := n / 2 524 525 if sem != nil { 526 sem <- struct{}{} // add another token to the semaphore, since we split in two. 527 } 528 go processChunk(uint64(j), chSplit, c, points[:split], digits[j*n:(j*n)+split], sem) 529 go processChunk(uint64(j), chSplit, c, points[split:], digits[(j*n)+split:(j+1)*n], sem) 530 go func(chunkID int) { 531 s1 := <-chSplit 532 s2 := <-chSplit 533 close(chSplit) 534 s1.add(&s2) 535 chChunks[chunkID] <- s1 536 }(j) 537 continue 538 } 539 go processChunk(uint64(j), chChunks[j], c, points, digits[j*n:(j+1)*n], sem) 540 } 541 542 return msmReduceChunkG2Affine(p, int(c), chChunks[:]) 543 } 544 545 // getChunkProcessorG2 decides, depending on c window size and statistics for the chunk 546 // to return the best algorithm to process the chunk. 547 func getChunkProcessorG2(c uint64, stat chunkStat) func(chunkID uint64, chRes chan<- g2JacExtended, c uint64, points []G2Affine, digits []uint16, sem chan struct{}) { 548 switch c { 549 550 case 2: 551 return processChunkG2Jacobian[bucketg2JacExtendedC2] 552 case 4: 553 return processChunkG2Jacobian[bucketg2JacExtendedC4] 554 case 5: 555 return processChunkG2Jacobian[bucketg2JacExtendedC5] 556 case 6: 557 return processChunkG2Jacobian[bucketg2JacExtendedC6] 558 case 7: 559 return processChunkG2Jacobian[bucketg2JacExtendedC7] 560 case 8: 561 return processChunkG2Jacobian[bucketg2JacExtendedC8] 562 case 9: 563 return processChunkG2Jacobian[bucketg2JacExtendedC9] 564 case 10: 565 const batchSize = 80 566 // here we could check some chunk statistic (deviation, ...) to determine if calling 567 // the batch affine version is worth it. 568 if stat.nbBucketFilled < batchSize { 569 // clear indicator that batch affine method is not appropriate here. 570 return processChunkG2Jacobian[bucketg2JacExtendedC10] 571 } 572 return processChunkG2BatchAffine[bucketg2JacExtendedC10, bucketG2AffineC10, bitSetC10, pG2AffineC10, ppG2AffineC10, qG2AffineC10, cG2AffineC10] 573 case 11: 574 const batchSize = 150 575 // here we could check some chunk statistic (deviation, ...) to determine if calling 576 // the batch affine version is worth it. 577 if stat.nbBucketFilled < batchSize { 578 // clear indicator that batch affine method is not appropriate here. 579 return processChunkG2Jacobian[bucketg2JacExtendedC11] 580 } 581 return processChunkG2BatchAffine[bucketg2JacExtendedC11, bucketG2AffineC11, bitSetC11, pG2AffineC11, ppG2AffineC11, qG2AffineC11, cG2AffineC11] 582 case 12: 583 const batchSize = 200 584 // here we could check some chunk statistic (deviation, ...) to determine if calling 585 // the batch affine version is worth it. 586 if stat.nbBucketFilled < batchSize { 587 // clear indicator that batch affine method is not appropriate here. 588 return processChunkG2Jacobian[bucketg2JacExtendedC12] 589 } 590 return processChunkG2BatchAffine[bucketg2JacExtendedC12, bucketG2AffineC12, bitSetC12, pG2AffineC12, ppG2AffineC12, qG2AffineC12, cG2AffineC12] 591 case 13: 592 const batchSize = 350 593 // here we could check some chunk statistic (deviation, ...) to determine if calling 594 // the batch affine version is worth it. 595 if stat.nbBucketFilled < batchSize { 596 // clear indicator that batch affine method is not appropriate here. 597 return processChunkG2Jacobian[bucketg2JacExtendedC13] 598 } 599 return processChunkG2BatchAffine[bucketg2JacExtendedC13, bucketG2AffineC13, bitSetC13, pG2AffineC13, ppG2AffineC13, qG2AffineC13, cG2AffineC13] 600 case 14: 601 const batchSize = 400 602 // here we could check some chunk statistic (deviation, ...) to determine if calling 603 // the batch affine version is worth it. 604 if stat.nbBucketFilled < batchSize { 605 // clear indicator that batch affine method is not appropriate here. 606 return processChunkG2Jacobian[bucketg2JacExtendedC14] 607 } 608 return processChunkG2BatchAffine[bucketg2JacExtendedC14, bucketG2AffineC14, bitSetC14, pG2AffineC14, ppG2AffineC14, qG2AffineC14, cG2AffineC14] 609 case 15: 610 const batchSize = 500 611 // here we could check some chunk statistic (deviation, ...) to determine if calling 612 // the batch affine version is worth it. 613 if stat.nbBucketFilled < batchSize { 614 // clear indicator that batch affine method is not appropriate here. 615 return processChunkG2Jacobian[bucketg2JacExtendedC15] 616 } 617 return processChunkG2BatchAffine[bucketg2JacExtendedC15, bucketG2AffineC15, bitSetC15, pG2AffineC15, ppG2AffineC15, qG2AffineC15, cG2AffineC15] 618 case 16: 619 const batchSize = 640 620 // here we could check some chunk statistic (deviation, ...) to determine if calling 621 // the batch affine version is worth it. 622 if stat.nbBucketFilled < batchSize { 623 // clear indicator that batch affine method is not appropriate here. 624 return processChunkG2Jacobian[bucketg2JacExtendedC16] 625 } 626 return processChunkG2BatchAffine[bucketg2JacExtendedC16, bucketG2AffineC16, bitSetC16, pG2AffineC16, ppG2AffineC16, qG2AffineC16, cG2AffineC16] 627 default: 628 // panic("will not happen c != previous values is not generated by templates") 629 return processChunkG2Jacobian[bucketg2JacExtendedC16] 630 } 631 } 632 633 // msmReduceChunkG2Affine reduces the weighted sum of the buckets into the result of the multiExp 634 func msmReduceChunkG2Affine(p *G2Jac, c int, chChunks []chan g2JacExtended) *G2Jac { 635 var _p g2JacExtended 636 totalj := <-chChunks[len(chChunks)-1] 637 _p.Set(&totalj) 638 for j := len(chChunks) - 2; j >= 0; j-- { 639 for l := 0; l < c; l++ { 640 _p.double(&_p) 641 } 642 totalj := <-chChunks[j] 643 _p.add(&totalj) 644 } 645 646 return p.unsafeFromJacExtended(&_p) 647 } 648 649 // Fold computes the multi-exponentiation \sum_{i=0}^{len(points)-1} points[i] * 650 // combinationCoeff^i and stores the result in p. It returns error in case 651 // configuration is invalid. 652 func (p *G2Affine) Fold(points []G2Affine, combinationCoeff fr.Element, config ecc.MultiExpConfig) (*G2Affine, error) { 653 var _p G2Jac 654 if _, err := _p.Fold(points, combinationCoeff, config); err != nil { 655 return nil, err 656 } 657 p.FromJacobian(&_p) 658 return p, nil 659 } 660 661 // Fold computes the multi-exponentiation \sum_{i=0}^{len(points)-1} points[i] * 662 // combinationCoeff^i and stores the result in p. It returns error in case 663 // configuration is invalid. 664 func (p *G2Jac) Fold(points []G2Affine, combinationCoeff fr.Element, config ecc.MultiExpConfig) (*G2Jac, error) { 665 scalars := make([]fr.Element, len(points)) 666 scalar := fr.NewElement(1) 667 for i := 0; i < len(points); i++ { 668 scalars[i].Set(&scalar) 669 scalar.Mul(&scalar, &combinationCoeff) 670 } 671 return p.MultiExp(points, scalars, config) 672 } 673 674 // selector stores the index, mask and shifts needed to select bits from a scalar 675 // it is used during the multiExp algorithm or the batch scalar multiplication 676 type selector struct { 677 index uint64 // index in the multi-word scalar to select bits from 678 mask uint64 // mask (c-bit wide) 679 shift uint64 // shift needed to get our bits on low positions 680 681 multiWordSelect bool // set to true if we need to select bits from 2 words (case where c doesn't divide 64) 682 maskHigh uint64 // same than mask, for index+1 683 shiftHigh uint64 // same than shift, for index+1 684 } 685 686 // return number of chunks for a given window size c 687 // the last chunk may be bigger to accommodate a potential carry from the NAF decomposition 688 func computeNbChunks(c uint64) uint64 { 689 return (fr.Bits + c - 1) / c 690 } 691 692 // return the last window size for a scalar; 693 // this last window should accommodate a carry (from the NAF decomposition) 694 // it can be == c if we have 1 available bit 695 // it can be > c if we have 0 available bit 696 // it can be < c if we have 2+ available bits 697 func lastC(c uint64) uint64 { 698 nbAvailableBits := (computeNbChunks(c) * c) - fr.Bits 699 return c + 1 - nbAvailableBits 700 } 701 702 type chunkStat struct { 703 // relative weight of work compared to other chunks. 100.0 -> nominal weight. 704 weight float32 705 706 // percentage of bucket filled in the window; 707 ppBucketFilled float32 708 nbBucketFilled int 709 } 710 711 // partitionScalars compute, for each scalars over c-bit wide windows, nbChunk digits 712 // if the digit is larger than 2^{c-1}, then, we borrow 2^c from the next window and subtract 713 // 2^{c} to the current digit, making it negative. 714 // negative digits can be processed in a later step as adding -G into the bucket instead of G 715 // (computing -G is cheap, and this saves us half of the buckets in the MultiExp or BatchScalarMultiplication) 716 func partitionScalars(scalars []fr.Element, c uint64, nbTasks int) ([]uint16, []chunkStat) { 717 // no benefit here to have more tasks than CPUs 718 if nbTasks > runtime.NumCPU() { 719 nbTasks = runtime.NumCPU() 720 } 721 722 // number of c-bit radixes in a scalar 723 nbChunks := computeNbChunks(c) 724 725 digits := make([]uint16, len(scalars)*int(nbChunks)) 726 727 mask := uint64((1 << c) - 1) // low c bits are 1 728 max := int(1<<(c-1)) - 1 // max value (inclusive) we want for our digits 729 cDivides64 := (64 % c) == 0 // if c doesn't divide 64, we may need to select over multiple words 730 731 // compute offset and word selector / shift to select the right bits of our windows 732 selectors := make([]selector, nbChunks) 733 for chunk := uint64(0); chunk < nbChunks; chunk++ { 734 jc := uint64(chunk * c) 735 d := selector{} 736 d.index = jc / 64 737 d.shift = jc - (d.index * 64) 738 d.mask = mask << d.shift 739 d.multiWordSelect = !cDivides64 && d.shift > (64-c) && d.index < (fr.Limbs-1) 740 if d.multiWordSelect { 741 nbBitsHigh := d.shift - uint64(64-c) 742 d.maskHigh = (1 << nbBitsHigh) - 1 743 d.shiftHigh = (c - nbBitsHigh) 744 } 745 selectors[chunk] = d 746 } 747 748 parallel.Execute(len(scalars), func(start, end int) { 749 for i := start; i < end; i++ { 750 if scalars[i].IsZero() { 751 // everything is 0, no need to process this scalar 752 continue 753 } 754 scalar := scalars[i].Bits() 755 756 var carry int 757 758 // for each chunk in the scalar, compute the current digit, and an eventual carry 759 for chunk := uint64(0); chunk < nbChunks-1; chunk++ { 760 s := selectors[chunk] 761 762 // init with carry if any 763 digit := carry 764 carry = 0 765 766 // digit = value of the c-bit window 767 digit += int((scalar[s.index] & s.mask) >> s.shift) 768 769 if s.multiWordSelect { 770 // we are selecting bits over 2 words 771 digit += int(scalar[s.index+1]&s.maskHigh) << s.shiftHigh 772 } 773 774 // if the digit is larger than 2^{c-1}, then, we borrow 2^c from the next window and subtract 775 // 2^{c} to the current digit, making it negative. 776 if digit > max { 777 digit -= (1 << c) 778 carry = 1 779 } 780 781 // if digit is zero, no impact on result 782 if digit == 0 { 783 continue 784 } 785 786 var bits uint16 787 if digit > 0 { 788 bits = uint16(digit) << 1 789 } else { 790 bits = (uint16(-digit-1) << 1) + 1 791 } 792 digits[int(chunk)*len(scalars)+i] = bits 793 } 794 795 // for the last chunk, we don't want to borrow from a next window 796 // (but may have a larger max value) 797 chunk := nbChunks - 1 798 s := selectors[chunk] 799 // init with carry if any 800 digit := carry 801 // digit = value of the c-bit window 802 digit += int((scalar[s.index] & s.mask) >> s.shift) 803 if s.multiWordSelect { 804 // we are selecting bits over 2 words 805 digit += int(scalar[s.index+1]&s.maskHigh) << s.shiftHigh 806 } 807 digits[int(chunk)*len(scalars)+i] = uint16(digit) << 1 808 } 809 810 }, nbTasks) 811 812 // aggregate chunk stats 813 chunkStats := make([]chunkStat, nbChunks) 814 if c <= 9 { 815 // no need to compute stats for small window sizes 816 return digits, chunkStats 817 } 818 parallel.Execute(len(chunkStats), func(start, end int) { 819 // for each chunk compute the statistics 820 for chunkID := start; chunkID < end; chunkID++ { 821 // indicates if a bucket is hit. 822 var b bitSetC16 823 824 // digits for the chunk 825 chunkDigits := digits[chunkID*len(scalars) : (chunkID+1)*len(scalars)] 826 827 totalOps := 0 828 nz := 0 // non zero buckets count 829 for _, digit := range chunkDigits { 830 if digit == 0 { 831 continue 832 } 833 totalOps++ 834 bucketID := digit >> 1 835 if digit&1 == 0 { 836 bucketID -= 1 837 } 838 if !b[bucketID] { 839 nz++ 840 b[bucketID] = true 841 } 842 } 843 chunkStats[chunkID].weight = float32(totalOps) // count number of ops for now, we will compute the weight after 844 chunkStats[chunkID].ppBucketFilled = (float32(nz) * 100.0) / float32(int(1<<(c-1))) 845 chunkStats[chunkID].nbBucketFilled = nz 846 } 847 }, nbTasks) 848 849 totalOps := float32(0.0) 850 for _, stat := range chunkStats { 851 totalOps += stat.weight 852 } 853 854 target := totalOps / float32(nbChunks) 855 if target != 0.0 { 856 // if target == 0, it means all the scalars are 0 everywhere, there is no work to be done. 857 for i := 0; i < len(chunkStats); i++ { 858 chunkStats[i].weight = (chunkStats[i].weight * 100.0) / target 859 } 860 } 861 862 return digits, chunkStats 863 }