github.com/consensys/gnark-crypto@v0.14.0/ecc/bls24-317/g1.go (about) 1 // Copyright 2020 Consensys Software Inc. 2 // 3 // Licensed under the Apache License, Version 2.0 (the "License"); 4 // you may not use this file except in compliance with the License. 5 // You may obtain a copy of the License at 6 // 7 // http://www.apache.org/licenses/LICENSE-2.0 8 // 9 // Unless required by applicable law or agreed to in writing, software 10 // distributed under the License is distributed on an "AS IS" BASIS, 11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 // See the License for the specific language governing permissions and 13 // limitations under the License. 14 15 // Code generated by consensys/gnark-crypto DO NOT EDIT 16 17 package bls24317 18 19 import ( 20 "github.com/consensys/gnark-crypto/ecc" 21 "github.com/consensys/gnark-crypto/ecc/bls24-317/fp" 22 "github.com/consensys/gnark-crypto/ecc/bls24-317/fr" 23 "github.com/consensys/gnark-crypto/internal/parallel" 24 "math/big" 25 "runtime" 26 ) 27 28 // G1Affine is a point in affine coordinates (x,y) 29 type G1Affine struct { 30 X, Y fp.Element 31 } 32 33 // G1Jac is a point in Jacobian coordinates (x=X/Z², y=Y/Z³) 34 type G1Jac struct { 35 X, Y, Z fp.Element 36 } 37 38 // g1JacExtended is a point in extended Jacobian coordinates (x=X/ZZ, y=Y/ZZZ, ZZ³=ZZZ²) 39 type g1JacExtended struct { 40 X, Y, ZZ, ZZZ fp.Element 41 } 42 43 // ------------------------------------------------------------------------------------------------- 44 // Affine coordinates 45 46 // Set sets p to a in affine coordinates. 47 func (p *G1Affine) Set(a *G1Affine) *G1Affine { 48 p.X, p.Y = a.X, a.Y 49 return p 50 } 51 52 // setInfinity sets p to the infinity point, which is encoded as (0,0). 53 // N.B.: (0,0) is never on the curve for j=0 curves (Y²=X³+B). 54 func (p *G1Affine) setInfinity() *G1Affine { 55 p.X.SetZero() 56 p.Y.SetZero() 57 return p 58 } 59 60 // ScalarMultiplication computes and returns p = [s]a 61 // where p and a are affine points. 62 func (p *G1Affine) ScalarMultiplication(a *G1Affine, s *big.Int) *G1Affine { 63 var _p G1Jac 64 _p.FromAffine(a) 65 _p.mulGLV(&_p, s) 66 p.FromJacobian(&_p) 67 return p 68 } 69 70 // ScalarMultiplicationBase computes and returns p = [s]g 71 // where g is the affine point generating the prime subgroup. 72 func (p *G1Affine) ScalarMultiplicationBase(s *big.Int) *G1Affine { 73 var _p G1Jac 74 _p.mulGLV(&g1Gen, s) 75 p.FromJacobian(&_p) 76 return p 77 } 78 79 // Add adds two points in affine coordinates. 80 // It uses the Jacobian addition with a.Z=b.Z=1 and converts the result to affine coordinates. 81 // 82 // https://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-mmadd-2007-bl 83 func (p *G1Affine) Add(a, b *G1Affine) *G1Affine { 84 var q G1Jac 85 // a is infinity, return b 86 if a.IsInfinity() { 87 p.Set(b) 88 return p 89 } 90 // b is infinity, return a 91 if b.IsInfinity() { 92 p.Set(a) 93 return p 94 } 95 if a.X.Equal(&b.X) { 96 // if b == a, we double instead 97 if a.Y.Equal(&b.Y) { 98 q.DoubleMixed(a) 99 return p.FromJacobian(&q) 100 } else { 101 // if b == -a, we return 0 102 return p.setInfinity() 103 } 104 } 105 var H, HH, I, J, r, V fp.Element 106 H.Sub(&b.X, &a.X) 107 HH.Square(&H) 108 I.Double(&HH).Double(&I) 109 J.Mul(&H, &I) 110 r.Sub(&b.Y, &a.Y) 111 r.Double(&r) 112 V.Mul(&a.X, &I) 113 q.X.Square(&r). 114 Sub(&q.X, &J). 115 Sub(&q.X, &V). 116 Sub(&q.X, &V) 117 q.Y.Sub(&V, &q.X). 118 Mul(&q.Y, &r) 119 J.Mul(&a.Y, &J).Double(&J) 120 q.Y.Sub(&q.Y, &J) 121 q.Z.Double(&H) 122 123 return p.FromJacobian(&q) 124 } 125 126 // Double doubles a point in affine coordinates. 127 // It converts the point to Jacobian coordinates, doubles it using Jacobian 128 // addition with a.Z=1, and converts it back to affine coordinates. 129 // 130 // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-mdbl-2007-bl 131 func (p *G1Affine) Double(a *G1Affine) *G1Affine { 132 var q G1Jac 133 q.FromAffine(a) 134 q.DoubleMixed(a) 135 p.FromJacobian(&q) 136 return p 137 } 138 139 // Sub subtracts two points in affine coordinates. 140 // It uses a similar approach to Add, but negates the second point before adding. 141 func (p *G1Affine) Sub(a, b *G1Affine) *G1Affine { 142 var bneg G1Affine 143 bneg.Neg(b) 144 p.Add(a, &bneg) 145 return p 146 } 147 148 // Equal tests if two points in affine coordinates are equal. 149 func (p *G1Affine) Equal(a *G1Affine) bool { 150 return p.X.Equal(&a.X) && p.Y.Equal(&a.Y) 151 } 152 153 // Neg sets p to the affine negative point -a = (a.X, -a.Y). 154 func (p *G1Affine) Neg(a *G1Affine) *G1Affine { 155 p.X = a.X 156 p.Y.Neg(&a.Y) 157 return p 158 } 159 160 // FromJacobian converts a point p1 from Jacobian to affine coordinates. 161 func (p *G1Affine) FromJacobian(p1 *G1Jac) *G1Affine { 162 163 var a, b fp.Element 164 165 if p1.Z.IsZero() { 166 p.X.SetZero() 167 p.Y.SetZero() 168 return p 169 } 170 171 a.Inverse(&p1.Z) 172 b.Square(&a) 173 p.X.Mul(&p1.X, &b) 174 p.Y.Mul(&p1.Y, &b).Mul(&p.Y, &a) 175 176 return p 177 } 178 179 // String returns the string representation E(x,y) of the affine point p or "O" if it is infinity. 180 func (p *G1Affine) String() string { 181 if p.IsInfinity() { 182 return "O" 183 } 184 return "E([" + p.X.String() + "," + p.Y.String() + "])" 185 } 186 187 // IsInfinity checks if the affine point p is infinity, which is encoded as (0,0). 188 // N.B.: (0,0) is never on the curve for j=0 curves (Y²=X³+B). 189 func (p *G1Affine) IsInfinity() bool { 190 return p.X.IsZero() && p.Y.IsZero() 191 } 192 193 // IsOnCurve returns true if the affine point p in on the curve. 194 func (p *G1Affine) IsOnCurve() bool { 195 var point G1Jac 196 point.FromAffine(p) 197 return point.IsOnCurve() // call this function to handle infinity point 198 } 199 200 // IsInSubGroup returns true if the affine point p is in the correct subgroup, false otherwise. 201 func (p *G1Affine) IsInSubGroup() bool { 202 var _p G1Jac 203 _p.FromAffine(p) 204 return _p.IsInSubGroup() 205 } 206 207 // ------------------------------------------------------------------------------------------------- 208 // Jacobian coordinates 209 210 // Set sets p to a in Jacobian coordinates. 211 func (p *G1Jac) Set(q *G1Jac) *G1Jac { 212 p.X, p.Y, p.Z = q.X, q.Y, q.Z 213 return p 214 } 215 216 // Equal tests if two points in Jacobian coordinates are equal. 217 func (p *G1Jac) Equal(q *G1Jac) bool { 218 // If one point is infinity, the other must also be infinity. 219 if p.Z.IsZero() { 220 return q.Z.IsZero() 221 } 222 // If the other point is infinity, return false since we can't 223 // the following checks would be incorrect. 224 if q.Z.IsZero() { 225 return false 226 } 227 228 var pZSquare, aZSquare fp.Element 229 pZSquare.Square(&p.Z) 230 aZSquare.Square(&q.Z) 231 232 var lhs, rhs fp.Element 233 lhs.Mul(&p.X, &aZSquare) 234 rhs.Mul(&q.X, &pZSquare) 235 if !lhs.Equal(&rhs) { 236 return false 237 } 238 lhs.Mul(&p.Y, &aZSquare).Mul(&lhs, &q.Z) 239 rhs.Mul(&q.Y, &pZSquare).Mul(&rhs, &p.Z) 240 241 return lhs.Equal(&rhs) 242 } 243 244 // Neg sets p to the Jacobian negative point -q = (q.X, -q.Y, q.Z). 245 func (p *G1Jac) Neg(q *G1Jac) *G1Jac { 246 *p = *q 247 p.Y.Neg(&q.Y) 248 return p 249 } 250 251 // AddAssign sets p to p+a in Jacobian coordinates. 252 // 253 // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl 254 func (p *G1Jac) AddAssign(q *G1Jac) *G1Jac { 255 256 // p is infinity, return q 257 if p.Z.IsZero() { 258 p.Set(q) 259 return p 260 } 261 262 // q is infinity, return p 263 if q.Z.IsZero() { 264 return p 265 } 266 267 var Z1Z1, Z2Z2, U1, U2, S1, S2, H, I, J, r, V fp.Element 268 Z1Z1.Square(&q.Z) 269 Z2Z2.Square(&p.Z) 270 U1.Mul(&q.X, &Z2Z2) 271 U2.Mul(&p.X, &Z1Z1) 272 S1.Mul(&q.Y, &p.Z). 273 Mul(&S1, &Z2Z2) 274 S2.Mul(&p.Y, &q.Z). 275 Mul(&S2, &Z1Z1) 276 277 // if p == q, we double instead 278 if U1.Equal(&U2) && S1.Equal(&S2) { 279 return p.DoubleAssign() 280 } 281 282 H.Sub(&U2, &U1) 283 I.Double(&H). 284 Square(&I) 285 J.Mul(&H, &I) 286 r.Sub(&S2, &S1).Double(&r) 287 V.Mul(&U1, &I) 288 p.X.Square(&r). 289 Sub(&p.X, &J). 290 Sub(&p.X, &V). 291 Sub(&p.X, &V) 292 p.Y.Sub(&V, &p.X). 293 Mul(&p.Y, &r) 294 S1.Mul(&S1, &J).Double(&S1) 295 p.Y.Sub(&p.Y, &S1) 296 p.Z.Add(&p.Z, &q.Z) 297 p.Z.Square(&p.Z). 298 Sub(&p.Z, &Z1Z1). 299 Sub(&p.Z, &Z2Z2). 300 Mul(&p.Z, &H) 301 302 return p 303 } 304 305 // SubAssign sets p to p-a in Jacobian coordinates. 306 // It uses a similar approach to AddAssign, but negates the point a before adding. 307 func (p *G1Jac) SubAssign(q *G1Jac) *G1Jac { 308 var tmp G1Jac 309 tmp.Set(q) 310 tmp.Y.Neg(&tmp.Y) 311 p.AddAssign(&tmp) 312 return p 313 } 314 315 // Double sets p to [2]q in Jacobian coordinates. 316 // 317 // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2007-bl 318 func (p *G1Jac) DoubleMixed(a *G1Affine) *G1Jac { 319 var XX, YY, YYYY, S, M, T fp.Element 320 XX.Square(&a.X) 321 YY.Square(&a.Y) 322 YYYY.Square(&YY) 323 S.Add(&a.X, &YY). 324 Square(&S). 325 Sub(&S, &XX). 326 Sub(&S, &YYYY). 327 Double(&S) 328 M.Double(&XX). 329 Add(&M, &XX) // -> + A, but A=0 here 330 T.Square(&M). 331 Sub(&T, &S). 332 Sub(&T, &S) 333 p.X.Set(&T) 334 p.Y.Sub(&S, &T). 335 Mul(&p.Y, &M) 336 YYYY.Double(&YYYY). 337 Double(&YYYY). 338 Double(&YYYY) 339 p.Y.Sub(&p.Y, &YYYY) 340 p.Z.Double(&a.Y) 341 342 return p 343 } 344 345 // AddMixed sets p to p+a in Jacobian coordinates, where a.Z = 1. 346 // 347 // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-madd-2007-bl 348 func (p *G1Jac) AddMixed(a *G1Affine) *G1Jac { 349 350 //if a is infinity return p 351 if a.IsInfinity() { 352 return p 353 } 354 // p is infinity, return a 355 if p.Z.IsZero() { 356 p.X = a.X 357 p.Y = a.Y 358 p.Z.SetOne() 359 return p 360 } 361 362 var Z1Z1, U2, S2, H, HH, I, J, r, V fp.Element 363 Z1Z1.Square(&p.Z) 364 U2.Mul(&a.X, &Z1Z1) 365 S2.Mul(&a.Y, &p.Z). 366 Mul(&S2, &Z1Z1) 367 368 // if p == a, we double instead 369 if U2.Equal(&p.X) && S2.Equal(&p.Y) { 370 return p.DoubleMixed(a) 371 } 372 373 H.Sub(&U2, &p.X) 374 HH.Square(&H) 375 I.Double(&HH).Double(&I) 376 J.Mul(&H, &I) 377 r.Sub(&S2, &p.Y).Double(&r) 378 V.Mul(&p.X, &I) 379 p.X.Square(&r). 380 Sub(&p.X, &J). 381 Sub(&p.X, &V). 382 Sub(&p.X, &V) 383 J.Mul(&J, &p.Y).Double(&J) 384 p.Y.Sub(&V, &p.X). 385 Mul(&p.Y, &r) 386 p.Y.Sub(&p.Y, &J) 387 p.Z.Add(&p.Z, &H) 388 p.Z.Square(&p.Z). 389 Sub(&p.Z, &Z1Z1). 390 Sub(&p.Z, &HH) 391 392 return p 393 } 394 395 // Double sets p to [2]q in Jacobian coordinates. 396 // 397 // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2007-bl 398 func (p *G1Jac) Double(q *G1Jac) *G1Jac { 399 p.Set(q) 400 p.DoubleAssign() 401 return p 402 } 403 404 // DoubleAssign doubles p in Jacobian coordinates. 405 // 406 // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2007-bl 407 func (p *G1Jac) DoubleAssign() *G1Jac { 408 409 var XX, YY, YYYY, ZZ, S, M, T fp.Element 410 411 XX.Square(&p.X) 412 YY.Square(&p.Y) 413 YYYY.Square(&YY) 414 ZZ.Square(&p.Z) 415 S.Add(&p.X, &YY) 416 S.Square(&S). 417 Sub(&S, &XX). 418 Sub(&S, &YYYY). 419 Double(&S) 420 M.Double(&XX).Add(&M, &XX) 421 p.Z.Add(&p.Z, &p.Y). 422 Square(&p.Z). 423 Sub(&p.Z, &YY). 424 Sub(&p.Z, &ZZ) 425 T.Square(&M) 426 p.X = T 427 T.Double(&S) 428 p.X.Sub(&p.X, &T) 429 p.Y.Sub(&S, &p.X). 430 Mul(&p.Y, &M) 431 YYYY.Double(&YYYY).Double(&YYYY).Double(&YYYY) 432 p.Y.Sub(&p.Y, &YYYY) 433 434 return p 435 } 436 437 // ScalarMultiplication computes and returns p = [s]a 438 // where p and a are Jacobian points. 439 // using the GLV technique. 440 // see https://www.iacr.org/archive/crypto2001/21390189.pdf 441 func (p *G1Jac) ScalarMultiplication(q *G1Jac, s *big.Int) *G1Jac { 442 return p.mulGLV(q, s) 443 } 444 445 // ScalarMultiplicationBase computes and returns p = [s]g 446 // where g is the prime subgroup generator. 447 func (p *G1Jac) ScalarMultiplicationBase(s *big.Int) *G1Jac { 448 return p.mulGLV(&g1Gen, s) 449 450 } 451 452 // String converts p to affine coordinates and returns its string representation E(x,y) or "O" if it is infinity. 453 func (p *G1Jac) String() string { 454 _p := G1Affine{} 455 _p.FromJacobian(p) 456 return _p.String() 457 } 458 459 // FromAffine converts a point a from affine to Jacobian coordinates. 460 func (p *G1Jac) FromAffine(a *G1Affine) *G1Jac { 461 if a.IsInfinity() { 462 p.Z.SetZero() 463 p.X.SetOne() 464 p.Y.SetOne() 465 return p 466 } 467 p.Z.SetOne() 468 p.X.Set(&a.X) 469 p.Y.Set(&a.Y) 470 return p 471 } 472 473 // IsOnCurve returns true if the Jacobian point p in on the curve. 474 func (p *G1Jac) IsOnCurve() bool { 475 var left, right, tmp, ZZ fp.Element 476 left.Square(&p.Y) 477 right.Square(&p.X).Mul(&right, &p.X) 478 ZZ.Square(&p.Z) 479 tmp.Square(&ZZ).Mul(&tmp, &ZZ) 480 // Mul tmp by bCurveCoeff=4 481 tmp.Double(&tmp).Double(&tmp) 482 right.Add(&right, &tmp) 483 return left.Equal(&right) 484 } 485 486 // IsInSubGroup returns true if p is on the r-torsion, false otherwise. 487 488 // Z[r,0]+Z[-lambdaG1Affine, 1] is the kernel 489 // of (u,v)->u+lambdaG1Affinev mod r. Expressing r, lambdaG1Affine as 490 // polynomials in x, a short vector of this Zmodule is 491 // 1, x⁴. So we check that p+x⁴ϕ(p) 492 // is the infinity. 493 func (p *G1Jac) IsInSubGroup() bool { 494 495 var res G1Jac 496 res.phi(p). 497 ScalarMultiplication(&res, &xGen). 498 ScalarMultiplication(&res, &xGen). 499 ScalarMultiplication(&res, &xGen). 500 ScalarMultiplication(&res, &xGen). 501 AddAssign(p) 502 503 return res.IsOnCurve() && res.Z.IsZero() 504 505 } 506 507 // mulWindowed computes the 2-bits windowed double-and-add scalar 508 // multiplication p=[s]q in Jacobian coordinates. 509 func (p *G1Jac) mulWindowed(q *G1Jac, s *big.Int) *G1Jac { 510 511 var res G1Jac 512 var ops [3]G1Jac 513 514 ops[0].Set(q) 515 if s.Sign() == -1 { 516 ops[0].Neg(&ops[0]) 517 } 518 res.Set(&g1Infinity) 519 ops[1].Double(&ops[0]) 520 ops[2].Set(&ops[0]).AddAssign(&ops[1]) 521 522 b := s.Bytes() 523 for i := range b { 524 w := b[i] 525 mask := byte(0xc0) 526 for j := 0; j < 4; j++ { 527 res.DoubleAssign().DoubleAssign() 528 c := (w & mask) >> (6 - 2*j) 529 if c != 0 { 530 res.AddAssign(&ops[c-1]) 531 } 532 mask = mask >> 2 533 } 534 } 535 p.Set(&res) 536 537 return p 538 539 } 540 541 // phi sets p to ϕ(a) where ϕ: (x,y) → (w x,y), 542 // where w is a third root of unity. 543 func (p *G1Jac) phi(q *G1Jac) *G1Jac { 544 p.Set(q) 545 p.X.Mul(&p.X, &thirdRootOneG1) 546 return p 547 } 548 549 // mulGLV computes the scalar multiplication using a windowed-GLV method 550 // 551 // see https://www.iacr.org/archive/crypto2001/21390189.pdf 552 func (p *G1Jac) mulGLV(q *G1Jac, s *big.Int) *G1Jac { 553 554 var table [15]G1Jac 555 var res G1Jac 556 var k1, k2 fr.Element 557 558 res.Set(&g1Infinity) 559 560 // table[b3b2b1b0-1] = b3b2 ⋅ ϕ(q) + b1b0*q 561 table[0].Set(q) 562 table[3].phi(q) 563 564 // split the scalar, modifies ±q, ϕ(q) accordingly 565 k := ecc.SplitScalar(s, &glvBasis) 566 567 if k[0].Sign() == -1 { 568 k[0].Neg(&k[0]) 569 table[0].Neg(&table[0]) 570 } 571 if k[1].Sign() == -1 { 572 k[1].Neg(&k[1]) 573 table[3].Neg(&table[3]) 574 } 575 576 // precompute table (2 bits sliding window) 577 // table[b3b2b1b0-1] = b3b2 ⋅ ϕ(q) + b1b0 ⋅ q if b3b2b1b0 != 0 578 table[1].Double(&table[0]) 579 table[2].Set(&table[1]).AddAssign(&table[0]) 580 table[4].Set(&table[3]).AddAssign(&table[0]) 581 table[5].Set(&table[3]).AddAssign(&table[1]) 582 table[6].Set(&table[3]).AddAssign(&table[2]) 583 table[7].Double(&table[3]) 584 table[8].Set(&table[7]).AddAssign(&table[0]) 585 table[9].Set(&table[7]).AddAssign(&table[1]) 586 table[10].Set(&table[7]).AddAssign(&table[2]) 587 table[11].Set(&table[7]).AddAssign(&table[3]) 588 table[12].Set(&table[11]).AddAssign(&table[0]) 589 table[13].Set(&table[11]).AddAssign(&table[1]) 590 table[14].Set(&table[11]).AddAssign(&table[2]) 591 592 // bounds on the lattice base vectors guarantee that k1, k2 are len(r)/2 or len(r)/2+1 bits long max 593 // this is because we use a probabilistic scalar decomposition that replaces a division by a right-shift 594 k1 = k1.SetBigInt(&k[0]).Bits() 595 k2 = k2.SetBigInt(&k[1]).Bits() 596 597 // we don't target constant-timeness so we check first if we increase the bounds or not 598 maxBit := k1.BitLen() 599 if k2.BitLen() > maxBit { 600 maxBit = k2.BitLen() 601 } 602 hiWordIndex := (maxBit - 1) / 64 603 604 // loop starts from len(k1)/2 or len(k1)/2+1 due to the bounds 605 for i := hiWordIndex; i >= 0; i-- { 606 mask := uint64(3) << 62 607 for j := 0; j < 32; j++ { 608 res.Double(&res).Double(&res) 609 b1 := (k1[i] & mask) >> (62 - 2*j) 610 b2 := (k2[i] & mask) >> (62 - 2*j) 611 if b1|b2 != 0 { 612 s := (b2<<2 | b1) 613 res.AddAssign(&table[s-1]) 614 } 615 mask = mask >> 2 616 } 617 } 618 619 p.Set(&res) 620 return p 621 } 622 623 // ClearCofactor maps a point in curve to r-torsion 624 func (p *G1Affine) ClearCofactor(a *G1Affine) *G1Affine { 625 var _p G1Jac 626 _p.FromAffine(a) 627 _p.ClearCofactor(&_p) 628 p.FromJacobian(&_p) 629 return p 630 } 631 632 // ClearCofactor maps a point in E(Fp) to E(Fp)[r] 633 func (p *G1Jac) ClearCofactor(q *G1Jac) *G1Jac { 634 // cf https://eprint.iacr.org/2019/403.pdf, 5 635 var res G1Jac 636 res.ScalarMultiplication(q, &xGen).Neg(&res).AddAssign(q) 637 p.Set(&res) 638 return p 639 640 } 641 642 // JointScalarMultiplication computes [s1]a1+[s2]a2 using Strauss-Shamir technique 643 // where a1 and a2 are affine points. 644 func (p *G1Jac) JointScalarMultiplication(a1, a2 *G1Affine, s1, s2 *big.Int) *G1Jac { 645 646 var res, p1, p2 G1Jac 647 res.Set(&g1Infinity) 648 p1.FromAffine(a1) 649 p2.FromAffine(a2) 650 651 var table [15]G1Jac 652 653 var k1, k2 big.Int 654 if s1.Sign() == -1 { 655 k1.Neg(s1) 656 table[0].Neg(&p1) 657 } else { 658 k1.Set(s1) 659 table[0].Set(&p1) 660 } 661 if s2.Sign() == -1 { 662 k2.Neg(s2) 663 table[3].Neg(&p2) 664 } else { 665 k2.Set(s2) 666 table[3].Set(&p2) 667 } 668 669 // precompute table (2 bits sliding window) 670 table[1].Double(&table[0]) 671 table[2].Set(&table[1]).AddAssign(&table[0]) 672 table[4].Set(&table[3]).AddAssign(&table[0]) 673 table[5].Set(&table[3]).AddAssign(&table[1]) 674 table[6].Set(&table[3]).AddAssign(&table[2]) 675 table[7].Double(&table[3]) 676 table[8].Set(&table[7]).AddAssign(&table[0]) 677 table[9].Set(&table[7]).AddAssign(&table[1]) 678 table[10].Set(&table[7]).AddAssign(&table[2]) 679 table[11].Set(&table[7]).AddAssign(&table[3]) 680 table[12].Set(&table[11]).AddAssign(&table[0]) 681 table[13].Set(&table[11]).AddAssign(&table[1]) 682 table[14].Set(&table[11]).AddAssign(&table[2]) 683 684 var s [2]fr.Element 685 s[0] = s[0].SetBigInt(&k1).Bits() 686 s[1] = s[1].SetBigInt(&k2).Bits() 687 688 maxBit := k1.BitLen() 689 if k2.BitLen() > maxBit { 690 maxBit = k2.BitLen() 691 } 692 hiWordIndex := (maxBit - 1) / 64 693 694 for i := hiWordIndex; i >= 0; i-- { 695 mask := uint64(3) << 62 696 for j := 0; j < 32; j++ { 697 res.Double(&res).Double(&res) 698 b1 := (s[0][i] & mask) >> (62 - 2*j) 699 b2 := (s[1][i] & mask) >> (62 - 2*j) 700 if b1|b2 != 0 { 701 s := (b2<<2 | b1) 702 res.AddAssign(&table[s-1]) 703 } 704 mask = mask >> 2 705 } 706 } 707 708 p.Set(&res) 709 return p 710 711 } 712 713 // JointScalarMultiplicationBase computes [s1]g+[s2]a using Straus-Shamir technique 714 // where g is the prime subgroup generator. 715 func (p *G1Jac) JointScalarMultiplicationBase(a *G1Affine, s1, s2 *big.Int) *G1Jac { 716 return p.JointScalarMultiplication(&g1GenAff, a, s1, s2) 717 718 } 719 720 // ------------------------------------------------------------------------------------------------- 721 // extended Jacobian coordinates 722 723 // Set sets p to a in extended Jacobian coordinates. 724 func (p *g1JacExtended) Set(q *g1JacExtended) *g1JacExtended { 725 p.X, p.Y, p.ZZ, p.ZZZ = q.X, q.Y, q.ZZ, q.ZZZ 726 return p 727 } 728 729 // setInfinity sets p to the infinity point (1,1,0,0). 730 func (p *g1JacExtended) setInfinity() *g1JacExtended { 731 p.X.SetOne() 732 p.Y.SetOne() 733 p.ZZ = fp.Element{} 734 p.ZZZ = fp.Element{} 735 return p 736 } 737 738 // IsInfinity checks if the p is infinity, i.e. p.ZZ=0. 739 func (p *g1JacExtended) IsInfinity() bool { 740 return p.ZZ.IsZero() 741 } 742 743 // fromJacExtended converts an extended Jacobian point to an affine point. 744 func (p *G1Affine) fromJacExtended(q *g1JacExtended) *G1Affine { 745 if q.ZZ.IsZero() { 746 p.X = fp.Element{} 747 p.Y = fp.Element{} 748 return p 749 } 750 p.X.Inverse(&q.ZZ).Mul(&p.X, &q.X) 751 p.Y.Inverse(&q.ZZZ).Mul(&p.Y, &q.Y) 752 return p 753 } 754 755 // fromJacExtended converts an extended Jacobian point to a Jacobian point. 756 func (p *G1Jac) fromJacExtended(q *g1JacExtended) *G1Jac { 757 if q.ZZ.IsZero() { 758 p.Set(&g1Infinity) 759 return p 760 } 761 p.X.Mul(&q.ZZ, &q.X).Mul(&p.X, &q.ZZ) 762 p.Y.Mul(&q.ZZZ, &q.Y).Mul(&p.Y, &q.ZZZ) 763 p.Z.Set(&q.ZZZ) 764 return p 765 } 766 767 // unsafeFromJacExtended converts an extended Jacobian point, distinct from Infinity, to a Jacobian point. 768 func (p *G1Jac) unsafeFromJacExtended(q *g1JacExtended) *G1Jac { 769 p.X.Square(&q.ZZ).Mul(&p.X, &q.X) 770 p.Y.Square(&q.ZZZ).Mul(&p.Y, &q.Y) 771 p.Z = q.ZZZ 772 return p 773 } 774 775 // add sets p to p+q in extended Jacobian coordinates. 776 // 777 // https://www.hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#addition-add-2008-s 778 func (p *g1JacExtended) add(q *g1JacExtended) *g1JacExtended { 779 //if q is infinity return p 780 if q.ZZ.IsZero() { 781 return p 782 } 783 // p is infinity, return q 784 if p.ZZ.IsZero() { 785 p.Set(q) 786 return p 787 } 788 789 var A, B, U1, U2, S1, S2 fp.Element 790 791 // p2: q, p1: p 792 U2.Mul(&q.X, &p.ZZ) 793 U1.Mul(&p.X, &q.ZZ) 794 A.Sub(&U2, &U1) 795 S2.Mul(&q.Y, &p.ZZZ) 796 S1.Mul(&p.Y, &q.ZZZ) 797 B.Sub(&S2, &S1) 798 799 if A.IsZero() { 800 if B.IsZero() { 801 return p.double(q) 802 803 } 804 p.ZZ = fp.Element{} 805 p.ZZZ = fp.Element{} 806 return p 807 } 808 809 var P, R, PP, PPP, Q, V fp.Element 810 P.Sub(&U2, &U1) 811 R.Sub(&S2, &S1) 812 PP.Square(&P) 813 PPP.Mul(&P, &PP) 814 Q.Mul(&U1, &PP) 815 V.Mul(&S1, &PPP) 816 817 p.X.Square(&R). 818 Sub(&p.X, &PPP). 819 Sub(&p.X, &Q). 820 Sub(&p.X, &Q) 821 p.Y.Sub(&Q, &p.X). 822 Mul(&p.Y, &R). 823 Sub(&p.Y, &V) 824 p.ZZ.Mul(&p.ZZ, &q.ZZ). 825 Mul(&p.ZZ, &PP) 826 p.ZZZ.Mul(&p.ZZZ, &q.ZZZ). 827 Mul(&p.ZZZ, &PPP) 828 829 return p 830 } 831 832 // double sets p to [2]q in Jacobian extended coordinates. 833 // 834 // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#doubling-dbl-2008-s-1 835 // N.B.: since we consider any point on Z=0 as the point at infinity 836 // this doubling formula works for infinity points as well. 837 func (p *g1JacExtended) double(q *g1JacExtended) *g1JacExtended { 838 var U, V, W, S, XX, M fp.Element 839 840 U.Double(&q.Y) 841 V.Square(&U) 842 W.Mul(&U, &V) 843 S.Mul(&q.X, &V) 844 XX.Square(&q.X) 845 M.Double(&XX). 846 Add(&M, &XX) // -> + A, but A=0 here 847 U.Mul(&W, &q.Y) 848 849 p.X.Square(&M). 850 Sub(&p.X, &S). 851 Sub(&p.X, &S) 852 p.Y.Sub(&S, &p.X). 853 Mul(&p.Y, &M). 854 Sub(&p.Y, &U) 855 p.ZZ.Mul(&V, &q.ZZ) 856 p.ZZZ.Mul(&W, &q.ZZZ) 857 858 return p 859 } 860 861 // addMixed sets p to p+q in extended Jacobian coordinates, where a.ZZ=1. 862 // 863 // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#addition-madd-2008-s 864 func (p *g1JacExtended) addMixed(a *G1Affine) *g1JacExtended { 865 866 //if a is infinity return p 867 if a.IsInfinity() { 868 return p 869 } 870 // p is infinity, return a 871 if p.ZZ.IsZero() { 872 p.X = a.X 873 p.Y = a.Y 874 p.ZZ.SetOne() 875 p.ZZZ.SetOne() 876 return p 877 } 878 879 var P, R fp.Element 880 881 // p2: a, p1: p 882 P.Mul(&a.X, &p.ZZ) 883 P.Sub(&P, &p.X) 884 885 R.Mul(&a.Y, &p.ZZZ) 886 R.Sub(&R, &p.Y) 887 888 if P.IsZero() { 889 if R.IsZero() { 890 return p.doubleMixed(a) 891 892 } 893 p.ZZ = fp.Element{} 894 p.ZZZ = fp.Element{} 895 return p 896 } 897 898 var PP, PPP, Q, Q2, RR, X3, Y3 fp.Element 899 900 PP.Square(&P) 901 PPP.Mul(&P, &PP) 902 Q.Mul(&p.X, &PP) 903 RR.Square(&R) 904 X3.Sub(&RR, &PPP) 905 Q2.Double(&Q) 906 p.X.Sub(&X3, &Q2) 907 Y3.Sub(&Q, &p.X).Mul(&Y3, &R) 908 R.Mul(&p.Y, &PPP) 909 p.Y.Sub(&Y3, &R) 910 p.ZZ.Mul(&p.ZZ, &PP) 911 p.ZZZ.Mul(&p.ZZZ, &PPP) 912 913 return p 914 915 } 916 917 // subMixed works the same as addMixed, but negates a.Y. 918 // 919 // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#addition-madd-2008-s 920 func (p *g1JacExtended) subMixed(a *G1Affine) *g1JacExtended { 921 922 //if a is infinity return p 923 if a.IsInfinity() { 924 return p 925 } 926 // p is infinity, return a 927 if p.ZZ.IsZero() { 928 p.X = a.X 929 p.Y.Neg(&a.Y) 930 p.ZZ.SetOne() 931 p.ZZZ.SetOne() 932 return p 933 } 934 935 var P, R fp.Element 936 937 // p2: a, p1: p 938 P.Mul(&a.X, &p.ZZ) 939 P.Sub(&P, &p.X) 940 941 R.Mul(&a.Y, &p.ZZZ) 942 R.Neg(&R) 943 R.Sub(&R, &p.Y) 944 945 if P.IsZero() { 946 if R.IsZero() { 947 return p.doubleNegMixed(a) 948 949 } 950 p.ZZ = fp.Element{} 951 p.ZZZ = fp.Element{} 952 return p 953 } 954 955 var PP, PPP, Q, Q2, RR, X3, Y3 fp.Element 956 957 PP.Square(&P) 958 PPP.Mul(&P, &PP) 959 Q.Mul(&p.X, &PP) 960 RR.Square(&R) 961 X3.Sub(&RR, &PPP) 962 Q2.Double(&Q) 963 p.X.Sub(&X3, &Q2) 964 Y3.Sub(&Q, &p.X).Mul(&Y3, &R) 965 R.Mul(&p.Y, &PPP) 966 p.Y.Sub(&Y3, &R) 967 p.ZZ.Mul(&p.ZZ, &PP) 968 p.ZZZ.Mul(&p.ZZZ, &PPP) 969 970 return p 971 972 } 973 974 // doubleNegMixed works the same as double, but negates q.Y. 975 func (p *g1JacExtended) doubleNegMixed(a *G1Affine) *g1JacExtended { 976 977 var U, V, W, S, XX, M, S2, L fp.Element 978 979 U.Double(&a.Y) 980 U.Neg(&U) 981 V.Square(&U) 982 W.Mul(&U, &V) 983 S.Mul(&a.X, &V) 984 XX.Square(&a.X) 985 M.Double(&XX). 986 Add(&M, &XX) // -> + A, but A=0 here 987 S2.Double(&S) 988 L.Mul(&W, &a.Y) 989 990 p.X.Square(&M). 991 Sub(&p.X, &S2) 992 p.Y.Sub(&S, &p.X). 993 Mul(&p.Y, &M). 994 Add(&p.Y, &L) 995 p.ZZ.Set(&V) 996 p.ZZZ.Set(&W) 997 998 return p 999 } 1000 1001 // doubleMixed sets p to [2]a in Jacobian extended coordinates, where a.ZZ=1. 1002 // 1003 // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#doubling-dbl-2008-s-1 1004 func (p *g1JacExtended) doubleMixed(a *G1Affine) *g1JacExtended { 1005 1006 var U, V, W, S, XX, M, S2, L fp.Element 1007 1008 U.Double(&a.Y) 1009 V.Square(&U) 1010 W.Mul(&U, &V) 1011 S.Mul(&a.X, &V) 1012 XX.Square(&a.X) 1013 M.Double(&XX). 1014 Add(&M, &XX) // -> + A, but A=0 here 1015 S2.Double(&S) 1016 L.Mul(&W, &a.Y) 1017 1018 p.X.Square(&M). 1019 Sub(&p.X, &S2) 1020 p.Y.Sub(&S, &p.X). 1021 Mul(&p.Y, &M). 1022 Sub(&p.Y, &L) 1023 p.ZZ.Set(&V) 1024 p.ZZZ.Set(&W) 1025 1026 return p 1027 } 1028 1029 // BatchJacobianToAffineG1 converts points in Jacobian coordinates to Affine coordinates 1030 // performing a single field inversion using the Montgomery batch inversion trick. 1031 func BatchJacobianToAffineG1(points []G1Jac) []G1Affine { 1032 result := make([]G1Affine, len(points)) 1033 zeroes := make([]bool, len(points)) 1034 accumulator := fp.One() 1035 1036 // batch invert all points[].Z coordinates with Montgomery batch inversion trick 1037 // (stores points[].Z^-1 in result[i].X to avoid allocating a slice of fr.Elements) 1038 for i := 0; i < len(points); i++ { 1039 if points[i].Z.IsZero() { 1040 zeroes[i] = true 1041 continue 1042 } 1043 result[i].X = accumulator 1044 accumulator.Mul(&accumulator, &points[i].Z) 1045 } 1046 1047 var accInverse fp.Element 1048 accInverse.Inverse(&accumulator) 1049 1050 for i := len(points) - 1; i >= 0; i-- { 1051 if zeroes[i] { 1052 // do nothing, (X=0, Y=0) is infinity point in affine 1053 continue 1054 } 1055 result[i].X.Mul(&result[i].X, &accInverse) 1056 accInverse.Mul(&accInverse, &points[i].Z) 1057 } 1058 1059 // batch convert to affine. 1060 parallel.Execute(len(points), func(start, end int) { 1061 for i := start; i < end; i++ { 1062 if zeroes[i] { 1063 // do nothing, (X=0, Y=0) is infinity point in affine 1064 continue 1065 } 1066 var a, b fp.Element 1067 a = result[i].X 1068 b.Square(&a) 1069 result[i].X.Mul(&points[i].X, &b) 1070 result[i].Y.Mul(&points[i].Y, &b). 1071 Mul(&result[i].Y, &a) 1072 } 1073 }) 1074 1075 return result 1076 } 1077 1078 // BatchScalarMultiplicationG1 multiplies the same base by all scalars 1079 // and return resulting points in affine coordinates 1080 // uses a simple windowed-NAF-like multiplication algorithm. 1081 func BatchScalarMultiplicationG1(base *G1Affine, scalars []fr.Element) []G1Affine { 1082 // approximate cost in group ops is 1083 // cost = 2^{c-1} + n(scalar.nbBits+nbChunks) 1084 1085 nbPoints := uint64(len(scalars)) 1086 min := ^uint64(0) 1087 bestC := 0 1088 for c := 2; c <= 16; c++ { 1089 cost := uint64(1 << (c - 1)) // pre compute the table 1090 nbChunks := computeNbChunks(uint64(c)) 1091 cost += nbPoints * (uint64(c) + 1) * nbChunks // doublings + point add 1092 if cost < min { 1093 min = cost 1094 bestC = c 1095 } 1096 } 1097 c := uint64(bestC) // window size 1098 nbChunks := int(computeNbChunks(c)) 1099 1100 // last window may be slightly larger than c; in which case we need to compute one 1101 // extra element in the baseTable 1102 maxC := lastC(c) 1103 if c > maxC { 1104 maxC = c 1105 } 1106 1107 // precompute all powers of base for our window 1108 // note here that if performance is critical, we can implement as in the msmX methods 1109 // this allocation to be on the stack 1110 baseTable := make([]G1Jac, (1 << (maxC - 1))) 1111 baseTable[0].FromAffine(base) 1112 for i := 1; i < len(baseTable); i++ { 1113 baseTable[i] = baseTable[i-1] 1114 baseTable[i].AddMixed(base) 1115 } 1116 // convert our base exp table into affine to use AddMixed 1117 baseTableAff := BatchJacobianToAffineG1(baseTable) 1118 toReturn := make([]G1Jac, len(scalars)) 1119 1120 // partition the scalars into digits 1121 digits, _ := partitionScalars(scalars, c, runtime.NumCPU()) 1122 1123 // for each digit, take value in the base table, double it c time, voilà. 1124 parallel.Execute(len(scalars), func(start, end int) { 1125 var p G1Jac 1126 for i := start; i < end; i++ { 1127 p.Set(&g1Infinity) 1128 for chunk := nbChunks - 1; chunk >= 0; chunk-- { 1129 if chunk != nbChunks-1 { 1130 for j := uint64(0); j < c; j++ { 1131 p.DoubleAssign() 1132 } 1133 } 1134 offset := chunk * len(scalars) 1135 digit := digits[i+offset] 1136 1137 if digit == 0 { 1138 continue 1139 } 1140 1141 // if msbWindow bit is set, we need to subtract 1142 if digit&1 == 0 { 1143 // add 1144 p.AddMixed(&baseTableAff[(digit>>1)-1]) 1145 } else { 1146 // sub 1147 t := baseTableAff[digit>>1] 1148 t.Neg(&t) 1149 p.AddMixed(&t) 1150 } 1151 } 1152 1153 // set our result point 1154 toReturn[i] = p 1155 1156 } 1157 }) 1158 toReturnAff := BatchJacobianToAffineG1(toReturn) 1159 return toReturnAff 1160 } 1161 1162 // batchAddG1Affine adds affine points using the Montgomery batch inversion trick. 1163 // Special cases (doubling, infinity) must be filtered out before this call. 1164 func batchAddG1Affine[TP pG1Affine, TPP ppG1Affine, TC cG1Affine](R *TPP, P *TP, batchSize int) { 1165 var lambda, lambdain TC 1166 1167 // add part 1168 for j := 0; j < batchSize; j++ { 1169 lambdain[j].Sub(&(*P)[j].X, &(*R)[j].X) 1170 } 1171 1172 // invert denominator using montgomery batch invert technique 1173 { 1174 var accumulator fp.Element 1175 lambda[0].SetOne() 1176 accumulator.Set(&lambdain[0]) 1177 1178 for i := 1; i < batchSize; i++ { 1179 lambda[i] = accumulator 1180 accumulator.Mul(&accumulator, &lambdain[i]) 1181 } 1182 1183 accumulator.Inverse(&accumulator) 1184 1185 for i := batchSize - 1; i > 0; i-- { 1186 lambda[i].Mul(&lambda[i], &accumulator) 1187 accumulator.Mul(&accumulator, &lambdain[i]) 1188 } 1189 lambda[0].Set(&accumulator) 1190 } 1191 1192 var d fp.Element 1193 var rr G1Affine 1194 1195 // add part 1196 for j := 0; j < batchSize; j++ { 1197 // computa lambda 1198 d.Sub(&(*P)[j].Y, &(*R)[j].Y) 1199 lambda[j].Mul(&lambda[j], &d) 1200 1201 // compute X, Y 1202 rr.X.Square(&lambda[j]) 1203 rr.X.Sub(&rr.X, &(*R)[j].X) 1204 rr.X.Sub(&rr.X, &(*P)[j].X) 1205 d.Sub(&(*R)[j].X, &rr.X) 1206 rr.Y.Mul(&lambda[j], &d) 1207 rr.Y.Sub(&rr.Y, &(*R)[j].Y) 1208 (*R)[j].Set(&rr) 1209 } 1210 }