github.com/consensys/gnark-crypto@v0.14.0/ecc/bn254/g2.go (about) 1 // Copyright 2020 Consensys Software Inc. 2 // 3 // Licensed under the Apache License, Version 2.0 (the "License"); 4 // you may not use this file except in compliance with the License. 5 // You may obtain a copy of the License at 6 // 7 // http://www.apache.org/licenses/LICENSE-2.0 8 // 9 // Unless required by applicable law or agreed to in writing, software 10 // distributed under the License is distributed on an "AS IS" BASIS, 11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 // See the License for the specific language governing permissions and 13 // limitations under the License. 14 15 // Code generated by consensys/gnark-crypto DO NOT EDIT 16 17 package bn254 18 19 import ( 20 "crypto/rand" 21 "github.com/consensys/gnark-crypto/ecc" 22 "github.com/consensys/gnark-crypto/ecc/bn254/fr" 23 "github.com/consensys/gnark-crypto/ecc/bn254/internal/fptower" 24 "github.com/consensys/gnark-crypto/internal/parallel" 25 "math/big" 26 "runtime" 27 ) 28 29 // G2Affine is a point in affine coordinates (x,y) 30 type G2Affine struct { 31 X, Y fptower.E2 32 } 33 34 // G2Jac is a point in Jacobian coordinates (x=X/Z², y=Y/Z³) 35 type G2Jac struct { 36 X, Y, Z fptower.E2 37 } 38 39 // g2JacExtended is a point in extended Jacobian coordinates (x=X/ZZ, y=Y/ZZZ, ZZ³=ZZZ²) 40 type g2JacExtended struct { 41 X, Y, ZZ, ZZZ fptower.E2 42 } 43 44 // g2Proj point in projective coordinates 45 type g2Proj struct { 46 x, y, z fptower.E2 47 } 48 49 // ------------------------------------------------------------------------------------------------- 50 // Affine coordinates 51 52 // Set sets p to a in affine coordinates. 53 func (p *G2Affine) Set(a *G2Affine) *G2Affine { 54 p.X, p.Y = a.X, a.Y 55 return p 56 } 57 58 // setInfinity sets p to the infinity point, which is encoded as (0,0). 59 // N.B.: (0,0) is never on the curve for j=0 curves (Y²=X³+B). 60 func (p *G2Affine) setInfinity() *G2Affine { 61 p.X.SetZero() 62 p.Y.SetZero() 63 return p 64 } 65 66 // ScalarMultiplication computes and returns p = [s]a 67 // where p and a are affine points. 68 func (p *G2Affine) ScalarMultiplication(a *G2Affine, s *big.Int) *G2Affine { 69 var _p G2Jac 70 _p.FromAffine(a) 71 _p.mulGLV(&_p, s) 72 p.FromJacobian(&_p) 73 return p 74 } 75 76 // ScalarMultiplicationBase computes and returns p = [s]g 77 // where g is the affine point generating the prime subgroup. 78 func (p *G2Affine) ScalarMultiplicationBase(s *big.Int) *G2Affine { 79 var _p G2Jac 80 _p.mulGLV(&g2Gen, s) 81 p.FromJacobian(&_p) 82 return p 83 } 84 85 // Add adds two points in affine coordinates. 86 // It uses the Jacobian addition with a.Z=b.Z=1 and converts the result to affine coordinates. 87 // 88 // https://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-mmadd-2007-bl 89 func (p *G2Affine) Add(a, b *G2Affine) *G2Affine { 90 var q G2Jac 91 // a is infinity, return b 92 if a.IsInfinity() { 93 p.Set(b) 94 return p 95 } 96 // b is infinity, return a 97 if b.IsInfinity() { 98 p.Set(a) 99 return p 100 } 101 if a.X.Equal(&b.X) { 102 // if b == a, we double instead 103 if a.Y.Equal(&b.Y) { 104 q.DoubleMixed(a) 105 return p.FromJacobian(&q) 106 } else { 107 // if b == -a, we return 0 108 return p.setInfinity() 109 } 110 } 111 var H, HH, I, J, r, V fptower.E2 112 H.Sub(&b.X, &a.X) 113 HH.Square(&H) 114 I.Double(&HH).Double(&I) 115 J.Mul(&H, &I) 116 r.Sub(&b.Y, &a.Y) 117 r.Double(&r) 118 V.Mul(&a.X, &I) 119 q.X.Square(&r). 120 Sub(&q.X, &J). 121 Sub(&q.X, &V). 122 Sub(&q.X, &V) 123 q.Y.Sub(&V, &q.X). 124 Mul(&q.Y, &r) 125 J.Mul(&a.Y, &J).Double(&J) 126 q.Y.Sub(&q.Y, &J) 127 q.Z.Double(&H) 128 129 return p.FromJacobian(&q) 130 } 131 132 // Double doubles a point in affine coordinates. 133 // It converts the point to Jacobian coordinates, doubles it using Jacobian 134 // addition with a.Z=1, and converts it back to affine coordinates. 135 // 136 // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-mdbl-2007-bl 137 func (p *G2Affine) Double(a *G2Affine) *G2Affine { 138 var q G2Jac 139 q.FromAffine(a) 140 q.DoubleMixed(a) 141 p.FromJacobian(&q) 142 return p 143 } 144 145 // Sub subtracts two points in affine coordinates. 146 // It uses a similar approach to Add, but negates the second point before adding. 147 func (p *G2Affine) Sub(a, b *G2Affine) *G2Affine { 148 var bneg G2Affine 149 bneg.Neg(b) 150 p.Add(a, &bneg) 151 return p 152 } 153 154 // Equal tests if two points in affine coordinates are equal. 155 func (p *G2Affine) Equal(a *G2Affine) bool { 156 return p.X.Equal(&a.X) && p.Y.Equal(&a.Y) 157 } 158 159 // Neg sets p to the affine negative point -a = (a.X, -a.Y). 160 func (p *G2Affine) Neg(a *G2Affine) *G2Affine { 161 p.X = a.X 162 p.Y.Neg(&a.Y) 163 return p 164 } 165 166 // FromJacobian converts a point p1 from Jacobian to affine coordinates. 167 func (p *G2Affine) FromJacobian(p1 *G2Jac) *G2Affine { 168 169 var a, b fptower.E2 170 171 if p1.Z.IsZero() { 172 p.X.SetZero() 173 p.Y.SetZero() 174 return p 175 } 176 177 a.Inverse(&p1.Z) 178 b.Square(&a) 179 p.X.Mul(&p1.X, &b) 180 p.Y.Mul(&p1.Y, &b).Mul(&p.Y, &a) 181 182 return p 183 } 184 185 // String returns the string representation E(x,y) of the affine point p or "O" if it is infinity. 186 func (p *G2Affine) String() string { 187 if p.IsInfinity() { 188 return "O" 189 } 190 return "E([" + p.X.String() + "," + p.Y.String() + "])" 191 } 192 193 // IsInfinity checks if the affine point p is infinity, which is encoded as (0,0). 194 // N.B.: (0,0) is never on the curve for j=0 curves (Y²=X³+B). 195 func (p *G2Affine) IsInfinity() bool { 196 return p.X.IsZero() && p.Y.IsZero() 197 } 198 199 // IsOnCurve returns true if the affine point p in on the curve. 200 func (p *G2Affine) IsOnCurve() bool { 201 var point G2Jac 202 point.FromAffine(p) 203 return point.IsOnCurve() // call this function to handle infinity point 204 } 205 206 // IsInSubGroup returns true if the affine point p is in the correct subgroup, false otherwise. 207 func (p *G2Affine) IsInSubGroup() bool { 208 var _p G2Jac 209 _p.FromAffine(p) 210 return _p.IsInSubGroup() 211 } 212 213 // ------------------------------------------------------------------------------------------------- 214 // Jacobian coordinates 215 216 // Set sets p to a in Jacobian coordinates. 217 func (p *G2Jac) Set(q *G2Jac) *G2Jac { 218 p.X, p.Y, p.Z = q.X, q.Y, q.Z 219 return p 220 } 221 222 // Equal tests if two points in Jacobian coordinates are equal. 223 func (p *G2Jac) Equal(q *G2Jac) bool { 224 // If one point is infinity, the other must also be infinity. 225 if p.Z.IsZero() { 226 return q.Z.IsZero() 227 } 228 // If the other point is infinity, return false since we can't 229 // the following checks would be incorrect. 230 if q.Z.IsZero() { 231 return false 232 } 233 234 var pZSquare, aZSquare fptower.E2 235 pZSquare.Square(&p.Z) 236 aZSquare.Square(&q.Z) 237 238 var lhs, rhs fptower.E2 239 lhs.Mul(&p.X, &aZSquare) 240 rhs.Mul(&q.X, &pZSquare) 241 if !lhs.Equal(&rhs) { 242 return false 243 } 244 lhs.Mul(&p.Y, &aZSquare).Mul(&lhs, &q.Z) 245 rhs.Mul(&q.Y, &pZSquare).Mul(&rhs, &p.Z) 246 247 return lhs.Equal(&rhs) 248 } 249 250 // Neg sets p to the Jacobian negative point -q = (q.X, -q.Y, q.Z). 251 func (p *G2Jac) Neg(q *G2Jac) *G2Jac { 252 *p = *q 253 p.Y.Neg(&q.Y) 254 return p 255 } 256 257 // AddAssign sets p to p+a in Jacobian coordinates. 258 // 259 // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl 260 func (p *G2Jac) AddAssign(q *G2Jac) *G2Jac { 261 262 // p is infinity, return q 263 if p.Z.IsZero() { 264 p.Set(q) 265 return p 266 } 267 268 // q is infinity, return p 269 if q.Z.IsZero() { 270 return p 271 } 272 273 var Z1Z1, Z2Z2, U1, U2, S1, S2, H, I, J, r, V fptower.E2 274 Z1Z1.Square(&q.Z) 275 Z2Z2.Square(&p.Z) 276 U1.Mul(&q.X, &Z2Z2) 277 U2.Mul(&p.X, &Z1Z1) 278 S1.Mul(&q.Y, &p.Z). 279 Mul(&S1, &Z2Z2) 280 S2.Mul(&p.Y, &q.Z). 281 Mul(&S2, &Z1Z1) 282 283 // if p == q, we double instead 284 if U1.Equal(&U2) && S1.Equal(&S2) { 285 return p.DoubleAssign() 286 } 287 288 H.Sub(&U2, &U1) 289 I.Double(&H). 290 Square(&I) 291 J.Mul(&H, &I) 292 r.Sub(&S2, &S1).Double(&r) 293 V.Mul(&U1, &I) 294 p.X.Square(&r). 295 Sub(&p.X, &J). 296 Sub(&p.X, &V). 297 Sub(&p.X, &V) 298 p.Y.Sub(&V, &p.X). 299 Mul(&p.Y, &r) 300 S1.Mul(&S1, &J).Double(&S1) 301 p.Y.Sub(&p.Y, &S1) 302 p.Z.Add(&p.Z, &q.Z) 303 p.Z.Square(&p.Z). 304 Sub(&p.Z, &Z1Z1). 305 Sub(&p.Z, &Z2Z2). 306 Mul(&p.Z, &H) 307 308 return p 309 } 310 311 // SubAssign sets p to p-a in Jacobian coordinates. 312 // It uses a similar approach to AddAssign, but negates the point a before adding. 313 func (p *G2Jac) SubAssign(q *G2Jac) *G2Jac { 314 var tmp G2Jac 315 tmp.Set(q) 316 tmp.Y.Neg(&tmp.Y) 317 p.AddAssign(&tmp) 318 return p 319 } 320 321 // Double sets p to [2]q in Jacobian coordinates. 322 // 323 // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2007-bl 324 func (p *G2Jac) DoubleMixed(a *G2Affine) *G2Jac { 325 var XX, YY, YYYY, S, M, T fptower.E2 326 XX.Square(&a.X) 327 YY.Square(&a.Y) 328 YYYY.Square(&YY) 329 S.Add(&a.X, &YY). 330 Square(&S). 331 Sub(&S, &XX). 332 Sub(&S, &YYYY). 333 Double(&S) 334 M.Double(&XX). 335 Add(&M, &XX) // -> + A, but A=0 here 336 T.Square(&M). 337 Sub(&T, &S). 338 Sub(&T, &S) 339 p.X.Set(&T) 340 p.Y.Sub(&S, &T). 341 Mul(&p.Y, &M) 342 YYYY.Double(&YYYY). 343 Double(&YYYY). 344 Double(&YYYY) 345 p.Y.Sub(&p.Y, &YYYY) 346 p.Z.Double(&a.Y) 347 348 return p 349 } 350 351 // AddMixed sets p to p+a in Jacobian coordinates, where a.Z = 1. 352 // 353 // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-madd-2007-bl 354 func (p *G2Jac) AddMixed(a *G2Affine) *G2Jac { 355 356 //if a is infinity return p 357 if a.IsInfinity() { 358 return p 359 } 360 // p is infinity, return a 361 if p.Z.IsZero() { 362 p.X = a.X 363 p.Y = a.Y 364 p.Z.SetOne() 365 return p 366 } 367 368 var Z1Z1, U2, S2, H, HH, I, J, r, V fptower.E2 369 Z1Z1.Square(&p.Z) 370 U2.Mul(&a.X, &Z1Z1) 371 S2.Mul(&a.Y, &p.Z). 372 Mul(&S2, &Z1Z1) 373 374 // if p == a, we double instead 375 if U2.Equal(&p.X) && S2.Equal(&p.Y) { 376 return p.DoubleMixed(a) 377 } 378 379 H.Sub(&U2, &p.X) 380 HH.Square(&H) 381 I.Double(&HH).Double(&I) 382 J.Mul(&H, &I) 383 r.Sub(&S2, &p.Y).Double(&r) 384 V.Mul(&p.X, &I) 385 p.X.Square(&r). 386 Sub(&p.X, &J). 387 Sub(&p.X, &V). 388 Sub(&p.X, &V) 389 J.Mul(&J, &p.Y).Double(&J) 390 p.Y.Sub(&V, &p.X). 391 Mul(&p.Y, &r) 392 p.Y.Sub(&p.Y, &J) 393 p.Z.Add(&p.Z, &H) 394 p.Z.Square(&p.Z). 395 Sub(&p.Z, &Z1Z1). 396 Sub(&p.Z, &HH) 397 398 return p 399 } 400 401 // Double sets p to [2]q in Jacobian coordinates. 402 // 403 // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2007-bl 404 func (p *G2Jac) Double(q *G2Jac) *G2Jac { 405 p.Set(q) 406 p.DoubleAssign() 407 return p 408 } 409 410 // DoubleAssign doubles p in Jacobian coordinates. 411 // 412 // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2007-bl 413 func (p *G2Jac) DoubleAssign() *G2Jac { 414 415 var XX, YY, YYYY, ZZ, S, M, T fptower.E2 416 417 XX.Square(&p.X) 418 YY.Square(&p.Y) 419 YYYY.Square(&YY) 420 ZZ.Square(&p.Z) 421 S.Add(&p.X, &YY) 422 S.Square(&S). 423 Sub(&S, &XX). 424 Sub(&S, &YYYY). 425 Double(&S) 426 M.Double(&XX).Add(&M, &XX) 427 p.Z.Add(&p.Z, &p.Y). 428 Square(&p.Z). 429 Sub(&p.Z, &YY). 430 Sub(&p.Z, &ZZ) 431 T.Square(&M) 432 p.X = T 433 T.Double(&S) 434 p.X.Sub(&p.X, &T) 435 p.Y.Sub(&S, &p.X). 436 Mul(&p.Y, &M) 437 YYYY.Double(&YYYY).Double(&YYYY).Double(&YYYY) 438 p.Y.Sub(&p.Y, &YYYY) 439 440 return p 441 } 442 443 // ScalarMultiplication computes and returns p = [s]a 444 // where p and a are Jacobian points. 445 // using the GLV technique. 446 // see https://www.iacr.org/archive/crypto2001/21390189.pdf 447 func (p *G2Jac) ScalarMultiplication(q *G2Jac, s *big.Int) *G2Jac { 448 return p.mulGLV(q, s) 449 } 450 451 // ScalarMultiplicationBase computes and returns p = [s]g 452 // where g is the prime subgroup generator. 453 func (p *G2Jac) ScalarMultiplicationBase(s *big.Int) *G2Jac { 454 return p.mulGLV(&g2Gen, s) 455 456 } 457 458 // String converts p to affine coordinates and returns its string representation E(x,y) or "O" if it is infinity. 459 func (p *G2Jac) String() string { 460 _p := G2Affine{} 461 _p.FromJacobian(p) 462 return _p.String() 463 } 464 465 // FromAffine converts a point a from affine to Jacobian coordinates. 466 func (p *G2Jac) FromAffine(a *G2Affine) *G2Jac { 467 if a.IsInfinity() { 468 p.Z.SetZero() 469 p.X.SetOne() 470 p.Y.SetOne() 471 return p 472 } 473 p.Z.SetOne() 474 p.X.Set(&a.X) 475 p.Y.Set(&a.Y) 476 return p 477 } 478 479 // IsOnCurve returns true if the Jacobian point p in on the curve. 480 func (p *G2Jac) IsOnCurve() bool { 481 var left, right, tmp, ZZ fptower.E2 482 left.Square(&p.Y) 483 right.Square(&p.X).Mul(&right, &p.X) 484 ZZ.Square(&p.Z) 485 tmp.Square(&ZZ).Mul(&tmp, &ZZ) 486 tmp.MulBybTwistCurveCoeff(&tmp) 487 right.Add(&right, &tmp) 488 return left.Equal(&right) 489 } 490 491 // IsInSubGroup returns true if p is on the r-torsion, false otherwise. 492 // https://eprint.iacr.org/2022/348.pdf, sec. 3 and 5.1 493 // [r]P == 0 <==> [x₀+1]P + ψ([x₀]P) + ψ²([x₀]P) = ψ³([2x₀]P) 494 func (p *G2Jac) IsInSubGroup() bool { 495 var a, b, c, res G2Jac 496 a.ScalarMultiplication(p, &xGen) 497 b.psi(&a) 498 a.AddAssign(p) 499 res.psi(&b) 500 c.Set(&res). 501 AddAssign(&b). 502 AddAssign(&a) 503 res.psi(&res). 504 Double(&res). 505 SubAssign(&c) 506 507 return res.IsOnCurve() && res.Z.IsZero() 508 } 509 510 // mulWindowed computes the 2-bits windowed double-and-add scalar 511 // multiplication p=[s]q in Jacobian coordinates. 512 func (p *G2Jac) mulWindowed(q *G2Jac, s *big.Int) *G2Jac { 513 514 var res G2Jac 515 var ops [3]G2Jac 516 517 ops[0].Set(q) 518 if s.Sign() == -1 { 519 ops[0].Neg(&ops[0]) 520 } 521 res.Set(&g2Infinity) 522 ops[1].Double(&ops[0]) 523 ops[2].Set(&ops[0]).AddAssign(&ops[1]) 524 525 b := s.Bytes() 526 for i := range b { 527 w := b[i] 528 mask := byte(0xc0) 529 for j := 0; j < 4; j++ { 530 res.DoubleAssign().DoubleAssign() 531 c := (w & mask) >> (6 - 2*j) 532 if c != 0 { 533 res.AddAssign(&ops[c-1]) 534 } 535 mask = mask >> 2 536 } 537 } 538 p.Set(&res) 539 540 return p 541 542 } 543 544 // psi sets p to ψ(q) = u o π o u⁻¹ where u:E'→E is the isomorphism from the twist to the curve E and π is the Frobenius map. 545 func (p *G2Jac) psi(q *G2Jac) *G2Jac { 546 p.Set(q) 547 p.X.Conjugate(&p.X).Mul(&p.X, &endo.u) 548 p.Y.Conjugate(&p.Y).Mul(&p.Y, &endo.v) 549 p.Z.Conjugate(&p.Z) 550 return p 551 } 552 553 // phi sets p to ϕ(a) where ϕ: (x,y) → (w x,y), 554 // where w is a third root of unity. 555 func (p *G2Jac) phi(q *G2Jac) *G2Jac { 556 p.Set(q) 557 p.X.MulByElement(&p.X, &thirdRootOneG2) 558 return p 559 } 560 561 // mulGLV computes the scalar multiplication using a windowed-GLV method 562 // 563 // see https://www.iacr.org/archive/crypto2001/21390189.pdf 564 func (p *G2Jac) mulGLV(q *G2Jac, s *big.Int) *G2Jac { 565 566 var table [15]G2Jac 567 var res G2Jac 568 var k1, k2 fr.Element 569 570 res.Set(&g2Infinity) 571 572 // table[b3b2b1b0-1] = b3b2 ⋅ ϕ(q) + b1b0*q 573 table[0].Set(q) 574 table[3].phi(q) 575 576 // split the scalar, modifies ±q, ϕ(q) accordingly 577 k := ecc.SplitScalar(s, &glvBasis) 578 579 if k[0].Sign() == -1 { 580 k[0].Neg(&k[0]) 581 table[0].Neg(&table[0]) 582 } 583 if k[1].Sign() == -1 { 584 k[1].Neg(&k[1]) 585 table[3].Neg(&table[3]) 586 } 587 588 // precompute table (2 bits sliding window) 589 // table[b3b2b1b0-1] = b3b2 ⋅ ϕ(q) + b1b0 ⋅ q if b3b2b1b0 != 0 590 table[1].Double(&table[0]) 591 table[2].Set(&table[1]).AddAssign(&table[0]) 592 table[4].Set(&table[3]).AddAssign(&table[0]) 593 table[5].Set(&table[3]).AddAssign(&table[1]) 594 table[6].Set(&table[3]).AddAssign(&table[2]) 595 table[7].Double(&table[3]) 596 table[8].Set(&table[7]).AddAssign(&table[0]) 597 table[9].Set(&table[7]).AddAssign(&table[1]) 598 table[10].Set(&table[7]).AddAssign(&table[2]) 599 table[11].Set(&table[7]).AddAssign(&table[3]) 600 table[12].Set(&table[11]).AddAssign(&table[0]) 601 table[13].Set(&table[11]).AddAssign(&table[1]) 602 table[14].Set(&table[11]).AddAssign(&table[2]) 603 604 // bounds on the lattice base vectors guarantee that k1, k2 are len(r)/2 or len(r)/2+1 bits long max 605 // this is because we use a probabilistic scalar decomposition that replaces a division by a right-shift 606 k1 = k1.SetBigInt(&k[0]).Bits() 607 k2 = k2.SetBigInt(&k[1]).Bits() 608 609 // we don't target constant-timeness so we check first if we increase the bounds or not 610 maxBit := k1.BitLen() 611 if k2.BitLen() > maxBit { 612 maxBit = k2.BitLen() 613 } 614 hiWordIndex := (maxBit - 1) / 64 615 616 // loop starts from len(k1)/2 or len(k1)/2+1 due to the bounds 617 for i := hiWordIndex; i >= 0; i-- { 618 mask := uint64(3) << 62 619 for j := 0; j < 32; j++ { 620 res.Double(&res).Double(&res) 621 b1 := (k1[i] & mask) >> (62 - 2*j) 622 b2 := (k2[i] & mask) >> (62 - 2*j) 623 if b1|b2 != 0 { 624 s := (b2<<2 | b1) 625 res.AddAssign(&table[s-1]) 626 } 627 mask = mask >> 2 628 } 629 } 630 631 p.Set(&res) 632 return p 633 } 634 635 // ClearCofactor maps a point in curve to r-torsion 636 func (p *G2Affine) ClearCofactor(a *G2Affine) *G2Affine { 637 var _p G2Jac 638 _p.FromAffine(a) 639 _p.ClearCofactor(&_p) 640 p.FromJacobian(&_p) 641 return p 642 } 643 644 // ClearCofactor maps a point in curve to r-torsion 645 func (p *G2Jac) ClearCofactor(q *G2Jac) *G2Jac { 646 // cf http://cacr.uwaterloo.ca/techreports/2011/cacr2011-26.pdf, 6.1 647 var points [4]G2Jac 648 649 points[0].ScalarMultiplication(q, &xGen) 650 651 points[1].Double(&points[0]). 652 AddAssign(&points[0]). 653 psi(&points[1]) 654 655 points[2].psi(&points[0]). 656 psi(&points[2]) 657 658 points[3].psi(q).psi(&points[3]).psi(&points[3]) 659 660 var res G2Jac 661 res.Set(&g2Infinity) 662 for i := 0; i < 4; i++ { 663 res.AddAssign(&points[i]) 664 } 665 p.Set(&res) 666 return p 667 668 } 669 670 // ------------------------------------------------------------------------------------------------- 671 // extended Jacobian coordinates 672 673 // Set sets p to a in extended Jacobian coordinates. 674 func (p *g2JacExtended) Set(q *g2JacExtended) *g2JacExtended { 675 p.X, p.Y, p.ZZ, p.ZZZ = q.X, q.Y, q.ZZ, q.ZZZ 676 return p 677 } 678 679 // setInfinity sets p to the infinity point (1,1,0,0). 680 func (p *g2JacExtended) setInfinity() *g2JacExtended { 681 p.X.SetOne() 682 p.Y.SetOne() 683 p.ZZ = fptower.E2{} 684 p.ZZZ = fptower.E2{} 685 return p 686 } 687 688 // IsInfinity checks if the p is infinity, i.e. p.ZZ=0. 689 func (p *g2JacExtended) IsInfinity() bool { 690 return p.ZZ.IsZero() 691 } 692 693 // fromJacExtended converts an extended Jacobian point to an affine point. 694 func (p *G2Affine) fromJacExtended(q *g2JacExtended) *G2Affine { 695 if q.ZZ.IsZero() { 696 p.X = fptower.E2{} 697 p.Y = fptower.E2{} 698 return p 699 } 700 p.X.Inverse(&q.ZZ).Mul(&p.X, &q.X) 701 p.Y.Inverse(&q.ZZZ).Mul(&p.Y, &q.Y) 702 return p 703 } 704 705 // fromJacExtended converts an extended Jacobian point to a Jacobian point. 706 func (p *G2Jac) fromJacExtended(q *g2JacExtended) *G2Jac { 707 if q.ZZ.IsZero() { 708 p.Set(&g2Infinity) 709 return p 710 } 711 p.X.Mul(&q.ZZ, &q.X).Mul(&p.X, &q.ZZ) 712 p.Y.Mul(&q.ZZZ, &q.Y).Mul(&p.Y, &q.ZZZ) 713 p.Z.Set(&q.ZZZ) 714 return p 715 } 716 717 // unsafeFromJacExtended converts an extended Jacobian point, distinct from Infinity, to a Jacobian point. 718 func (p *G2Jac) unsafeFromJacExtended(q *g2JacExtended) *G2Jac { 719 p.X.Square(&q.ZZ).Mul(&p.X, &q.X) 720 p.Y.Square(&q.ZZZ).Mul(&p.Y, &q.Y) 721 p.Z = q.ZZZ 722 return p 723 } 724 725 // add sets p to p+q in extended Jacobian coordinates. 726 // 727 // https://www.hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#addition-add-2008-s 728 func (p *g2JacExtended) add(q *g2JacExtended) *g2JacExtended { 729 //if q is infinity return p 730 if q.ZZ.IsZero() { 731 return p 732 } 733 // p is infinity, return q 734 if p.ZZ.IsZero() { 735 p.Set(q) 736 return p 737 } 738 739 var A, B, U1, U2, S1, S2 fptower.E2 740 741 // p2: q, p1: p 742 U2.Mul(&q.X, &p.ZZ) 743 U1.Mul(&p.X, &q.ZZ) 744 A.Sub(&U2, &U1) 745 S2.Mul(&q.Y, &p.ZZZ) 746 S1.Mul(&p.Y, &q.ZZZ) 747 B.Sub(&S2, &S1) 748 749 if A.IsZero() { 750 if B.IsZero() { 751 return p.double(q) 752 753 } 754 p.ZZ = fptower.E2{} 755 p.ZZZ = fptower.E2{} 756 return p 757 } 758 759 var P, R, PP, PPP, Q, V fptower.E2 760 P.Sub(&U2, &U1) 761 R.Sub(&S2, &S1) 762 PP.Square(&P) 763 PPP.Mul(&P, &PP) 764 Q.Mul(&U1, &PP) 765 V.Mul(&S1, &PPP) 766 767 p.X.Square(&R). 768 Sub(&p.X, &PPP). 769 Sub(&p.X, &Q). 770 Sub(&p.X, &Q) 771 p.Y.Sub(&Q, &p.X). 772 Mul(&p.Y, &R). 773 Sub(&p.Y, &V) 774 p.ZZ.Mul(&p.ZZ, &q.ZZ). 775 Mul(&p.ZZ, &PP) 776 p.ZZZ.Mul(&p.ZZZ, &q.ZZZ). 777 Mul(&p.ZZZ, &PPP) 778 779 return p 780 } 781 782 // double sets p to [2]q in Jacobian extended coordinates. 783 // 784 // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#doubling-dbl-2008-s-1 785 // N.B.: since we consider any point on Z=0 as the point at infinity 786 // this doubling formula works for infinity points as well. 787 func (p *g2JacExtended) double(q *g2JacExtended) *g2JacExtended { 788 var U, V, W, S, XX, M fptower.E2 789 790 U.Double(&q.Y) 791 V.Square(&U) 792 W.Mul(&U, &V) 793 S.Mul(&q.X, &V) 794 XX.Square(&q.X) 795 M.Double(&XX). 796 Add(&M, &XX) // -> + A, but A=0 here 797 U.Mul(&W, &q.Y) 798 799 p.X.Square(&M). 800 Sub(&p.X, &S). 801 Sub(&p.X, &S) 802 p.Y.Sub(&S, &p.X). 803 Mul(&p.Y, &M). 804 Sub(&p.Y, &U) 805 p.ZZ.Mul(&V, &q.ZZ) 806 p.ZZZ.Mul(&W, &q.ZZZ) 807 808 return p 809 } 810 811 // addMixed sets p to p+q in extended Jacobian coordinates, where a.ZZ=1. 812 // 813 // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#addition-madd-2008-s 814 func (p *g2JacExtended) addMixed(a *G2Affine) *g2JacExtended { 815 816 //if a is infinity return p 817 if a.IsInfinity() { 818 return p 819 } 820 // p is infinity, return a 821 if p.ZZ.IsZero() { 822 p.X = a.X 823 p.Y = a.Y 824 p.ZZ.SetOne() 825 p.ZZZ.SetOne() 826 return p 827 } 828 829 var P, R fptower.E2 830 831 // p2: a, p1: p 832 P.Mul(&a.X, &p.ZZ) 833 P.Sub(&P, &p.X) 834 835 R.Mul(&a.Y, &p.ZZZ) 836 R.Sub(&R, &p.Y) 837 838 if P.IsZero() { 839 if R.IsZero() { 840 return p.doubleMixed(a) 841 842 } 843 p.ZZ = fptower.E2{} 844 p.ZZZ = fptower.E2{} 845 return p 846 } 847 848 var PP, PPP, Q, Q2, RR, X3, Y3 fptower.E2 849 850 PP.Square(&P) 851 PPP.Mul(&P, &PP) 852 Q.Mul(&p.X, &PP) 853 RR.Square(&R) 854 X3.Sub(&RR, &PPP) 855 Q2.Double(&Q) 856 p.X.Sub(&X3, &Q2) 857 Y3.Sub(&Q, &p.X).Mul(&Y3, &R) 858 R.Mul(&p.Y, &PPP) 859 p.Y.Sub(&Y3, &R) 860 p.ZZ.Mul(&p.ZZ, &PP) 861 p.ZZZ.Mul(&p.ZZZ, &PPP) 862 863 return p 864 865 } 866 867 // subMixed works the same as addMixed, but negates a.Y. 868 // 869 // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#addition-madd-2008-s 870 func (p *g2JacExtended) subMixed(a *G2Affine) *g2JacExtended { 871 872 //if a is infinity return p 873 if a.IsInfinity() { 874 return p 875 } 876 // p is infinity, return a 877 if p.ZZ.IsZero() { 878 p.X = a.X 879 p.Y.Neg(&a.Y) 880 p.ZZ.SetOne() 881 p.ZZZ.SetOne() 882 return p 883 } 884 885 var P, R fptower.E2 886 887 // p2: a, p1: p 888 P.Mul(&a.X, &p.ZZ) 889 P.Sub(&P, &p.X) 890 891 R.Mul(&a.Y, &p.ZZZ) 892 R.Neg(&R) 893 R.Sub(&R, &p.Y) 894 895 if P.IsZero() { 896 if R.IsZero() { 897 return p.doubleNegMixed(a) 898 899 } 900 p.ZZ = fptower.E2{} 901 p.ZZZ = fptower.E2{} 902 return p 903 } 904 905 var PP, PPP, Q, Q2, RR, X3, Y3 fptower.E2 906 907 PP.Square(&P) 908 PPP.Mul(&P, &PP) 909 Q.Mul(&p.X, &PP) 910 RR.Square(&R) 911 X3.Sub(&RR, &PPP) 912 Q2.Double(&Q) 913 p.X.Sub(&X3, &Q2) 914 Y3.Sub(&Q, &p.X).Mul(&Y3, &R) 915 R.Mul(&p.Y, &PPP) 916 p.Y.Sub(&Y3, &R) 917 p.ZZ.Mul(&p.ZZ, &PP) 918 p.ZZZ.Mul(&p.ZZZ, &PPP) 919 920 return p 921 922 } 923 924 // doubleNegMixed works the same as double, but negates q.Y. 925 func (p *g2JacExtended) doubleNegMixed(a *G2Affine) *g2JacExtended { 926 927 var U, V, W, S, XX, M, S2, L fptower.E2 928 929 U.Double(&a.Y) 930 U.Neg(&U) 931 V.Square(&U) 932 W.Mul(&U, &V) 933 S.Mul(&a.X, &V) 934 XX.Square(&a.X) 935 M.Double(&XX). 936 Add(&M, &XX) // -> + A, but A=0 here 937 S2.Double(&S) 938 L.Mul(&W, &a.Y) 939 940 p.X.Square(&M). 941 Sub(&p.X, &S2) 942 p.Y.Sub(&S, &p.X). 943 Mul(&p.Y, &M). 944 Add(&p.Y, &L) 945 p.ZZ.Set(&V) 946 p.ZZZ.Set(&W) 947 948 return p 949 } 950 951 // doubleMixed sets p to [2]a in Jacobian extended coordinates, where a.ZZ=1. 952 // 953 // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#doubling-dbl-2008-s-1 954 func (p *g2JacExtended) doubleMixed(a *G2Affine) *g2JacExtended { 955 956 var U, V, W, S, XX, M, S2, L fptower.E2 957 958 U.Double(&a.Y) 959 V.Square(&U) 960 W.Mul(&U, &V) 961 S.Mul(&a.X, &V) 962 XX.Square(&a.X) 963 M.Double(&XX). 964 Add(&M, &XX) // -> + A, but A=0 here 965 S2.Double(&S) 966 L.Mul(&W, &a.Y) 967 968 p.X.Square(&M). 969 Sub(&p.X, &S2) 970 p.Y.Sub(&S, &p.X). 971 Mul(&p.Y, &M). 972 Sub(&p.Y, &L) 973 p.ZZ.Set(&V) 974 p.ZZZ.Set(&W) 975 976 return p 977 } 978 979 // ------------------------------------------------------------------------------------------------- 980 // Homogenous projective coordinates 981 982 // Set sets p to a in projective coordinates. 983 func (p *g2Proj) Set(q *g2Proj) *g2Proj { 984 p.x, p.y, p.z = q.x, q.y, q.z 985 return p 986 } 987 988 // Neg sets p to the projective negative point -q = (q.X, -q.Y). 989 func (p *g2Proj) Neg(q *g2Proj) *g2Proj { 990 *p = *q 991 p.y.Neg(&q.y) 992 return p 993 } 994 995 // FromAffine converts q in affine to p in projective coordinates. 996 func (p *g2Proj) FromAffine(a *G2Affine) *g2Proj { 997 if a.X.IsZero() && a.Y.IsZero() { 998 p.z.SetZero() 999 p.x.SetOne() 1000 p.y.SetOne() 1001 return p 1002 } 1003 p.z.SetOne() 1004 p.x.Set(&a.X) 1005 p.y.Set(&a.Y) 1006 return p 1007 } 1008 1009 // BatchScalarMultiplicationG2 multiplies the same base by all scalars 1010 // and return resulting points in affine coordinates 1011 // uses a simple windowed-NAF-like multiplication algorithm. 1012 func BatchScalarMultiplicationG2(base *G2Affine, scalars []fr.Element) []G2Affine { 1013 // approximate cost in group ops is 1014 // cost = 2^{c-1} + n(scalar.nbBits+nbChunks) 1015 1016 nbPoints := uint64(len(scalars)) 1017 min := ^uint64(0) 1018 bestC := 0 1019 for c := 2; c <= 16; c++ { 1020 cost := uint64(1 << (c - 1)) // pre compute the table 1021 nbChunks := computeNbChunks(uint64(c)) 1022 cost += nbPoints * (uint64(c) + 1) * nbChunks // doublings + point add 1023 if cost < min { 1024 min = cost 1025 bestC = c 1026 } 1027 } 1028 c := uint64(bestC) // window size 1029 nbChunks := int(computeNbChunks(c)) 1030 1031 // last window may be slightly larger than c; in which case we need to compute one 1032 // extra element in the baseTable 1033 maxC := lastC(c) 1034 if c > maxC { 1035 maxC = c 1036 } 1037 1038 // precompute all powers of base for our window 1039 // note here that if performance is critical, we can implement as in the msmX methods 1040 // this allocation to be on the stack 1041 baseTable := make([]G2Jac, (1 << (maxC - 1))) 1042 baseTable[0].FromAffine(base) 1043 for i := 1; i < len(baseTable); i++ { 1044 baseTable[i] = baseTable[i-1] 1045 baseTable[i].AddMixed(base) 1046 } 1047 toReturn := make([]G2Affine, len(scalars)) 1048 1049 // partition the scalars into digits 1050 digits, _ := partitionScalars(scalars, c, runtime.NumCPU()) 1051 1052 // for each digit, take value in the base table, double it c time, voilà. 1053 parallel.Execute(len(scalars), func(start, end int) { 1054 var p G2Jac 1055 for i := start; i < end; i++ { 1056 p.Set(&g2Infinity) 1057 for chunk := nbChunks - 1; chunk >= 0; chunk-- { 1058 if chunk != nbChunks-1 { 1059 for j := uint64(0); j < c; j++ { 1060 p.DoubleAssign() 1061 } 1062 } 1063 offset := chunk * len(scalars) 1064 digit := digits[i+offset] 1065 1066 if digit == 0 { 1067 continue 1068 } 1069 1070 // if msbWindow bit is set, we need to subtract 1071 if digit&1 == 0 { 1072 // add 1073 p.AddAssign(&baseTable[(digit>>1)-1]) 1074 } else { 1075 // sub 1076 t := baseTable[digit>>1] 1077 t.Neg(&t) 1078 p.AddAssign(&t) 1079 } 1080 } 1081 1082 // set our result point 1083 toReturn[i].FromJacobian(&p) 1084 1085 } 1086 }) 1087 return toReturn 1088 } 1089 1090 // batchAddG2Affine adds affine points using the Montgomery batch inversion trick. 1091 // Special cases (doubling, infinity) must be filtered out before this call. 1092 func batchAddG2Affine[TP pG2Affine, TPP ppG2Affine, TC cG2Affine](R *TPP, P *TP, batchSize int) { 1093 var lambda, lambdain TC 1094 1095 // add part 1096 for j := 0; j < batchSize; j++ { 1097 lambdain[j].Sub(&(*P)[j].X, &(*R)[j].X) 1098 } 1099 1100 // invert denominator using montgomery batch invert technique 1101 { 1102 var accumulator fptower.E2 1103 lambda[0].SetOne() 1104 accumulator.Set(&lambdain[0]) 1105 1106 for i := 1; i < batchSize; i++ { 1107 lambda[i] = accumulator 1108 accumulator.Mul(&accumulator, &lambdain[i]) 1109 } 1110 1111 accumulator.Inverse(&accumulator) 1112 1113 for i := batchSize - 1; i > 0; i-- { 1114 lambda[i].Mul(&lambda[i], &accumulator) 1115 accumulator.Mul(&accumulator, &lambdain[i]) 1116 } 1117 lambda[0].Set(&accumulator) 1118 } 1119 1120 var d fptower.E2 1121 var rr G2Affine 1122 1123 // add part 1124 for j := 0; j < batchSize; j++ { 1125 // computa lambda 1126 d.Sub(&(*P)[j].Y, &(*R)[j].Y) 1127 lambda[j].Mul(&lambda[j], &d) 1128 1129 // compute X, Y 1130 rr.X.Square(&lambda[j]) 1131 rr.X.Sub(&rr.X, &(*R)[j].X) 1132 rr.X.Sub(&rr.X, &(*P)[j].X) 1133 d.Sub(&(*R)[j].X, &rr.X) 1134 rr.Y.Mul(&lambda[j], &d) 1135 rr.Y.Sub(&rr.Y, &(*R)[j].Y) 1136 (*R)[j].Set(&rr) 1137 } 1138 } 1139 1140 // RandomOnG2 produces a random point in G2 1141 // using standard map-to-curve methods, which means the relative discrete log 1142 // of the generated point with respect to the canonical generator is not known. 1143 func RandomOnG2() (G2Affine, error) { 1144 if gBytes, err := randomFrSizedBytes(); err != nil { 1145 return G2Affine{}, err 1146 } else { 1147 return HashToG2(gBytes, []byte("random on g2")) 1148 } 1149 } 1150 1151 func randomFrSizedBytes() ([]byte, error) { 1152 res := make([]byte, fr.Bytes) 1153 _, err := rand.Read(res) 1154 return res, err 1155 }