github.com/consensys/gnark-crypto@v0.14.0/ecc/bn254/internal/fptower/e2_bn254.go (about) 1 // Copyright 2020 ConsenSys AG 2 // 3 // Licensed under the Apache License, Version 2.0 (the "License"); 4 // you may not use this file except in compliance with the License. 5 // You may obtain a copy of the License at 6 // 7 // http://www.apache.org/licenses/LICENSE-2.0 8 // 9 // Unless required by applicable law or agreed to in writing, software 10 // distributed under the License is distributed on an "AS IS" BASIS, 11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 // See the License for the specific language governing permissions and 13 // limitations under the License. 14 15 package fptower 16 17 import ( 18 "github.com/consensys/gnark-crypto/ecc/bn254/fp" 19 ) 20 21 // declaring nonResInverse as global makes MulByNonResInv inlinable 22 var nonResInverse E2 = E2{ 23 A0: fp.Element{ 24 10477841894441615122, 25 7327163185667482322, 26 3635199979766503006, 27 3215324977242306624, 28 }, 29 A1: fp.Element{ 30 7515750141297360845, 31 14746352163864140223, 32 11319968037783994424, 33 30185921062296004, 34 }, 35 } 36 37 // mulGenericE2 sets z to the E2-product of x,y, returns z 38 // note: do not rename, this is referenced in the x86 assembly impl 39 func mulGenericE2(z, x, y *E2) { 40 var a, b, c fp.Element 41 a.Add(&x.A0, &x.A1) 42 b.Add(&y.A0, &y.A1) 43 a.Mul(&a, &b) 44 b.Mul(&x.A0, &y.A0) 45 c.Mul(&x.A1, &y.A1) 46 z.A1.Sub(&a, &b).Sub(&z.A1, &c) 47 z.A0.Sub(&b, &c) // z.A0.MulByNonResidue(&c).Add(&z.A0, &b) 48 } 49 50 // squareGenericE2 sets z to the E2-product of x,x returns z 51 // note: do not rename, this is referenced in the x86 assembly impl 52 func squareGenericE2(z, x *E2) { 53 // adapted from algo 22 https://eprint.iacr.org/2010/354.pdf 54 var a, b fp.Element 55 a.Add(&x.A0, &x.A1) 56 b.Sub(&x.A0, &x.A1) 57 a.Mul(&a, &b) 58 b.Mul(&x.A0, &x.A1).Double(&b) 59 z.A0.Set(&a) 60 z.A1.Set(&b) 61 } 62 63 // MulByNonResidueInv multiplies a E2 by (9,1)^{-1} 64 func (z *E2) MulByNonResidueInv(x *E2) *E2 { 65 z.Mul(x, &nonResInverse) 66 return z 67 } 68 69 // Inverse sets z to the E2-inverse of x, returns z 70 // 71 // if x == 0, sets and returns z = x 72 func (z *E2) Inverse(x *E2) *E2 { 73 // Algorithm 8 from https://eprint.iacr.org/2010/354.pdf 74 var t0, t1 fp.Element 75 t0.Square(&x.A0) 76 t1.Square(&x.A1) 77 t0.Add(&t0, &t1) 78 t1.Inverse(&t0) 79 z.A0.Mul(&x.A0, &t1) 80 z.A1.Mul(&x.A1, &t1).Neg(&z.A1) 81 82 return z 83 } 84 85 // norm sets x to the norm of z 86 func (z *E2) norm(x *fp.Element) { 87 var tmp fp.Element 88 x.Square(&z.A0) 89 tmp.Square(&z.A1) 90 x.Add(x, &tmp) 91 } 92 93 // MulBybTwistCurveCoeff multiplies by 3/(9,1) 94 func (z *E2) MulBybTwistCurveCoeff(x *E2) *E2 { 95 96 var res E2 97 res.MulByNonResidueInv(x) 98 z.Double(&res). 99 Add(&res, z) 100 101 return z 102 }