github.com/consensys/gnark-crypto@v0.14.0/ecc/bw6-633/fr/element_exp.go (about) 1 // Copyright 2020 ConsenSys Software Inc. 2 // 3 // Licensed under the Apache License, Version 2.0 (the "License"); 4 // you may not use this file except in compliance with the License. 5 // You may obtain a copy of the License at 6 // 7 // http://www.apache.org/licenses/LICENSE-2.0 8 // 9 // Unless required by applicable law or agreed to in writing, software 10 // distributed under the License is distributed on an "AS IS" BASIS, 11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 // See the License for the specific language governing permissions and 13 // limitations under the License. 14 15 // Code generated by consensys/gnark-crypto DO NOT EDIT 16 17 package fr 18 19 // expBySqrtExp is equivalent to z.Exp(x, 2611d015ac36b2869fba4c5f4be2f57ef60e80d513d0d70210f72ed295ef28137f4017fa01) 20 // 21 // uses github.com/mmcloughlin/addchain v0.4.0 to generate a shorter addition chain 22 func (z *Element) expBySqrtExp(x Element) *Element { 23 // addition chain: 24 // 25 // _10 = 2*1 26 // _11 = 1 + _10 27 // _101 = _10 + _11 28 // _110 = 1 + _101 29 // _1011 = _101 + _110 30 // _1101 = _10 + _1011 31 // _10001 = _110 + _1011 32 // _10011 = _10 + _10001 33 // _11001 = _110 + _10011 34 // _11011 = _10 + _11001 35 // _11101 = _10 + _11011 36 // _11111 = _10 + _11101 37 // _100001 = _10 + _11111 38 // _100011 = _10 + _100001 39 // _100101 = _10 + _100011 40 // _101001 = _110 + _100011 41 // _101011 = _10 + _101001 42 // _101111 = _110 + _101001 43 // _110101 = _110 + _101111 44 // _110111 = _10 + _110101 45 // _111011 = _110 + _110101 46 // _111101 = _10 + _111011 47 // _111111 = _10 + _111101 48 // _1111110 = 2*_111111 49 // _1111111 = 1 + _1111110 50 // _10011000 = _11001 + _1111111 51 // i51 = ((_10011000 << 7 + _100011) << 3 + _101) << 13 52 // i68 = ((_101011 + i51) << 5 + _1011) << 9 + _11011 53 // i88 = ((i68 << 5 + _1011) << 5 + _101) << 8 54 // i105 = ((_1101 + i88) << 8 + _111111) << 6 + _11101 55 // i129 = ((i105 << 7 + _10011) << 9 + _101111) << 6 56 // i147 = ((_101001 + i129) << 6 + _11111) << 9 + _101111 57 // i168 = ((i147 << 7 + _101011) << 6 + _111101) << 6 58 // i194 = ((_111011 + i168) << 10 + _11101) << 13 + _110101 59 // i220 = ((i194 << 6 + _10001) << 8 + _111101) << 10 60 // i237 = ((_110101 + i220) << 2 + _11) << 12 + _100001 61 // i261 = ((i237 << 10 + _111101) << 5 + _11001) << 7 62 // i279 = ((_111011 + i261) << 7 + _100101) << 8 + _101011 63 // i304 = ((i279 << 6 + _110111) << 6 + _100101) << 11 64 // i317 = ((_10011 + i304) << 8 + _1111111) << 2 + 1 65 // i338 = 2*((i317 << 10 + 1) << 8 + _1111111) 66 // return ((1 + i338) << 2 + 1) << 9 + 1 67 // 68 // Operations: 288 squares 64 multiplies 69 70 // Allocate Temporaries. 71 var ( 72 t0 = new(Element) 73 t1 = new(Element) 74 t2 = new(Element) 75 t3 = new(Element) 76 t4 = new(Element) 77 t5 = new(Element) 78 t6 = new(Element) 79 t7 = new(Element) 80 t8 = new(Element) 81 t9 = new(Element) 82 t10 = new(Element) 83 t11 = new(Element) 84 t12 = new(Element) 85 t13 = new(Element) 86 t14 = new(Element) 87 t15 = new(Element) 88 t16 = new(Element) 89 t17 = new(Element) 90 t18 = new(Element) 91 t19 = new(Element) 92 t20 = new(Element) 93 t21 = new(Element) 94 ) 95 96 // var t0,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,t11,t12,t13,t14,t15,t16,t17,t18,t19,t20,t21 Element 97 // Step 1: z = x^0x2 98 z.Square(&x) 99 100 // Step 2: t8 = x^0x3 101 t8.Mul(&x, z) 102 103 // Step 3: t17 = x^0x5 104 t17.Mul(z, t8) 105 106 // Step 4: t4 = x^0x6 107 t4.Mul(&x, t17) 108 109 // Step 5: t18 = x^0xb 110 t18.Mul(t17, t4) 111 112 // Step 6: t16 = x^0xd 113 t16.Mul(z, t18) 114 115 // Step 7: t10 = x^0x11 116 t10.Mul(t4, t18) 117 118 // Step 8: t0 = x^0x13 119 t0.Mul(z, t10) 120 121 // Step 9: t5 = x^0x19 122 t5.Mul(t4, t0) 123 124 // Step 10: t19 = x^0x1b 125 t19.Mul(z, t5) 126 127 // Step 11: t11 = x^0x1d 128 t11.Mul(z, t19) 129 130 // Step 12: t13 = x^0x1f 131 t13.Mul(z, t11) 132 133 // Step 13: t7 = x^0x21 134 t7.Mul(z, t13) 135 136 // Step 14: t20 = x^0x23 137 t20.Mul(z, t7) 138 139 // Step 15: t1 = x^0x25 140 t1.Mul(z, t20) 141 142 // Step 16: t14 = x^0x29 143 t14.Mul(t4, t20) 144 145 // Step 17: t3 = x^0x2b 146 t3.Mul(z, t14) 147 148 // Step 18: t12 = x^0x2f 149 t12.Mul(t4, t14) 150 151 // Step 19: t9 = x^0x35 152 t9.Mul(t4, t12) 153 154 // Step 20: t2 = x^0x37 155 t2.Mul(z, t9) 156 157 // Step 21: t4 = x^0x3b 158 t4.Mul(t4, t9) 159 160 // Step 22: t6 = x^0x3d 161 t6.Mul(z, t4) 162 163 // Step 23: t15 = x^0x3f 164 t15.Mul(z, t6) 165 166 // Step 24: z = x^0x7e 167 z.Square(t15) 168 169 // Step 25: z = x^0x7f 170 z.Mul(&x, z) 171 172 // Step 26: t21 = x^0x98 173 t21.Mul(t5, z) 174 175 // Step 33: t21 = x^0x4c00 176 for s := 0; s < 7; s++ { 177 t21.Square(t21) 178 } 179 180 // Step 34: t20 = x^0x4c23 181 t20.Mul(t20, t21) 182 183 // Step 37: t20 = x^0x26118 184 for s := 0; s < 3; s++ { 185 t20.Square(t20) 186 } 187 188 // Step 38: t20 = x^0x2611d 189 t20.Mul(t17, t20) 190 191 // Step 51: t20 = x^0x4c23a000 192 for s := 0; s < 13; s++ { 193 t20.Square(t20) 194 } 195 196 // Step 52: t20 = x^0x4c23a02b 197 t20.Mul(t3, t20) 198 199 // Step 57: t20 = x^0x984740560 200 for s := 0; s < 5; s++ { 201 t20.Square(t20) 202 } 203 204 // Step 58: t20 = x^0x98474056b 205 t20.Mul(t18, t20) 206 207 // Step 67: t20 = x^0x1308e80ad600 208 for s := 0; s < 9; s++ { 209 t20.Square(t20) 210 } 211 212 // Step 68: t19 = x^0x1308e80ad61b 213 t19.Mul(t19, t20) 214 215 // Step 73: t19 = x^0x2611d015ac360 216 for s := 0; s < 5; s++ { 217 t19.Square(t19) 218 } 219 220 // Step 74: t18 = x^0x2611d015ac36b 221 t18.Mul(t18, t19) 222 223 // Step 79: t18 = x^0x4c23a02b586d60 224 for s := 0; s < 5; s++ { 225 t18.Square(t18) 226 } 227 228 // Step 80: t17 = x^0x4c23a02b586d65 229 t17.Mul(t17, t18) 230 231 // Step 88: t17 = x^0x4c23a02b586d6500 232 for s := 0; s < 8; s++ { 233 t17.Square(t17) 234 } 235 236 // Step 89: t16 = x^0x4c23a02b586d650d 237 t16.Mul(t16, t17) 238 239 // Step 97: t16 = x^0x4c23a02b586d650d00 240 for s := 0; s < 8; s++ { 241 t16.Square(t16) 242 } 243 244 // Step 98: t15 = x^0x4c23a02b586d650d3f 245 t15.Mul(t15, t16) 246 247 // Step 104: t15 = x^0x1308e80ad61b59434fc0 248 for s := 0; s < 6; s++ { 249 t15.Square(t15) 250 } 251 252 // Step 105: t15 = x^0x1308e80ad61b59434fdd 253 t15.Mul(t11, t15) 254 255 // Step 112: t15 = x^0x98474056b0daca1a7ee80 256 for s := 0; s < 7; s++ { 257 t15.Square(t15) 258 } 259 260 // Step 113: t15 = x^0x98474056b0daca1a7ee93 261 t15.Mul(t0, t15) 262 263 // Step 122: t15 = x^0x1308e80ad61b59434fdd2600 264 for s := 0; s < 9; s++ { 265 t15.Square(t15) 266 } 267 268 // Step 123: t15 = x^0x1308e80ad61b59434fdd262f 269 t15.Mul(t12, t15) 270 271 // Step 129: t15 = x^0x4c23a02b586d650d3f7498bc0 272 for s := 0; s < 6; s++ { 273 t15.Square(t15) 274 } 275 276 // Step 130: t14 = x^0x4c23a02b586d650d3f7498be9 277 t14.Mul(t14, t15) 278 279 // Step 136: t14 = x^0x1308e80ad61b59434fdd262fa40 280 for s := 0; s < 6; s++ { 281 t14.Square(t14) 282 } 283 284 // Step 137: t13 = x^0x1308e80ad61b59434fdd262fa5f 285 t13.Mul(t13, t14) 286 287 // Step 146: t13 = x^0x2611d015ac36b2869fba4c5f4be00 288 for s := 0; s < 9; s++ { 289 t13.Square(t13) 290 } 291 292 // Step 147: t12 = x^0x2611d015ac36b2869fba4c5f4be2f 293 t12.Mul(t12, t13) 294 295 // Step 154: t12 = x^0x1308e80ad61b59434fdd262fa5f1780 296 for s := 0; s < 7; s++ { 297 t12.Square(t12) 298 } 299 300 // Step 155: t12 = x^0x1308e80ad61b59434fdd262fa5f17ab 301 t12.Mul(t3, t12) 302 303 // Step 161: t12 = x^0x4c23a02b586d650d3f7498be97c5eac0 304 for s := 0; s < 6; s++ { 305 t12.Square(t12) 306 } 307 308 // Step 162: t12 = x^0x4c23a02b586d650d3f7498be97c5eafd 309 t12.Mul(t6, t12) 310 311 // Step 168: t12 = x^0x1308e80ad61b59434fdd262fa5f17abf40 312 for s := 0; s < 6; s++ { 313 t12.Square(t12) 314 } 315 316 // Step 169: t12 = x^0x1308e80ad61b59434fdd262fa5f17abf7b 317 t12.Mul(t4, t12) 318 319 // Step 179: t12 = x^0x4c23a02b586d650d3f7498be97c5eafdec00 320 for s := 0; s < 10; s++ { 321 t12.Square(t12) 322 } 323 324 // Step 180: t11 = x^0x4c23a02b586d650d3f7498be97c5eafdec1d 325 t11.Mul(t11, t12) 326 327 // Step 193: t11 = x^0x98474056b0daca1a7ee9317d2f8bd5fbd83a000 328 for s := 0; s < 13; s++ { 329 t11.Square(t11) 330 } 331 332 // Step 194: t11 = x^0x98474056b0daca1a7ee9317d2f8bd5fbd83a035 333 t11.Mul(t9, t11) 334 335 // Step 200: t11 = x^0x2611d015ac36b2869fba4c5f4be2f57ef60e80d40 336 for s := 0; s < 6; s++ { 337 t11.Square(t11) 338 } 339 340 // Step 201: t10 = x^0x2611d015ac36b2869fba4c5f4be2f57ef60e80d51 341 t10.Mul(t10, t11) 342 343 // Step 209: t10 = x^0x2611d015ac36b2869fba4c5f4be2f57ef60e80d5100 344 for s := 0; s < 8; s++ { 345 t10.Square(t10) 346 } 347 348 // Step 210: t10 = x^0x2611d015ac36b2869fba4c5f4be2f57ef60e80d513d 349 t10.Mul(t6, t10) 350 351 // Step 220: t10 = x^0x98474056b0daca1a7ee9317d2f8bd5fbd83a03544f400 352 for s := 0; s < 10; s++ { 353 t10.Square(t10) 354 } 355 356 // Step 221: t9 = x^0x98474056b0daca1a7ee9317d2f8bd5fbd83a03544f435 357 t9.Mul(t9, t10) 358 359 // Step 223: t9 = x^0x2611d015ac36b2869fba4c5f4be2f57ef60e80d513d0d4 360 for s := 0; s < 2; s++ { 361 t9.Square(t9) 362 } 363 364 // Step 224: t8 = x^0x2611d015ac36b2869fba4c5f4be2f57ef60e80d513d0d7 365 t8.Mul(t8, t9) 366 367 // Step 236: t8 = x^0x2611d015ac36b2869fba4c5f4be2f57ef60e80d513d0d7000 368 for s := 0; s < 12; s++ { 369 t8.Square(t8) 370 } 371 372 // Step 237: t7 = x^0x2611d015ac36b2869fba4c5f4be2f57ef60e80d513d0d7021 373 t7.Mul(t7, t8) 374 375 // Step 247: t7 = x^0x98474056b0daca1a7ee9317d2f8bd5fbd83a03544f435c08400 376 for s := 0; s < 10; s++ { 377 t7.Square(t7) 378 } 379 380 // Step 248: t6 = x^0x98474056b0daca1a7ee9317d2f8bd5fbd83a03544f435c0843d 381 t6.Mul(t6, t7) 382 383 // Step 253: t6 = x^0x1308e80ad61b59434fdd262fa5f17abf7b07406a89e86b81087a0 384 for s := 0; s < 5; s++ { 385 t6.Square(t6) 386 } 387 388 // Step 254: t5 = x^0x1308e80ad61b59434fdd262fa5f17abf7b07406a89e86b81087b9 389 t5.Mul(t5, t6) 390 391 // Step 261: t5 = x^0x98474056b0daca1a7ee9317d2f8bd5fbd83a03544f435c0843dc80 392 for s := 0; s < 7; s++ { 393 t5.Square(t5) 394 } 395 396 // Step 262: t4 = x^0x98474056b0daca1a7ee9317d2f8bd5fbd83a03544f435c0843dcbb 397 t4.Mul(t4, t5) 398 399 // Step 269: t4 = x^0x4c23a02b586d650d3f7498be97c5eafdec1d01aa27a1ae0421ee5d80 400 for s := 0; s < 7; s++ { 401 t4.Square(t4) 402 } 403 404 // Step 270: t4 = x^0x4c23a02b586d650d3f7498be97c5eafdec1d01aa27a1ae0421ee5da5 405 t4.Mul(t1, t4) 406 407 // Step 278: t4 = x^0x4c23a02b586d650d3f7498be97c5eafdec1d01aa27a1ae0421ee5da500 408 for s := 0; s < 8; s++ { 409 t4.Square(t4) 410 } 411 412 // Step 279: t3 = x^0x4c23a02b586d650d3f7498be97c5eafdec1d01aa27a1ae0421ee5da52b 413 t3.Mul(t3, t4) 414 415 // Step 285: t3 = x^0x1308e80ad61b59434fdd262fa5f17abf7b07406a89e86b81087b97694ac0 416 for s := 0; s < 6; s++ { 417 t3.Square(t3) 418 } 419 420 // Step 286: t2 = x^0x1308e80ad61b59434fdd262fa5f17abf7b07406a89e86b81087b97694af7 421 t2.Mul(t2, t3) 422 423 // Step 292: t2 = x^0x4c23a02b586d650d3f7498be97c5eafdec1d01aa27a1ae0421ee5da52bdc0 424 for s := 0; s < 6; s++ { 425 t2.Square(t2) 426 } 427 428 // Step 293: t1 = x^0x4c23a02b586d650d3f7498be97c5eafdec1d01aa27a1ae0421ee5da52bde5 429 t1.Mul(t1, t2) 430 431 // Step 304: t1 = x^0x2611d015ac36b2869fba4c5f4be2f57ef60e80d513d0d70210f72ed295ef2800 432 for s := 0; s < 11; s++ { 433 t1.Square(t1) 434 } 435 436 // Step 305: t0 = x^0x2611d015ac36b2869fba4c5f4be2f57ef60e80d513d0d70210f72ed295ef2813 437 t0.Mul(t0, t1) 438 439 // Step 313: t0 = x^0x2611d015ac36b2869fba4c5f4be2f57ef60e80d513d0d70210f72ed295ef281300 440 for s := 0; s < 8; s++ { 441 t0.Square(t0) 442 } 443 444 // Step 314: t0 = x^0x2611d015ac36b2869fba4c5f4be2f57ef60e80d513d0d70210f72ed295ef28137f 445 t0.Mul(z, t0) 446 447 // Step 316: t0 = x^0x98474056b0daca1a7ee9317d2f8bd5fbd83a03544f435c0843dcbb4a57bca04dfc 448 for s := 0; s < 2; s++ { 449 t0.Square(t0) 450 } 451 452 // Step 317: t0 = x^0x98474056b0daca1a7ee9317d2f8bd5fbd83a03544f435c0843dcbb4a57bca04dfd 453 t0.Mul(&x, t0) 454 455 // Step 327: t0 = x^0x2611d015ac36b2869fba4c5f4be2f57ef60e80d513d0d70210f72ed295ef28137f400 456 for s := 0; s < 10; s++ { 457 t0.Square(t0) 458 } 459 460 // Step 328: t0 = x^0x2611d015ac36b2869fba4c5f4be2f57ef60e80d513d0d70210f72ed295ef28137f401 461 t0.Mul(&x, t0) 462 463 // Step 336: t0 = x^0x2611d015ac36b2869fba4c5f4be2f57ef60e80d513d0d70210f72ed295ef28137f40100 464 for s := 0; s < 8; s++ { 465 t0.Square(t0) 466 } 467 468 // Step 337: z = x^0x2611d015ac36b2869fba4c5f4be2f57ef60e80d513d0d70210f72ed295ef28137f4017f 469 z.Mul(z, t0) 470 471 // Step 338: z = x^0x4c23a02b586d650d3f7498be97c5eafdec1d01aa27a1ae0421ee5da52bde5026fe802fe 472 z.Square(z) 473 474 // Step 339: z = x^0x4c23a02b586d650d3f7498be97c5eafdec1d01aa27a1ae0421ee5da52bde5026fe802ff 475 z.Mul(&x, z) 476 477 // Step 341: z = x^0x1308e80ad61b59434fdd262fa5f17abf7b07406a89e86b81087b97694af79409bfa00bfc 478 for s := 0; s < 2; s++ { 479 z.Square(z) 480 } 481 482 // Step 342: z = x^0x1308e80ad61b59434fdd262fa5f17abf7b07406a89e86b81087b97694af79409bfa00bfd 483 z.Mul(&x, z) 484 485 // Step 351: z = x^0x2611d015ac36b2869fba4c5f4be2f57ef60e80d513d0d70210f72ed295ef28137f4017fa00 486 for s := 0; s < 9; s++ { 487 z.Square(z) 488 } 489 490 // Step 352: z = x^0x2611d015ac36b2869fba4c5f4be2f57ef60e80d513d0d70210f72ed295ef28137f4017fa01 491 z.Mul(&x, z) 492 493 return z 494 } 495 496 // expByLegendreExp is equivalent to z.Exp(x, 2611d015ac36b2869fba4c5f4be2f57ef60e80d513d0d70210f72ed295ef28137f4017fa0180000) 497 // 498 // uses github.com/mmcloughlin/addchain v0.4.0 to generate a shorter addition chain 499 func (z *Element) expByLegendreExp(x Element) *Element { 500 // addition chain: 501 // 502 // _10 = 2*1 503 // _11 = 1 + _10 504 // _101 = _10 + _11 505 // _110 = 1 + _101 506 // _1011 = _101 + _110 507 // _1101 = _10 + _1011 508 // _10001 = _110 + _1011 509 // _10011 = _10 + _10001 510 // _11001 = _110 + _10011 511 // _11011 = _10 + _11001 512 // _11101 = _10 + _11011 513 // _11111 = _10 + _11101 514 // _100001 = _10 + _11111 515 // _100011 = _10 + _100001 516 // _100101 = _10 + _100011 517 // _101001 = _110 + _100011 518 // _101011 = _10 + _101001 519 // _101111 = _110 + _101001 520 // _110101 = _110 + _101111 521 // _110111 = _10 + _110101 522 // _111011 = _110 + _110101 523 // _111101 = _10 + _111011 524 // _111111 = _10 + _111101 525 // _1111110 = 2*_111111 526 // _1111111 = 1 + _1111110 527 // _10011000 = _11001 + _1111111 528 // i51 = ((_10011000 << 7 + _100011) << 3 + _101) << 13 529 // i68 = ((_101011 + i51) << 5 + _1011) << 9 + _11011 530 // i88 = ((i68 << 5 + _1011) << 5 + _101) << 8 531 // i105 = ((_1101 + i88) << 8 + _111111) << 6 + _11101 532 // i129 = ((i105 << 7 + _10011) << 9 + _101111) << 6 533 // i147 = ((_101001 + i129) << 6 + _11111) << 9 + _101111 534 // i168 = ((i147 << 7 + _101011) << 6 + _111101) << 6 535 // i194 = ((_111011 + i168) << 10 + _11101) << 13 + _110101 536 // i220 = ((i194 << 6 + _10001) << 8 + _111101) << 10 537 // i237 = ((_110101 + i220) << 2 + _11) << 12 + _100001 538 // i261 = ((i237 << 10 + _111101) << 5 + _11001) << 7 539 // i279 = ((_111011 + i261) << 7 + _100101) << 8 + _101011 540 // i304 = ((i279 << 6 + _110111) << 6 + _100101) << 11 541 // i317 = ((_10011 + i304) << 8 + _1111111) << 2 + 1 542 // i338 = 2*((i317 << 10 + 1) << 8 + _1111111) 543 // i353 = ((1 + i338) << 2 + 1) << 10 + _11 544 // return i353 << 19 545 // 546 // Operations: 308 squares 64 multiplies 547 548 // Allocate Temporaries. 549 var ( 550 t0 = new(Element) 551 t1 = new(Element) 552 t2 = new(Element) 553 t3 = new(Element) 554 t4 = new(Element) 555 t5 = new(Element) 556 t6 = new(Element) 557 t7 = new(Element) 558 t8 = new(Element) 559 t9 = new(Element) 560 t10 = new(Element) 561 t11 = new(Element) 562 t12 = new(Element) 563 t13 = new(Element) 564 t14 = new(Element) 565 t15 = new(Element) 566 t16 = new(Element) 567 t17 = new(Element) 568 t18 = new(Element) 569 t19 = new(Element) 570 t20 = new(Element) 571 t21 = new(Element) 572 ) 573 574 // var t0,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,t11,t12,t13,t14,t15,t16,t17,t18,t19,t20,t21 Element 575 // Step 1: t0 = x^0x2 576 t0.Square(&x) 577 578 // Step 2: z = x^0x3 579 z.Mul(&x, t0) 580 581 // Step 3: t17 = x^0x5 582 t17.Mul(t0, z) 583 584 // Step 4: t5 = x^0x6 585 t5.Mul(&x, t17) 586 587 // Step 5: t18 = x^0xb 588 t18.Mul(t17, t5) 589 590 // Step 6: t16 = x^0xd 591 t16.Mul(t0, t18) 592 593 // Step 7: t10 = x^0x11 594 t10.Mul(t5, t18) 595 596 // Step 8: t1 = x^0x13 597 t1.Mul(t0, t10) 598 599 // Step 9: t6 = x^0x19 600 t6.Mul(t5, t1) 601 602 // Step 10: t19 = x^0x1b 603 t19.Mul(t0, t6) 604 605 // Step 11: t11 = x^0x1d 606 t11.Mul(t0, t19) 607 608 // Step 12: t13 = x^0x1f 609 t13.Mul(t0, t11) 610 611 // Step 13: t8 = x^0x21 612 t8.Mul(t0, t13) 613 614 // Step 14: t20 = x^0x23 615 t20.Mul(t0, t8) 616 617 // Step 15: t2 = x^0x25 618 t2.Mul(t0, t20) 619 620 // Step 16: t14 = x^0x29 621 t14.Mul(t5, t20) 622 623 // Step 17: t4 = x^0x2b 624 t4.Mul(t0, t14) 625 626 // Step 18: t12 = x^0x2f 627 t12.Mul(t5, t14) 628 629 // Step 19: t9 = x^0x35 630 t9.Mul(t5, t12) 631 632 // Step 20: t3 = x^0x37 633 t3.Mul(t0, t9) 634 635 // Step 21: t5 = x^0x3b 636 t5.Mul(t5, t9) 637 638 // Step 22: t7 = x^0x3d 639 t7.Mul(t0, t5) 640 641 // Step 23: t15 = x^0x3f 642 t15.Mul(t0, t7) 643 644 // Step 24: t0 = x^0x7e 645 t0.Square(t15) 646 647 // Step 25: t0 = x^0x7f 648 t0.Mul(&x, t0) 649 650 // Step 26: t21 = x^0x98 651 t21.Mul(t6, t0) 652 653 // Step 33: t21 = x^0x4c00 654 for s := 0; s < 7; s++ { 655 t21.Square(t21) 656 } 657 658 // Step 34: t20 = x^0x4c23 659 t20.Mul(t20, t21) 660 661 // Step 37: t20 = x^0x26118 662 for s := 0; s < 3; s++ { 663 t20.Square(t20) 664 } 665 666 // Step 38: t20 = x^0x2611d 667 t20.Mul(t17, t20) 668 669 // Step 51: t20 = x^0x4c23a000 670 for s := 0; s < 13; s++ { 671 t20.Square(t20) 672 } 673 674 // Step 52: t20 = x^0x4c23a02b 675 t20.Mul(t4, t20) 676 677 // Step 57: t20 = x^0x984740560 678 for s := 0; s < 5; s++ { 679 t20.Square(t20) 680 } 681 682 // Step 58: t20 = x^0x98474056b 683 t20.Mul(t18, t20) 684 685 // Step 67: t20 = x^0x1308e80ad600 686 for s := 0; s < 9; s++ { 687 t20.Square(t20) 688 } 689 690 // Step 68: t19 = x^0x1308e80ad61b 691 t19.Mul(t19, t20) 692 693 // Step 73: t19 = x^0x2611d015ac360 694 for s := 0; s < 5; s++ { 695 t19.Square(t19) 696 } 697 698 // Step 74: t18 = x^0x2611d015ac36b 699 t18.Mul(t18, t19) 700 701 // Step 79: t18 = x^0x4c23a02b586d60 702 for s := 0; s < 5; s++ { 703 t18.Square(t18) 704 } 705 706 // Step 80: t17 = x^0x4c23a02b586d65 707 t17.Mul(t17, t18) 708 709 // Step 88: t17 = x^0x4c23a02b586d6500 710 for s := 0; s < 8; s++ { 711 t17.Square(t17) 712 } 713 714 // Step 89: t16 = x^0x4c23a02b586d650d 715 t16.Mul(t16, t17) 716 717 // Step 97: t16 = x^0x4c23a02b586d650d00 718 for s := 0; s < 8; s++ { 719 t16.Square(t16) 720 } 721 722 // Step 98: t15 = x^0x4c23a02b586d650d3f 723 t15.Mul(t15, t16) 724 725 // Step 104: t15 = x^0x1308e80ad61b59434fc0 726 for s := 0; s < 6; s++ { 727 t15.Square(t15) 728 } 729 730 // Step 105: t15 = x^0x1308e80ad61b59434fdd 731 t15.Mul(t11, t15) 732 733 // Step 112: t15 = x^0x98474056b0daca1a7ee80 734 for s := 0; s < 7; s++ { 735 t15.Square(t15) 736 } 737 738 // Step 113: t15 = x^0x98474056b0daca1a7ee93 739 t15.Mul(t1, t15) 740 741 // Step 122: t15 = x^0x1308e80ad61b59434fdd2600 742 for s := 0; s < 9; s++ { 743 t15.Square(t15) 744 } 745 746 // Step 123: t15 = x^0x1308e80ad61b59434fdd262f 747 t15.Mul(t12, t15) 748 749 // Step 129: t15 = x^0x4c23a02b586d650d3f7498bc0 750 for s := 0; s < 6; s++ { 751 t15.Square(t15) 752 } 753 754 // Step 130: t14 = x^0x4c23a02b586d650d3f7498be9 755 t14.Mul(t14, t15) 756 757 // Step 136: t14 = x^0x1308e80ad61b59434fdd262fa40 758 for s := 0; s < 6; s++ { 759 t14.Square(t14) 760 } 761 762 // Step 137: t13 = x^0x1308e80ad61b59434fdd262fa5f 763 t13.Mul(t13, t14) 764 765 // Step 146: t13 = x^0x2611d015ac36b2869fba4c5f4be00 766 for s := 0; s < 9; s++ { 767 t13.Square(t13) 768 } 769 770 // Step 147: t12 = x^0x2611d015ac36b2869fba4c5f4be2f 771 t12.Mul(t12, t13) 772 773 // Step 154: t12 = x^0x1308e80ad61b59434fdd262fa5f1780 774 for s := 0; s < 7; s++ { 775 t12.Square(t12) 776 } 777 778 // Step 155: t12 = x^0x1308e80ad61b59434fdd262fa5f17ab 779 t12.Mul(t4, t12) 780 781 // Step 161: t12 = x^0x4c23a02b586d650d3f7498be97c5eac0 782 for s := 0; s < 6; s++ { 783 t12.Square(t12) 784 } 785 786 // Step 162: t12 = x^0x4c23a02b586d650d3f7498be97c5eafd 787 t12.Mul(t7, t12) 788 789 // Step 168: t12 = x^0x1308e80ad61b59434fdd262fa5f17abf40 790 for s := 0; s < 6; s++ { 791 t12.Square(t12) 792 } 793 794 // Step 169: t12 = x^0x1308e80ad61b59434fdd262fa5f17abf7b 795 t12.Mul(t5, t12) 796 797 // Step 179: t12 = x^0x4c23a02b586d650d3f7498be97c5eafdec00 798 for s := 0; s < 10; s++ { 799 t12.Square(t12) 800 } 801 802 // Step 180: t11 = x^0x4c23a02b586d650d3f7498be97c5eafdec1d 803 t11.Mul(t11, t12) 804 805 // Step 193: t11 = x^0x98474056b0daca1a7ee9317d2f8bd5fbd83a000 806 for s := 0; s < 13; s++ { 807 t11.Square(t11) 808 } 809 810 // Step 194: t11 = x^0x98474056b0daca1a7ee9317d2f8bd5fbd83a035 811 t11.Mul(t9, t11) 812 813 // Step 200: t11 = x^0x2611d015ac36b2869fba4c5f4be2f57ef60e80d40 814 for s := 0; s < 6; s++ { 815 t11.Square(t11) 816 } 817 818 // Step 201: t10 = x^0x2611d015ac36b2869fba4c5f4be2f57ef60e80d51 819 t10.Mul(t10, t11) 820 821 // Step 209: t10 = x^0x2611d015ac36b2869fba4c5f4be2f57ef60e80d5100 822 for s := 0; s < 8; s++ { 823 t10.Square(t10) 824 } 825 826 // Step 210: t10 = x^0x2611d015ac36b2869fba4c5f4be2f57ef60e80d513d 827 t10.Mul(t7, t10) 828 829 // Step 220: t10 = x^0x98474056b0daca1a7ee9317d2f8bd5fbd83a03544f400 830 for s := 0; s < 10; s++ { 831 t10.Square(t10) 832 } 833 834 // Step 221: t9 = x^0x98474056b0daca1a7ee9317d2f8bd5fbd83a03544f435 835 t9.Mul(t9, t10) 836 837 // Step 223: t9 = x^0x2611d015ac36b2869fba4c5f4be2f57ef60e80d513d0d4 838 for s := 0; s < 2; s++ { 839 t9.Square(t9) 840 } 841 842 // Step 224: t9 = x^0x2611d015ac36b2869fba4c5f4be2f57ef60e80d513d0d7 843 t9.Mul(z, t9) 844 845 // Step 236: t9 = x^0x2611d015ac36b2869fba4c5f4be2f57ef60e80d513d0d7000 846 for s := 0; s < 12; s++ { 847 t9.Square(t9) 848 } 849 850 // Step 237: t8 = x^0x2611d015ac36b2869fba4c5f4be2f57ef60e80d513d0d7021 851 t8.Mul(t8, t9) 852 853 // Step 247: t8 = x^0x98474056b0daca1a7ee9317d2f8bd5fbd83a03544f435c08400 854 for s := 0; s < 10; s++ { 855 t8.Square(t8) 856 } 857 858 // Step 248: t7 = x^0x98474056b0daca1a7ee9317d2f8bd5fbd83a03544f435c0843d 859 t7.Mul(t7, t8) 860 861 // Step 253: t7 = x^0x1308e80ad61b59434fdd262fa5f17abf7b07406a89e86b81087a0 862 for s := 0; s < 5; s++ { 863 t7.Square(t7) 864 } 865 866 // Step 254: t6 = x^0x1308e80ad61b59434fdd262fa5f17abf7b07406a89e86b81087b9 867 t6.Mul(t6, t7) 868 869 // Step 261: t6 = x^0x98474056b0daca1a7ee9317d2f8bd5fbd83a03544f435c0843dc80 870 for s := 0; s < 7; s++ { 871 t6.Square(t6) 872 } 873 874 // Step 262: t5 = x^0x98474056b0daca1a7ee9317d2f8bd5fbd83a03544f435c0843dcbb 875 t5.Mul(t5, t6) 876 877 // Step 269: t5 = x^0x4c23a02b586d650d3f7498be97c5eafdec1d01aa27a1ae0421ee5d80 878 for s := 0; s < 7; s++ { 879 t5.Square(t5) 880 } 881 882 // Step 270: t5 = x^0x4c23a02b586d650d3f7498be97c5eafdec1d01aa27a1ae0421ee5da5 883 t5.Mul(t2, t5) 884 885 // Step 278: t5 = x^0x4c23a02b586d650d3f7498be97c5eafdec1d01aa27a1ae0421ee5da500 886 for s := 0; s < 8; s++ { 887 t5.Square(t5) 888 } 889 890 // Step 279: t4 = x^0x4c23a02b586d650d3f7498be97c5eafdec1d01aa27a1ae0421ee5da52b 891 t4.Mul(t4, t5) 892 893 // Step 285: t4 = x^0x1308e80ad61b59434fdd262fa5f17abf7b07406a89e86b81087b97694ac0 894 for s := 0; s < 6; s++ { 895 t4.Square(t4) 896 } 897 898 // Step 286: t3 = x^0x1308e80ad61b59434fdd262fa5f17abf7b07406a89e86b81087b97694af7 899 t3.Mul(t3, t4) 900 901 // Step 292: t3 = x^0x4c23a02b586d650d3f7498be97c5eafdec1d01aa27a1ae0421ee5da52bdc0 902 for s := 0; s < 6; s++ { 903 t3.Square(t3) 904 } 905 906 // Step 293: t2 = x^0x4c23a02b586d650d3f7498be97c5eafdec1d01aa27a1ae0421ee5da52bde5 907 t2.Mul(t2, t3) 908 909 // Step 304: t2 = x^0x2611d015ac36b2869fba4c5f4be2f57ef60e80d513d0d70210f72ed295ef2800 910 for s := 0; s < 11; s++ { 911 t2.Square(t2) 912 } 913 914 // Step 305: t1 = x^0x2611d015ac36b2869fba4c5f4be2f57ef60e80d513d0d70210f72ed295ef2813 915 t1.Mul(t1, t2) 916 917 // Step 313: t1 = x^0x2611d015ac36b2869fba4c5f4be2f57ef60e80d513d0d70210f72ed295ef281300 918 for s := 0; s < 8; s++ { 919 t1.Square(t1) 920 } 921 922 // Step 314: t1 = x^0x2611d015ac36b2869fba4c5f4be2f57ef60e80d513d0d70210f72ed295ef28137f 923 t1.Mul(t0, t1) 924 925 // Step 316: t1 = x^0x98474056b0daca1a7ee9317d2f8bd5fbd83a03544f435c0843dcbb4a57bca04dfc 926 for s := 0; s < 2; s++ { 927 t1.Square(t1) 928 } 929 930 // Step 317: t1 = x^0x98474056b0daca1a7ee9317d2f8bd5fbd83a03544f435c0843dcbb4a57bca04dfd 931 t1.Mul(&x, t1) 932 933 // Step 327: t1 = x^0x2611d015ac36b2869fba4c5f4be2f57ef60e80d513d0d70210f72ed295ef28137f400 934 for s := 0; s < 10; s++ { 935 t1.Square(t1) 936 } 937 938 // Step 328: t1 = x^0x2611d015ac36b2869fba4c5f4be2f57ef60e80d513d0d70210f72ed295ef28137f401 939 t1.Mul(&x, t1) 940 941 // Step 336: t1 = x^0x2611d015ac36b2869fba4c5f4be2f57ef60e80d513d0d70210f72ed295ef28137f40100 942 for s := 0; s < 8; s++ { 943 t1.Square(t1) 944 } 945 946 // Step 337: t0 = x^0x2611d015ac36b2869fba4c5f4be2f57ef60e80d513d0d70210f72ed295ef28137f4017f 947 t0.Mul(t0, t1) 948 949 // Step 338: t0 = x^0x4c23a02b586d650d3f7498be97c5eafdec1d01aa27a1ae0421ee5da52bde5026fe802fe 950 t0.Square(t0) 951 952 // Step 339: t0 = x^0x4c23a02b586d650d3f7498be97c5eafdec1d01aa27a1ae0421ee5da52bde5026fe802ff 953 t0.Mul(&x, t0) 954 955 // Step 341: t0 = x^0x1308e80ad61b59434fdd262fa5f17abf7b07406a89e86b81087b97694af79409bfa00bfc 956 for s := 0; s < 2; s++ { 957 t0.Square(t0) 958 } 959 960 // Step 342: t0 = x^0x1308e80ad61b59434fdd262fa5f17abf7b07406a89e86b81087b97694af79409bfa00bfd 961 t0.Mul(&x, t0) 962 963 // Step 352: t0 = x^0x4c23a02b586d650d3f7498be97c5eafdec1d01aa27a1ae0421ee5da52bde5026fe802ff400 964 for s := 0; s < 10; s++ { 965 t0.Square(t0) 966 } 967 968 // Step 353: z = x^0x4c23a02b586d650d3f7498be97c5eafdec1d01aa27a1ae0421ee5da52bde5026fe802ff403 969 z.Mul(z, t0) 970 971 // Step 372: z = x^0x2611d015ac36b2869fba4c5f4be2f57ef60e80d513d0d70210f72ed295ef28137f4017fa0180000 972 for s := 0; s < 19; s++ { 973 z.Square(z) 974 } 975 976 return z 977 }