github.com/consensys/gnark-crypto@v0.14.0/ecc/bw6-633/g2.go (about) 1 // Copyright 2020 Consensys Software Inc. 2 // 3 // Licensed under the Apache License, Version 2.0 (the "License"); 4 // you may not use this file except in compliance with the License. 5 // You may obtain a copy of the License at 6 // 7 // http://www.apache.org/licenses/LICENSE-2.0 8 // 9 // Unless required by applicable law or agreed to in writing, software 10 // distributed under the License is distributed on an "AS IS" BASIS, 11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 // See the License for the specific language governing permissions and 13 // limitations under the License. 14 15 // Code generated by consensys/gnark-crypto DO NOT EDIT 16 17 package bw6633 18 19 import ( 20 "crypto/rand" 21 "github.com/consensys/gnark-crypto/ecc" 22 "github.com/consensys/gnark-crypto/ecc/bw6-633/fp" 23 "github.com/consensys/gnark-crypto/ecc/bw6-633/fr" 24 "github.com/consensys/gnark-crypto/internal/parallel" 25 "math/big" 26 "runtime" 27 ) 28 29 // G2Affine is a point in affine coordinates (x,y) 30 type G2Affine struct { 31 X, Y fp.Element 32 } 33 34 // G2Jac is a point in Jacobian coordinates (x=X/Z², y=Y/Z³) 35 type G2Jac struct { 36 X, Y, Z fp.Element 37 } 38 39 // g2JacExtended is a point in extended Jacobian coordinates (x=X/ZZ, y=Y/ZZZ, ZZ³=ZZZ²) 40 type g2JacExtended struct { 41 X, Y, ZZ, ZZZ fp.Element 42 } 43 44 // g2Proj point in projective coordinates 45 type g2Proj struct { 46 x, y, z fp.Element 47 } 48 49 // ------------------------------------------------------------------------------------------------- 50 // Affine coordinates 51 52 // Set sets p to a in affine coordinates. 53 func (p *G2Affine) Set(a *G2Affine) *G2Affine { 54 p.X, p.Y = a.X, a.Y 55 return p 56 } 57 58 // setInfinity sets p to the infinity point, which is encoded as (0,0). 59 // N.B.: (0,0) is never on the curve for j=0 curves (Y²=X³+B). 60 func (p *G2Affine) setInfinity() *G2Affine { 61 p.X.SetZero() 62 p.Y.SetZero() 63 return p 64 } 65 66 // ScalarMultiplication computes and returns p = [s]a 67 // where p and a are affine points. 68 func (p *G2Affine) ScalarMultiplication(a *G2Affine, s *big.Int) *G2Affine { 69 var _p G2Jac 70 _p.FromAffine(a) 71 _p.mulGLV(&_p, s) 72 p.FromJacobian(&_p) 73 return p 74 } 75 76 // ScalarMultiplicationBase computes and returns p = [s]g 77 // where g is the affine point generating the prime subgroup. 78 func (p *G2Affine) ScalarMultiplicationBase(s *big.Int) *G2Affine { 79 var _p G2Jac 80 _p.mulGLV(&g2Gen, s) 81 p.FromJacobian(&_p) 82 return p 83 } 84 85 // Add adds two points in affine coordinates. 86 // It uses the Jacobian addition with a.Z=b.Z=1 and converts the result to affine coordinates. 87 // 88 // https://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-mmadd-2007-bl 89 func (p *G2Affine) Add(a, b *G2Affine) *G2Affine { 90 var q G2Jac 91 // a is infinity, return b 92 if a.IsInfinity() { 93 p.Set(b) 94 return p 95 } 96 // b is infinity, return a 97 if b.IsInfinity() { 98 p.Set(a) 99 return p 100 } 101 if a.X.Equal(&b.X) { 102 // if b == a, we double instead 103 if a.Y.Equal(&b.Y) { 104 q.DoubleMixed(a) 105 return p.FromJacobian(&q) 106 } else { 107 // if b == -a, we return 0 108 return p.setInfinity() 109 } 110 } 111 var H, HH, I, J, r, V fp.Element 112 H.Sub(&b.X, &a.X) 113 HH.Square(&H) 114 I.Double(&HH).Double(&I) 115 J.Mul(&H, &I) 116 r.Sub(&b.Y, &a.Y) 117 r.Double(&r) 118 V.Mul(&a.X, &I) 119 q.X.Square(&r). 120 Sub(&q.X, &J). 121 Sub(&q.X, &V). 122 Sub(&q.X, &V) 123 q.Y.Sub(&V, &q.X). 124 Mul(&q.Y, &r) 125 J.Mul(&a.Y, &J).Double(&J) 126 q.Y.Sub(&q.Y, &J) 127 q.Z.Double(&H) 128 129 return p.FromJacobian(&q) 130 } 131 132 // Double doubles a point in affine coordinates. 133 // It converts the point to Jacobian coordinates, doubles it using Jacobian 134 // addition with a.Z=1, and converts it back to affine coordinates. 135 // 136 // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-mdbl-2007-bl 137 func (p *G2Affine) Double(a *G2Affine) *G2Affine { 138 var q G2Jac 139 q.FromAffine(a) 140 q.DoubleMixed(a) 141 p.FromJacobian(&q) 142 return p 143 } 144 145 // Sub subtracts two points in affine coordinates. 146 // It uses a similar approach to Add, but negates the second point before adding. 147 func (p *G2Affine) Sub(a, b *G2Affine) *G2Affine { 148 var bneg G2Affine 149 bneg.Neg(b) 150 p.Add(a, &bneg) 151 return p 152 } 153 154 // Equal tests if two points in affine coordinates are equal. 155 func (p *G2Affine) Equal(a *G2Affine) bool { 156 return p.X.Equal(&a.X) && p.Y.Equal(&a.Y) 157 } 158 159 // Neg sets p to the affine negative point -a = (a.X, -a.Y). 160 func (p *G2Affine) Neg(a *G2Affine) *G2Affine { 161 p.X = a.X 162 p.Y.Neg(&a.Y) 163 return p 164 } 165 166 // FromJacobian converts a point p1 from Jacobian to affine coordinates. 167 func (p *G2Affine) FromJacobian(p1 *G2Jac) *G2Affine { 168 169 var a, b fp.Element 170 171 if p1.Z.IsZero() { 172 p.X.SetZero() 173 p.Y.SetZero() 174 return p 175 } 176 177 a.Inverse(&p1.Z) 178 b.Square(&a) 179 p.X.Mul(&p1.X, &b) 180 p.Y.Mul(&p1.Y, &b).Mul(&p.Y, &a) 181 182 return p 183 } 184 185 // String returns the string representation E(x,y) of the affine point p or "O" if it is infinity. 186 func (p *G2Affine) String() string { 187 if p.IsInfinity() { 188 return "O" 189 } 190 return "E([" + p.X.String() + "," + p.Y.String() + "])" 191 } 192 193 // IsInfinity checks if the affine point p is infinity, which is encoded as (0,0). 194 // N.B.: (0,0) is never on the curve for j=0 curves (Y²=X³+B). 195 func (p *G2Affine) IsInfinity() bool { 196 return p.X.IsZero() && p.Y.IsZero() 197 } 198 199 // IsOnCurve returns true if the affine point p in on the curve. 200 func (p *G2Affine) IsOnCurve() bool { 201 var point G2Jac 202 point.FromAffine(p) 203 return point.IsOnCurve() // call this function to handle infinity point 204 } 205 206 // IsInSubGroup returns true if the affine point p is in the correct subgroup, false otherwise. 207 func (p *G2Affine) IsInSubGroup() bool { 208 var _p G2Jac 209 _p.FromAffine(p) 210 return _p.IsInSubGroup() 211 } 212 213 // ------------------------------------------------------------------------------------------------- 214 // Jacobian coordinates 215 216 // Set sets p to a in Jacobian coordinates. 217 func (p *G2Jac) Set(q *G2Jac) *G2Jac { 218 p.X, p.Y, p.Z = q.X, q.Y, q.Z 219 return p 220 } 221 222 // Equal tests if two points in Jacobian coordinates are equal. 223 func (p *G2Jac) Equal(q *G2Jac) bool { 224 // If one point is infinity, the other must also be infinity. 225 if p.Z.IsZero() { 226 return q.Z.IsZero() 227 } 228 // If the other point is infinity, return false since we can't 229 // the following checks would be incorrect. 230 if q.Z.IsZero() { 231 return false 232 } 233 234 var pZSquare, aZSquare fp.Element 235 pZSquare.Square(&p.Z) 236 aZSquare.Square(&q.Z) 237 238 var lhs, rhs fp.Element 239 lhs.Mul(&p.X, &aZSquare) 240 rhs.Mul(&q.X, &pZSquare) 241 if !lhs.Equal(&rhs) { 242 return false 243 } 244 lhs.Mul(&p.Y, &aZSquare).Mul(&lhs, &q.Z) 245 rhs.Mul(&q.Y, &pZSquare).Mul(&rhs, &p.Z) 246 247 return lhs.Equal(&rhs) 248 } 249 250 // Neg sets p to the Jacobian negative point -q = (q.X, -q.Y, q.Z). 251 func (p *G2Jac) Neg(q *G2Jac) *G2Jac { 252 *p = *q 253 p.Y.Neg(&q.Y) 254 return p 255 } 256 257 // AddAssign sets p to p+a in Jacobian coordinates. 258 // 259 // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl 260 func (p *G2Jac) AddAssign(q *G2Jac) *G2Jac { 261 262 // p is infinity, return q 263 if p.Z.IsZero() { 264 p.Set(q) 265 return p 266 } 267 268 // q is infinity, return p 269 if q.Z.IsZero() { 270 return p 271 } 272 273 var Z1Z1, Z2Z2, U1, U2, S1, S2, H, I, J, r, V fp.Element 274 Z1Z1.Square(&q.Z) 275 Z2Z2.Square(&p.Z) 276 U1.Mul(&q.X, &Z2Z2) 277 U2.Mul(&p.X, &Z1Z1) 278 S1.Mul(&q.Y, &p.Z). 279 Mul(&S1, &Z2Z2) 280 S2.Mul(&p.Y, &q.Z). 281 Mul(&S2, &Z1Z1) 282 283 // if p == q, we double instead 284 if U1.Equal(&U2) && S1.Equal(&S2) { 285 return p.DoubleAssign() 286 } 287 288 H.Sub(&U2, &U1) 289 I.Double(&H). 290 Square(&I) 291 J.Mul(&H, &I) 292 r.Sub(&S2, &S1).Double(&r) 293 V.Mul(&U1, &I) 294 p.X.Square(&r). 295 Sub(&p.X, &J). 296 Sub(&p.X, &V). 297 Sub(&p.X, &V) 298 p.Y.Sub(&V, &p.X). 299 Mul(&p.Y, &r) 300 S1.Mul(&S1, &J).Double(&S1) 301 p.Y.Sub(&p.Y, &S1) 302 p.Z.Add(&p.Z, &q.Z) 303 p.Z.Square(&p.Z). 304 Sub(&p.Z, &Z1Z1). 305 Sub(&p.Z, &Z2Z2). 306 Mul(&p.Z, &H) 307 308 return p 309 } 310 311 // SubAssign sets p to p-a in Jacobian coordinates. 312 // It uses a similar approach to AddAssign, but negates the point a before adding. 313 func (p *G2Jac) SubAssign(q *G2Jac) *G2Jac { 314 var tmp G2Jac 315 tmp.Set(q) 316 tmp.Y.Neg(&tmp.Y) 317 p.AddAssign(&tmp) 318 return p 319 } 320 321 // Double sets p to [2]q in Jacobian coordinates. 322 // 323 // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2007-bl 324 func (p *G2Jac) DoubleMixed(a *G2Affine) *G2Jac { 325 var XX, YY, YYYY, S, M, T fp.Element 326 XX.Square(&a.X) 327 YY.Square(&a.Y) 328 YYYY.Square(&YY) 329 S.Add(&a.X, &YY). 330 Square(&S). 331 Sub(&S, &XX). 332 Sub(&S, &YYYY). 333 Double(&S) 334 M.Double(&XX). 335 Add(&M, &XX) // -> + A, but A=0 here 336 T.Square(&M). 337 Sub(&T, &S). 338 Sub(&T, &S) 339 p.X.Set(&T) 340 p.Y.Sub(&S, &T). 341 Mul(&p.Y, &M) 342 YYYY.Double(&YYYY). 343 Double(&YYYY). 344 Double(&YYYY) 345 p.Y.Sub(&p.Y, &YYYY) 346 p.Z.Double(&a.Y) 347 348 return p 349 } 350 351 // AddMixed sets p to p+a in Jacobian coordinates, where a.Z = 1. 352 // 353 // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-madd-2007-bl 354 func (p *G2Jac) AddMixed(a *G2Affine) *G2Jac { 355 356 //if a is infinity return p 357 if a.IsInfinity() { 358 return p 359 } 360 // p is infinity, return a 361 if p.Z.IsZero() { 362 p.X = a.X 363 p.Y = a.Y 364 p.Z.SetOne() 365 return p 366 } 367 368 var Z1Z1, U2, S2, H, HH, I, J, r, V fp.Element 369 Z1Z1.Square(&p.Z) 370 U2.Mul(&a.X, &Z1Z1) 371 S2.Mul(&a.Y, &p.Z). 372 Mul(&S2, &Z1Z1) 373 374 // if p == a, we double instead 375 if U2.Equal(&p.X) && S2.Equal(&p.Y) { 376 return p.DoubleMixed(a) 377 } 378 379 H.Sub(&U2, &p.X) 380 HH.Square(&H) 381 I.Double(&HH).Double(&I) 382 J.Mul(&H, &I) 383 r.Sub(&S2, &p.Y).Double(&r) 384 V.Mul(&p.X, &I) 385 p.X.Square(&r). 386 Sub(&p.X, &J). 387 Sub(&p.X, &V). 388 Sub(&p.X, &V) 389 J.Mul(&J, &p.Y).Double(&J) 390 p.Y.Sub(&V, &p.X). 391 Mul(&p.Y, &r) 392 p.Y.Sub(&p.Y, &J) 393 p.Z.Add(&p.Z, &H) 394 p.Z.Square(&p.Z). 395 Sub(&p.Z, &Z1Z1). 396 Sub(&p.Z, &HH) 397 398 return p 399 } 400 401 // Double sets p to [2]q in Jacobian coordinates. 402 // 403 // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2007-bl 404 func (p *G2Jac) Double(q *G2Jac) *G2Jac { 405 p.Set(q) 406 p.DoubleAssign() 407 return p 408 } 409 410 // DoubleAssign doubles p in Jacobian coordinates. 411 // 412 // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2007-bl 413 func (p *G2Jac) DoubleAssign() *G2Jac { 414 415 var XX, YY, YYYY, ZZ, S, M, T fp.Element 416 417 XX.Square(&p.X) 418 YY.Square(&p.Y) 419 YYYY.Square(&YY) 420 ZZ.Square(&p.Z) 421 S.Add(&p.X, &YY) 422 S.Square(&S). 423 Sub(&S, &XX). 424 Sub(&S, &YYYY). 425 Double(&S) 426 M.Double(&XX).Add(&M, &XX) 427 p.Z.Add(&p.Z, &p.Y). 428 Square(&p.Z). 429 Sub(&p.Z, &YY). 430 Sub(&p.Z, &ZZ) 431 T.Square(&M) 432 p.X = T 433 T.Double(&S) 434 p.X.Sub(&p.X, &T) 435 p.Y.Sub(&S, &p.X). 436 Mul(&p.Y, &M) 437 YYYY.Double(&YYYY).Double(&YYYY).Double(&YYYY) 438 p.Y.Sub(&p.Y, &YYYY) 439 440 return p 441 } 442 443 // ScalarMultiplication computes and returns p = [s]a 444 // where p and a are Jacobian points. 445 // using the GLV technique. 446 // see https://www.iacr.org/archive/crypto2001/21390189.pdf 447 func (p *G2Jac) ScalarMultiplication(q *G2Jac, s *big.Int) *G2Jac { 448 return p.mulGLV(q, s) 449 } 450 451 // ScalarMultiplicationBase computes and returns p = [s]g 452 // where g is the prime subgroup generator. 453 func (p *G2Jac) ScalarMultiplicationBase(s *big.Int) *G2Jac { 454 return p.mulGLV(&g2Gen, s) 455 456 } 457 458 // String converts p to affine coordinates and returns its string representation E(x,y) or "O" if it is infinity. 459 func (p *G2Jac) String() string { 460 _p := G2Affine{} 461 _p.FromJacobian(p) 462 return _p.String() 463 } 464 465 // FromAffine converts a point a from affine to Jacobian coordinates. 466 func (p *G2Jac) FromAffine(a *G2Affine) *G2Jac { 467 if a.IsInfinity() { 468 p.Z.SetZero() 469 p.X.SetOne() 470 p.Y.SetOne() 471 return p 472 } 473 p.Z.SetOne() 474 p.X.Set(&a.X) 475 p.Y.Set(&a.Y) 476 return p 477 } 478 479 // IsOnCurve returns true if the Jacobian point p in on the curve. 480 func (p *G2Jac) IsOnCurve() bool { 481 var left, right, tmp, ZZ fp.Element 482 left.Square(&p.Y) 483 right.Square(&p.X).Mul(&right, &p.X) 484 ZZ.Square(&p.Z) 485 tmp.Square(&ZZ).Mul(&tmp, &ZZ) 486 // Mul tmp by bTwistCurveCoeff=8 487 tmp.Double(&tmp).Double(&tmp).Double(&tmp) 488 right.Add(&right, &tmp) 489 return left.Equal(&right) 490 } 491 492 // IsInSubGroup returns true if p is on the r-torsion, false otherwise. 493 494 // 3r P = (x+1)ϕ(P) + (-x^5 + x⁴ + x)P 495 func (p *G2Jac) IsInSubGroup() bool { 496 497 var uP, u4P, u5P, q, r G2Jac 498 uP.ScalarMultiplication(p, &xGen) 499 u4P.ScalarMultiplication(&uP, &xGen). 500 ScalarMultiplication(&u4P, &xGen). 501 ScalarMultiplication(&u4P, &xGen) 502 u5P.ScalarMultiplication(&u4P, &xGen) 503 q.Set(p).SubAssign(&uP) 504 r.phi(&q).SubAssign(&uP). 505 AddAssign(&u4P). 506 AddAssign(&u5P) 507 508 return r.IsOnCurve() && r.Z.IsZero() 509 } 510 511 // mulWindowed computes the 2-bits windowed double-and-add scalar 512 // multiplication p=[s]q in Jacobian coordinates. 513 func (p *G2Jac) mulWindowed(q *G2Jac, s *big.Int) *G2Jac { 514 515 var res G2Jac 516 var ops [3]G2Jac 517 518 ops[0].Set(q) 519 if s.Sign() == -1 { 520 ops[0].Neg(&ops[0]) 521 } 522 res.Set(&g2Infinity) 523 ops[1].Double(&ops[0]) 524 ops[2].Set(&ops[0]).AddAssign(&ops[1]) 525 526 b := s.Bytes() 527 for i := range b { 528 w := b[i] 529 mask := byte(0xc0) 530 for j := 0; j < 4; j++ { 531 res.DoubleAssign().DoubleAssign() 532 c := (w & mask) >> (6 - 2*j) 533 if c != 0 { 534 res.AddAssign(&ops[c-1]) 535 } 536 mask = mask >> 2 537 } 538 } 539 p.Set(&res) 540 541 return p 542 543 } 544 545 // phi sets p to ϕ(a) where ϕ: (x,y) → (w x,y), 546 // where w is a third root of unity. 547 func (p *G2Jac) phi(q *G2Jac) *G2Jac { 548 p.Set(q) 549 p.X.Mul(&p.X, &thirdRootOneG2) 550 return p 551 } 552 553 // mulGLV computes the scalar multiplication using a windowed-GLV method 554 // 555 // see https://www.iacr.org/archive/crypto2001/21390189.pdf 556 func (p *G2Jac) mulGLV(q *G2Jac, s *big.Int) *G2Jac { 557 558 var table [15]G2Jac 559 var res G2Jac 560 var k1, k2 fr.Element 561 562 res.Set(&g2Infinity) 563 564 // table[b3b2b1b0-1] = b3b2 ⋅ ϕ(q) + b1b0*q 565 table[0].Set(q) 566 table[3].phi(q) 567 568 // split the scalar, modifies ±q, ϕ(q) accordingly 569 k := ecc.SplitScalar(s, &glvBasis) 570 571 if k[0].Sign() == -1 { 572 k[0].Neg(&k[0]) 573 table[0].Neg(&table[0]) 574 } 575 if k[1].Sign() == -1 { 576 k[1].Neg(&k[1]) 577 table[3].Neg(&table[3]) 578 } 579 580 // precompute table (2 bits sliding window) 581 // table[b3b2b1b0-1] = b3b2 ⋅ ϕ(q) + b1b0 ⋅ q if b3b2b1b0 != 0 582 table[1].Double(&table[0]) 583 table[2].Set(&table[1]).AddAssign(&table[0]) 584 table[4].Set(&table[3]).AddAssign(&table[0]) 585 table[5].Set(&table[3]).AddAssign(&table[1]) 586 table[6].Set(&table[3]).AddAssign(&table[2]) 587 table[7].Double(&table[3]) 588 table[8].Set(&table[7]).AddAssign(&table[0]) 589 table[9].Set(&table[7]).AddAssign(&table[1]) 590 table[10].Set(&table[7]).AddAssign(&table[2]) 591 table[11].Set(&table[7]).AddAssign(&table[3]) 592 table[12].Set(&table[11]).AddAssign(&table[0]) 593 table[13].Set(&table[11]).AddAssign(&table[1]) 594 table[14].Set(&table[11]).AddAssign(&table[2]) 595 596 // bounds on the lattice base vectors guarantee that k1, k2 are len(r)/2 or len(r)/2+1 bits long max 597 // this is because we use a probabilistic scalar decomposition that replaces a division by a right-shift 598 k1 = k1.SetBigInt(&k[0]).Bits() 599 k2 = k2.SetBigInt(&k[1]).Bits() 600 601 // we don't target constant-timeness so we check first if we increase the bounds or not 602 maxBit := k1.BitLen() 603 if k2.BitLen() > maxBit { 604 maxBit = k2.BitLen() 605 } 606 hiWordIndex := (maxBit - 1) / 64 607 608 // loop starts from len(k1)/2 or len(k1)/2+1 due to the bounds 609 for i := hiWordIndex; i >= 0; i-- { 610 mask := uint64(3) << 62 611 for j := 0; j < 32; j++ { 612 res.Double(&res).Double(&res) 613 b1 := (k1[i] & mask) >> (62 - 2*j) 614 b2 := (k2[i] & mask) >> (62 - 2*j) 615 if b1|b2 != 0 { 616 s := (b2<<2 | b1) 617 res.AddAssign(&table[s-1]) 618 } 619 mask = mask >> 2 620 } 621 } 622 623 p.Set(&res) 624 return p 625 } 626 627 // ClearCofactor maps a point in curve to r-torsion 628 func (p *G2Affine) ClearCofactor(a *G2Affine) *G2Affine { 629 var _p G2Jac 630 _p.FromAffine(a) 631 _p.ClearCofactor(&_p) 632 p.FromJacobian(&_p) 633 return p 634 } 635 636 // ClearCofactor maps a point in curve to r-torsion 637 func (p *G2Jac) ClearCofactor(q *G2Jac) *G2Jac { 638 var uP, u2P, u3P, u4P, u5P, xP, vP, wP, L0, L1, tmp G2Jac 639 var ht, d1, d3 big.Int 640 ht.SetInt64(7) // negative 641 d1.SetInt64(13) 642 d3.SetInt64(5) // negative 643 644 uP.ScalarMultiplication(q, &xGen) // negative 645 u2P.ScalarMultiplication(&uP, &xGen) 646 u3P.ScalarMultiplication(&u2P, &xGen) // negative 647 u4P.ScalarMultiplication(&u3P, &xGen) 648 u5P.ScalarMultiplication(&u4P, &xGen) // negative 649 vP.Set(&u2P).AddAssign(&uP). 650 AddAssign(&u3P). 651 Double(&vP). 652 AddAssign(&u4P). 653 AddAssign(q) 654 wP.Set(&uP).SubAssign(&u4P).SubAssign(&u5P) 655 xP.Set(q).AddAssign(&vP) 656 L0.Set(&uP).SubAssign(q).ScalarMultiplication(&L0, &d1) 657 tmp.ScalarMultiplication(&xP, &d3) 658 L0.AddAssign(&tmp) 659 tmp.ScalarMultiplication(q, &ht) // negative 660 L0.SubAssign(&tmp) 661 L1.ScalarMultiplication(&wP, &d1) 662 tmp.ScalarMultiplication(&vP, &ht) 663 L1.AddAssign(&tmp) 664 tmp.ScalarMultiplication(q, &d3) 665 L1.AddAssign(&tmp) 666 667 p.phi(&L1).AddAssign(&L0) 668 669 return p 670 671 } 672 673 // ------------------------------------------------------------------------------------------------- 674 // extended Jacobian coordinates 675 676 // Set sets p to a in extended Jacobian coordinates. 677 func (p *g2JacExtended) Set(q *g2JacExtended) *g2JacExtended { 678 p.X, p.Y, p.ZZ, p.ZZZ = q.X, q.Y, q.ZZ, q.ZZZ 679 return p 680 } 681 682 // setInfinity sets p to the infinity point (1,1,0,0). 683 func (p *g2JacExtended) setInfinity() *g2JacExtended { 684 p.X.SetOne() 685 p.Y.SetOne() 686 p.ZZ = fp.Element{} 687 p.ZZZ = fp.Element{} 688 return p 689 } 690 691 // IsInfinity checks if the p is infinity, i.e. p.ZZ=0. 692 func (p *g2JacExtended) IsInfinity() bool { 693 return p.ZZ.IsZero() 694 } 695 696 // fromJacExtended converts an extended Jacobian point to an affine point. 697 func (p *G2Affine) fromJacExtended(q *g2JacExtended) *G2Affine { 698 if q.ZZ.IsZero() { 699 p.X = fp.Element{} 700 p.Y = fp.Element{} 701 return p 702 } 703 p.X.Inverse(&q.ZZ).Mul(&p.X, &q.X) 704 p.Y.Inverse(&q.ZZZ).Mul(&p.Y, &q.Y) 705 return p 706 } 707 708 // fromJacExtended converts an extended Jacobian point to a Jacobian point. 709 func (p *G2Jac) fromJacExtended(q *g2JacExtended) *G2Jac { 710 if q.ZZ.IsZero() { 711 p.Set(&g2Infinity) 712 return p 713 } 714 p.X.Mul(&q.ZZ, &q.X).Mul(&p.X, &q.ZZ) 715 p.Y.Mul(&q.ZZZ, &q.Y).Mul(&p.Y, &q.ZZZ) 716 p.Z.Set(&q.ZZZ) 717 return p 718 } 719 720 // unsafeFromJacExtended converts an extended Jacobian point, distinct from Infinity, to a Jacobian point. 721 func (p *G2Jac) unsafeFromJacExtended(q *g2JacExtended) *G2Jac { 722 p.X.Square(&q.ZZ).Mul(&p.X, &q.X) 723 p.Y.Square(&q.ZZZ).Mul(&p.Y, &q.Y) 724 p.Z = q.ZZZ 725 return p 726 } 727 728 // add sets p to p+q in extended Jacobian coordinates. 729 // 730 // https://www.hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#addition-add-2008-s 731 func (p *g2JacExtended) add(q *g2JacExtended) *g2JacExtended { 732 //if q is infinity return p 733 if q.ZZ.IsZero() { 734 return p 735 } 736 // p is infinity, return q 737 if p.ZZ.IsZero() { 738 p.Set(q) 739 return p 740 } 741 742 var A, B, U1, U2, S1, S2 fp.Element 743 744 // p2: q, p1: p 745 U2.Mul(&q.X, &p.ZZ) 746 U1.Mul(&p.X, &q.ZZ) 747 A.Sub(&U2, &U1) 748 S2.Mul(&q.Y, &p.ZZZ) 749 S1.Mul(&p.Y, &q.ZZZ) 750 B.Sub(&S2, &S1) 751 752 if A.IsZero() { 753 if B.IsZero() { 754 return p.double(q) 755 756 } 757 p.ZZ = fp.Element{} 758 p.ZZZ = fp.Element{} 759 return p 760 } 761 762 var P, R, PP, PPP, Q, V fp.Element 763 P.Sub(&U2, &U1) 764 R.Sub(&S2, &S1) 765 PP.Square(&P) 766 PPP.Mul(&P, &PP) 767 Q.Mul(&U1, &PP) 768 V.Mul(&S1, &PPP) 769 770 p.X.Square(&R). 771 Sub(&p.X, &PPP). 772 Sub(&p.X, &Q). 773 Sub(&p.X, &Q) 774 p.Y.Sub(&Q, &p.X). 775 Mul(&p.Y, &R). 776 Sub(&p.Y, &V) 777 p.ZZ.Mul(&p.ZZ, &q.ZZ). 778 Mul(&p.ZZ, &PP) 779 p.ZZZ.Mul(&p.ZZZ, &q.ZZZ). 780 Mul(&p.ZZZ, &PPP) 781 782 return p 783 } 784 785 // double sets p to [2]q in Jacobian extended coordinates. 786 // 787 // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#doubling-dbl-2008-s-1 788 // N.B.: since we consider any point on Z=0 as the point at infinity 789 // this doubling formula works for infinity points as well. 790 func (p *g2JacExtended) double(q *g2JacExtended) *g2JacExtended { 791 var U, V, W, S, XX, M fp.Element 792 793 U.Double(&q.Y) 794 V.Square(&U) 795 W.Mul(&U, &V) 796 S.Mul(&q.X, &V) 797 XX.Square(&q.X) 798 M.Double(&XX). 799 Add(&M, &XX) // -> + A, but A=0 here 800 U.Mul(&W, &q.Y) 801 802 p.X.Square(&M). 803 Sub(&p.X, &S). 804 Sub(&p.X, &S) 805 p.Y.Sub(&S, &p.X). 806 Mul(&p.Y, &M). 807 Sub(&p.Y, &U) 808 p.ZZ.Mul(&V, &q.ZZ) 809 p.ZZZ.Mul(&W, &q.ZZZ) 810 811 return p 812 } 813 814 // addMixed sets p to p+q in extended Jacobian coordinates, where a.ZZ=1. 815 // 816 // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#addition-madd-2008-s 817 func (p *g2JacExtended) addMixed(a *G2Affine) *g2JacExtended { 818 819 //if a is infinity return p 820 if a.IsInfinity() { 821 return p 822 } 823 // p is infinity, return a 824 if p.ZZ.IsZero() { 825 p.X = a.X 826 p.Y = a.Y 827 p.ZZ.SetOne() 828 p.ZZZ.SetOne() 829 return p 830 } 831 832 var P, R fp.Element 833 834 // p2: a, p1: p 835 P.Mul(&a.X, &p.ZZ) 836 P.Sub(&P, &p.X) 837 838 R.Mul(&a.Y, &p.ZZZ) 839 R.Sub(&R, &p.Y) 840 841 if P.IsZero() { 842 if R.IsZero() { 843 return p.doubleMixed(a) 844 845 } 846 p.ZZ = fp.Element{} 847 p.ZZZ = fp.Element{} 848 return p 849 } 850 851 var PP, PPP, Q, Q2, RR, X3, Y3 fp.Element 852 853 PP.Square(&P) 854 PPP.Mul(&P, &PP) 855 Q.Mul(&p.X, &PP) 856 RR.Square(&R) 857 X3.Sub(&RR, &PPP) 858 Q2.Double(&Q) 859 p.X.Sub(&X3, &Q2) 860 Y3.Sub(&Q, &p.X).Mul(&Y3, &R) 861 R.Mul(&p.Y, &PPP) 862 p.Y.Sub(&Y3, &R) 863 p.ZZ.Mul(&p.ZZ, &PP) 864 p.ZZZ.Mul(&p.ZZZ, &PPP) 865 866 return p 867 868 } 869 870 // subMixed works the same as addMixed, but negates a.Y. 871 // 872 // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#addition-madd-2008-s 873 func (p *g2JacExtended) subMixed(a *G2Affine) *g2JacExtended { 874 875 //if a is infinity return p 876 if a.IsInfinity() { 877 return p 878 } 879 // p is infinity, return a 880 if p.ZZ.IsZero() { 881 p.X = a.X 882 p.Y.Neg(&a.Y) 883 p.ZZ.SetOne() 884 p.ZZZ.SetOne() 885 return p 886 } 887 888 var P, R fp.Element 889 890 // p2: a, p1: p 891 P.Mul(&a.X, &p.ZZ) 892 P.Sub(&P, &p.X) 893 894 R.Mul(&a.Y, &p.ZZZ) 895 R.Neg(&R) 896 R.Sub(&R, &p.Y) 897 898 if P.IsZero() { 899 if R.IsZero() { 900 return p.doubleNegMixed(a) 901 902 } 903 p.ZZ = fp.Element{} 904 p.ZZZ = fp.Element{} 905 return p 906 } 907 908 var PP, PPP, Q, Q2, RR, X3, Y3 fp.Element 909 910 PP.Square(&P) 911 PPP.Mul(&P, &PP) 912 Q.Mul(&p.X, &PP) 913 RR.Square(&R) 914 X3.Sub(&RR, &PPP) 915 Q2.Double(&Q) 916 p.X.Sub(&X3, &Q2) 917 Y3.Sub(&Q, &p.X).Mul(&Y3, &R) 918 R.Mul(&p.Y, &PPP) 919 p.Y.Sub(&Y3, &R) 920 p.ZZ.Mul(&p.ZZ, &PP) 921 p.ZZZ.Mul(&p.ZZZ, &PPP) 922 923 return p 924 925 } 926 927 // doubleNegMixed works the same as double, but negates q.Y. 928 func (p *g2JacExtended) doubleNegMixed(a *G2Affine) *g2JacExtended { 929 930 var U, V, W, S, XX, M, S2, L fp.Element 931 932 U.Double(&a.Y) 933 U.Neg(&U) 934 V.Square(&U) 935 W.Mul(&U, &V) 936 S.Mul(&a.X, &V) 937 XX.Square(&a.X) 938 M.Double(&XX). 939 Add(&M, &XX) // -> + A, but A=0 here 940 S2.Double(&S) 941 L.Mul(&W, &a.Y) 942 943 p.X.Square(&M). 944 Sub(&p.X, &S2) 945 p.Y.Sub(&S, &p.X). 946 Mul(&p.Y, &M). 947 Add(&p.Y, &L) 948 p.ZZ.Set(&V) 949 p.ZZZ.Set(&W) 950 951 return p 952 } 953 954 // doubleMixed sets p to [2]a in Jacobian extended coordinates, where a.ZZ=1. 955 // 956 // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#doubling-dbl-2008-s-1 957 func (p *g2JacExtended) doubleMixed(a *G2Affine) *g2JacExtended { 958 959 var U, V, W, S, XX, M, S2, L fp.Element 960 961 U.Double(&a.Y) 962 V.Square(&U) 963 W.Mul(&U, &V) 964 S.Mul(&a.X, &V) 965 XX.Square(&a.X) 966 M.Double(&XX). 967 Add(&M, &XX) // -> + A, but A=0 here 968 S2.Double(&S) 969 L.Mul(&W, &a.Y) 970 971 p.X.Square(&M). 972 Sub(&p.X, &S2) 973 p.Y.Sub(&S, &p.X). 974 Mul(&p.Y, &M). 975 Sub(&p.Y, &L) 976 p.ZZ.Set(&V) 977 p.ZZZ.Set(&W) 978 979 return p 980 } 981 982 // ------------------------------------------------------------------------------------------------- 983 // Homogenous projective coordinates 984 985 // Set sets p to a in projective coordinates. 986 func (p *g2Proj) Set(q *g2Proj) *g2Proj { 987 p.x, p.y, p.z = q.x, q.y, q.z 988 return p 989 } 990 991 // Neg sets p to the projective negative point -q = (q.X, -q.Y). 992 func (p *g2Proj) Neg(q *g2Proj) *g2Proj { 993 *p = *q 994 p.y.Neg(&q.y) 995 return p 996 } 997 998 // FromAffine converts q in affine to p in projective coordinates. 999 func (p *g2Proj) FromAffine(a *G2Affine) *g2Proj { 1000 if a.X.IsZero() && a.Y.IsZero() { 1001 p.z.SetZero() 1002 p.x.SetOne() 1003 p.y.SetOne() 1004 return p 1005 } 1006 p.z.SetOne() 1007 p.x.Set(&a.X) 1008 p.y.Set(&a.Y) 1009 return p 1010 } 1011 1012 // BatchScalarMultiplicationG2 multiplies the same base by all scalars 1013 // and return resulting points in affine coordinates 1014 // uses a simple windowed-NAF-like multiplication algorithm. 1015 func BatchScalarMultiplicationG2(base *G2Affine, scalars []fr.Element) []G2Affine { 1016 // approximate cost in group ops is 1017 // cost = 2^{c-1} + n(scalar.nbBits+nbChunks) 1018 1019 nbPoints := uint64(len(scalars)) 1020 min := ^uint64(0) 1021 bestC := 0 1022 for c := 2; c <= 16; c++ { 1023 cost := uint64(1 << (c - 1)) // pre compute the table 1024 nbChunks := computeNbChunks(uint64(c)) 1025 cost += nbPoints * (uint64(c) + 1) * nbChunks // doublings + point add 1026 if cost < min { 1027 min = cost 1028 bestC = c 1029 } 1030 } 1031 c := uint64(bestC) // window size 1032 nbChunks := int(computeNbChunks(c)) 1033 1034 // last window may be slightly larger than c; in which case we need to compute one 1035 // extra element in the baseTable 1036 maxC := lastC(c) 1037 if c > maxC { 1038 maxC = c 1039 } 1040 1041 // precompute all powers of base for our window 1042 // note here that if performance is critical, we can implement as in the msmX methods 1043 // this allocation to be on the stack 1044 baseTable := make([]G2Jac, (1 << (maxC - 1))) 1045 baseTable[0].FromAffine(base) 1046 for i := 1; i < len(baseTable); i++ { 1047 baseTable[i] = baseTable[i-1] 1048 baseTable[i].AddMixed(base) 1049 } 1050 toReturn := make([]G2Affine, len(scalars)) 1051 1052 // partition the scalars into digits 1053 digits, _ := partitionScalars(scalars, c, runtime.NumCPU()) 1054 1055 // for each digit, take value in the base table, double it c time, voilà. 1056 parallel.Execute(len(scalars), func(start, end int) { 1057 var p G2Jac 1058 for i := start; i < end; i++ { 1059 p.Set(&g2Infinity) 1060 for chunk := nbChunks - 1; chunk >= 0; chunk-- { 1061 if chunk != nbChunks-1 { 1062 for j := uint64(0); j < c; j++ { 1063 p.DoubleAssign() 1064 } 1065 } 1066 offset := chunk * len(scalars) 1067 digit := digits[i+offset] 1068 1069 if digit == 0 { 1070 continue 1071 } 1072 1073 // if msbWindow bit is set, we need to subtract 1074 if digit&1 == 0 { 1075 // add 1076 p.AddAssign(&baseTable[(digit>>1)-1]) 1077 } else { 1078 // sub 1079 t := baseTable[digit>>1] 1080 t.Neg(&t) 1081 p.AddAssign(&t) 1082 } 1083 } 1084 1085 // set our result point 1086 toReturn[i].FromJacobian(&p) 1087 1088 } 1089 }) 1090 return toReturn 1091 } 1092 1093 // batchAddG2Affine adds affine points using the Montgomery batch inversion trick. 1094 // Special cases (doubling, infinity) must be filtered out before this call. 1095 func batchAddG2Affine[TP pG2Affine, TPP ppG2Affine, TC cG2Affine](R *TPP, P *TP, batchSize int) { 1096 var lambda, lambdain TC 1097 1098 // add part 1099 for j := 0; j < batchSize; j++ { 1100 lambdain[j].Sub(&(*P)[j].X, &(*R)[j].X) 1101 } 1102 1103 // invert denominator using montgomery batch invert technique 1104 { 1105 var accumulator fp.Element 1106 lambda[0].SetOne() 1107 accumulator.Set(&lambdain[0]) 1108 1109 for i := 1; i < batchSize; i++ { 1110 lambda[i] = accumulator 1111 accumulator.Mul(&accumulator, &lambdain[i]) 1112 } 1113 1114 accumulator.Inverse(&accumulator) 1115 1116 for i := batchSize - 1; i > 0; i-- { 1117 lambda[i].Mul(&lambda[i], &accumulator) 1118 accumulator.Mul(&accumulator, &lambdain[i]) 1119 } 1120 lambda[0].Set(&accumulator) 1121 } 1122 1123 var d fp.Element 1124 var rr G2Affine 1125 1126 // add part 1127 for j := 0; j < batchSize; j++ { 1128 // computa lambda 1129 d.Sub(&(*P)[j].Y, &(*R)[j].Y) 1130 lambda[j].Mul(&lambda[j], &d) 1131 1132 // compute X, Y 1133 rr.X.Square(&lambda[j]) 1134 rr.X.Sub(&rr.X, &(*R)[j].X) 1135 rr.X.Sub(&rr.X, &(*P)[j].X) 1136 d.Sub(&(*R)[j].X, &rr.X) 1137 rr.Y.Mul(&lambda[j], &d) 1138 rr.Y.Sub(&rr.Y, &(*R)[j].Y) 1139 (*R)[j].Set(&rr) 1140 } 1141 } 1142 1143 // RandomOnG2 produces a random point in G2 1144 // using standard map-to-curve methods, which means the relative discrete log 1145 // of the generated point with respect to the canonical generator is not known. 1146 func RandomOnG2() (G2Affine, error) { 1147 if gBytes, err := randomFrSizedBytes(); err != nil { 1148 return G2Affine{}, err 1149 } else { 1150 return HashToG2(gBytes, []byte("random on g2")) 1151 } 1152 } 1153 1154 func randomFrSizedBytes() ([]byte, error) { 1155 res := make([]byte, fr.Bytes) 1156 _, err := rand.Read(res) 1157 return res, err 1158 }