github.com/consensys/gnark-crypto@v0.14.0/ecc/bw6-633/multiexp.go (about) 1 // Copyright 2020 Consensys Software Inc. 2 // 3 // Licensed under the Apache License, Version 2.0 (the "License"); 4 // you may not use this file except in compliance with the License. 5 // You may obtain a copy of the License at 6 // 7 // http://www.apache.org/licenses/LICENSE-2.0 8 // 9 // Unless required by applicable law or agreed to in writing, software 10 // distributed under the License is distributed on an "AS IS" BASIS, 11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 // See the License for the specific language governing permissions and 13 // limitations under the License. 14 15 // Code generated by consensys/gnark-crypto DO NOT EDIT 16 17 package bw6633 18 19 import ( 20 "errors" 21 "github.com/consensys/gnark-crypto/ecc" 22 "github.com/consensys/gnark-crypto/ecc/bw6-633/fr" 23 "github.com/consensys/gnark-crypto/internal/parallel" 24 "math" 25 "runtime" 26 ) 27 28 // MultiExp implements section 4 of https://eprint.iacr.org/2012/549.pdf 29 // 30 // This call return an error if len(scalars) != len(points) or if provided config is invalid. 31 func (p *G1Affine) MultiExp(points []G1Affine, scalars []fr.Element, config ecc.MultiExpConfig) (*G1Affine, error) { 32 var _p G1Jac 33 if _, err := _p.MultiExp(points, scalars, config); err != nil { 34 return nil, err 35 } 36 p.FromJacobian(&_p) 37 return p, nil 38 } 39 40 // MultiExp implements section 4 of https://eprint.iacr.org/2012/549.pdf 41 // 42 // This call return an error if len(scalars) != len(points) or if provided config is invalid. 43 func (p *G1Jac) MultiExp(points []G1Affine, scalars []fr.Element, config ecc.MultiExpConfig) (*G1Jac, error) { 44 // TODO @gbotrel replace the ecc.MultiExpConfig by a Option pattern for maintainability. 45 // note: 46 // each of the msmCX method is the same, except for the c constant it declares 47 // duplicating (through template generation) these methods allows to declare the buckets on the stack 48 // the choice of c needs to be improved: 49 // there is a theoretical value that gives optimal asymptotics 50 // but in practice, other factors come into play, including: 51 // * if c doesn't divide 64, the word size, then we're bound to select bits over 2 words of our scalars, instead of 1 52 // * number of CPUs 53 // * cache friendliness (which depends on the host, G1 or G2... ) 54 // --> for example, on BN254, a G1 point fits into one cache line of 64bytes, but a G2 point don't. 55 56 // for each msmCX 57 // step 1 58 // we compute, for each scalars over c-bit wide windows, nbChunk digits 59 // if the digit is larger than 2^{c-1}, then, we borrow 2^c from the next window and subtract 60 // 2^{c} to the current digit, making it negative. 61 // negative digits will be processed in the next step as adding -G into the bucket instead of G 62 // (computing -G is cheap, and this saves us half of the buckets) 63 // step 2 64 // buckets are declared on the stack 65 // notice that we have 2^{c-1} buckets instead of 2^{c} (see step1) 66 // we use jacobian extended formulas here as they are faster than mixed addition 67 // msmProcessChunk places points into buckets base on their selector and return the weighted bucket sum in given channel 68 // step 3 69 // reduce the buckets weighed sums into our result (msmReduceChunk) 70 71 // ensure len(points) == len(scalars) 72 nbPoints := len(points) 73 if nbPoints != len(scalars) { 74 return nil, errors.New("len(points) != len(scalars)") 75 } 76 77 // if nbTasks is not set, use all available CPUs 78 if config.NbTasks <= 0 { 79 config.NbTasks = runtime.NumCPU() * 2 80 } else if config.NbTasks > 1024 { 81 return nil, errors.New("invalid config: config.NbTasks > 1024") 82 } 83 84 // here, we compute the best C for nbPoints 85 // we split recursively until nbChunks(c) >= nbTasks, 86 bestC := func(nbPoints int) uint64 { 87 // implemented msmC methods (the c we use must be in this slice) 88 implementedCs := []uint64{4, 5, 6, 8, 12, 16} 89 var C uint64 90 // approximate cost (in group operations) 91 // cost = bits/c * (nbPoints + 2^{c}) 92 // this needs to be verified empirically. 93 // for example, on a MBP 2016, for G2 MultiExp > 8M points, hand picking c gives better results 94 min := math.MaxFloat64 95 for _, c := range implementedCs { 96 cc := (fr.Bits + 1) * (nbPoints + (1 << c)) 97 cost := float64(cc) / float64(c) 98 if cost < min { 99 min = cost 100 C = c 101 } 102 } 103 return C 104 } 105 106 C := bestC(nbPoints) 107 nbChunks := int(computeNbChunks(C)) 108 109 // should we recursively split the msm in half? (see below) 110 // we want to minimize the execution time of the algorithm; 111 // splitting the msm will **add** operations, but if it allows to use more CPU, it might be worth it. 112 113 // costFunction returns a metric that represent the "wall time" of the algorithm 114 costFunction := func(nbTasks, nbCpus, costPerTask int) int { 115 // cost for the reduction of all tasks (msmReduceChunk) 116 totalCost := nbTasks 117 118 // cost for the computation of each task (msmProcessChunk) 119 for nbTasks >= nbCpus { 120 nbTasks -= nbCpus 121 totalCost += costPerTask 122 } 123 if nbTasks > 0 { 124 totalCost += costPerTask 125 } 126 return totalCost 127 } 128 129 // costPerTask is the approximate number of group ops per task 130 costPerTask := func(c uint64, nbPoints int) int { return (nbPoints + int((1 << c))) } 131 132 costPreSplit := costFunction(nbChunks, config.NbTasks, costPerTask(C, nbPoints)) 133 134 cPostSplit := bestC(nbPoints / 2) 135 nbChunksPostSplit := int(computeNbChunks(cPostSplit)) 136 costPostSplit := costFunction(nbChunksPostSplit*2, config.NbTasks, costPerTask(cPostSplit, nbPoints/2)) 137 138 // if the cost of the split msm is lower than the cost of the non split msm, we split 139 if costPostSplit < costPreSplit { 140 config.NbTasks = int(math.Ceil(float64(config.NbTasks) / 2.0)) 141 var _p G1Jac 142 chDone := make(chan struct{}, 1) 143 go func() { 144 _p.MultiExp(points[:nbPoints/2], scalars[:nbPoints/2], config) 145 close(chDone) 146 }() 147 p.MultiExp(points[nbPoints/2:], scalars[nbPoints/2:], config) 148 <-chDone 149 p.AddAssign(&_p) 150 return p, nil 151 } 152 153 // if we don't split, we use the best C we found 154 _innerMsmG1(p, C, points, scalars, config) 155 156 return p, nil 157 } 158 159 func _innerMsmG1(p *G1Jac, c uint64, points []G1Affine, scalars []fr.Element, config ecc.MultiExpConfig) *G1Jac { 160 // partition the scalars 161 digits, chunkStats := partitionScalars(scalars, c, config.NbTasks) 162 163 nbChunks := computeNbChunks(c) 164 165 // for each chunk, spawn one go routine that'll loop through all the scalars in the 166 // corresponding bit-window 167 // note that buckets is an array allocated on the stack and this is critical for performance 168 169 // each go routine sends its result in chChunks[i] channel 170 chChunks := make([]chan g1JacExtended, nbChunks) 171 for i := 0; i < len(chChunks); i++ { 172 chChunks[i] = make(chan g1JacExtended, 1) 173 } 174 175 // we use a semaphore to limit the number of go routines running concurrently 176 // (only if nbTasks < nbCPU) 177 var sem chan struct{} 178 if config.NbTasks < runtime.NumCPU() { 179 // we add nbChunks because if chunk is overweight we split it in two 180 sem = make(chan struct{}, config.NbTasks+int(nbChunks)) 181 for i := 0; i < config.NbTasks; i++ { 182 sem <- struct{}{} 183 } 184 defer func() { 185 close(sem) 186 }() 187 } 188 189 // the last chunk may be processed with a different method than the rest, as it could be smaller. 190 n := len(points) 191 for j := int(nbChunks - 1); j >= 0; j-- { 192 processChunk := getChunkProcessorG1(c, chunkStats[j]) 193 if j == int(nbChunks-1) { 194 processChunk = getChunkProcessorG1(lastC(c), chunkStats[j]) 195 } 196 if chunkStats[j].weight >= 115 { 197 // we split this in more go routines since this chunk has more work to do than the others. 198 // else what would happen is this go routine would finish much later than the others. 199 chSplit := make(chan g1JacExtended, 2) 200 split := n / 2 201 202 if sem != nil { 203 sem <- struct{}{} // add another token to the semaphore, since we split in two. 204 } 205 go processChunk(uint64(j), chSplit, c, points[:split], digits[j*n:(j*n)+split], sem) 206 go processChunk(uint64(j), chSplit, c, points[split:], digits[(j*n)+split:(j+1)*n], sem) 207 go func(chunkID int) { 208 s1 := <-chSplit 209 s2 := <-chSplit 210 close(chSplit) 211 s1.add(&s2) 212 chChunks[chunkID] <- s1 213 }(j) 214 continue 215 } 216 go processChunk(uint64(j), chChunks[j], c, points, digits[j*n:(j+1)*n], sem) 217 } 218 219 return msmReduceChunkG1Affine(p, int(c), chChunks[:]) 220 } 221 222 // getChunkProcessorG1 decides, depending on c window size and statistics for the chunk 223 // to return the best algorithm to process the chunk. 224 func getChunkProcessorG1(c uint64, stat chunkStat) func(chunkID uint64, chRes chan<- g1JacExtended, c uint64, points []G1Affine, digits []uint16, sem chan struct{}) { 225 switch c { 226 227 case 4: 228 return processChunkG1Jacobian[bucketg1JacExtendedC4] 229 case 5: 230 return processChunkG1Jacobian[bucketg1JacExtendedC5] 231 case 6: 232 return processChunkG1Jacobian[bucketg1JacExtendedC6] 233 case 8: 234 return processChunkG1Jacobian[bucketg1JacExtendedC8] 235 case 12: 236 const batchSize = 200 237 // here we could check some chunk statistic (deviation, ...) to determine if calling 238 // the batch affine version is worth it. 239 if stat.nbBucketFilled < batchSize { 240 // clear indicator that batch affine method is not appropriate here. 241 return processChunkG1Jacobian[bucketg1JacExtendedC12] 242 } 243 return processChunkG1BatchAffine[bucketg1JacExtendedC12, bucketG1AffineC12, bitSetC12, pG1AffineC12, ppG1AffineC12, qG1AffineC12, cG1AffineC12] 244 case 16: 245 const batchSize = 640 246 // here we could check some chunk statistic (deviation, ...) to determine if calling 247 // the batch affine version is worth it. 248 if stat.nbBucketFilled < batchSize { 249 // clear indicator that batch affine method is not appropriate here. 250 return processChunkG1Jacobian[bucketg1JacExtendedC16] 251 } 252 return processChunkG1BatchAffine[bucketg1JacExtendedC16, bucketG1AffineC16, bitSetC16, pG1AffineC16, ppG1AffineC16, qG1AffineC16, cG1AffineC16] 253 default: 254 // panic("will not happen c != previous values is not generated by templates") 255 return processChunkG1Jacobian[bucketg1JacExtendedC16] 256 } 257 } 258 259 // msmReduceChunkG1Affine reduces the weighted sum of the buckets into the result of the multiExp 260 func msmReduceChunkG1Affine(p *G1Jac, c int, chChunks []chan g1JacExtended) *G1Jac { 261 var _p g1JacExtended 262 totalj := <-chChunks[len(chChunks)-1] 263 _p.Set(&totalj) 264 for j := len(chChunks) - 2; j >= 0; j-- { 265 for l := 0; l < c; l++ { 266 _p.double(&_p) 267 } 268 totalj := <-chChunks[j] 269 _p.add(&totalj) 270 } 271 272 return p.unsafeFromJacExtended(&_p) 273 } 274 275 // Fold computes the multi-exponentiation \sum_{i=0}^{len(points)-1} points[i] * 276 // combinationCoeff^i and stores the result in p. It returns error in case 277 // configuration is invalid. 278 func (p *G1Affine) Fold(points []G1Affine, combinationCoeff fr.Element, config ecc.MultiExpConfig) (*G1Affine, error) { 279 var _p G1Jac 280 if _, err := _p.Fold(points, combinationCoeff, config); err != nil { 281 return nil, err 282 } 283 p.FromJacobian(&_p) 284 return p, nil 285 } 286 287 // Fold computes the multi-exponentiation \sum_{i=0}^{len(points)-1} points[i] * 288 // combinationCoeff^i and stores the result in p. It returns error in case 289 // configuration is invalid. 290 func (p *G1Jac) Fold(points []G1Affine, combinationCoeff fr.Element, config ecc.MultiExpConfig) (*G1Jac, error) { 291 scalars := make([]fr.Element, len(points)) 292 scalar := fr.NewElement(1) 293 for i := 0; i < len(points); i++ { 294 scalars[i].Set(&scalar) 295 scalar.Mul(&scalar, &combinationCoeff) 296 } 297 return p.MultiExp(points, scalars, config) 298 } 299 300 // MultiExp implements section 4 of https://eprint.iacr.org/2012/549.pdf 301 // 302 // This call return an error if len(scalars) != len(points) or if provided config is invalid. 303 func (p *G2Affine) MultiExp(points []G2Affine, scalars []fr.Element, config ecc.MultiExpConfig) (*G2Affine, error) { 304 var _p G2Jac 305 if _, err := _p.MultiExp(points, scalars, config); err != nil { 306 return nil, err 307 } 308 p.FromJacobian(&_p) 309 return p, nil 310 } 311 312 // MultiExp implements section 4 of https://eprint.iacr.org/2012/549.pdf 313 // 314 // This call return an error if len(scalars) != len(points) or if provided config is invalid. 315 func (p *G2Jac) MultiExp(points []G2Affine, scalars []fr.Element, config ecc.MultiExpConfig) (*G2Jac, error) { 316 // TODO @gbotrel replace the ecc.MultiExpConfig by a Option pattern for maintainability. 317 // note: 318 // each of the msmCX method is the same, except for the c constant it declares 319 // duplicating (through template generation) these methods allows to declare the buckets on the stack 320 // the choice of c needs to be improved: 321 // there is a theoretical value that gives optimal asymptotics 322 // but in practice, other factors come into play, including: 323 // * if c doesn't divide 64, the word size, then we're bound to select bits over 2 words of our scalars, instead of 1 324 // * number of CPUs 325 // * cache friendliness (which depends on the host, G1 or G2... ) 326 // --> for example, on BN254, a G1 point fits into one cache line of 64bytes, but a G2 point don't. 327 328 // for each msmCX 329 // step 1 330 // we compute, for each scalars over c-bit wide windows, nbChunk digits 331 // if the digit is larger than 2^{c-1}, then, we borrow 2^c from the next window and subtract 332 // 2^{c} to the current digit, making it negative. 333 // negative digits will be processed in the next step as adding -G into the bucket instead of G 334 // (computing -G is cheap, and this saves us half of the buckets) 335 // step 2 336 // buckets are declared on the stack 337 // notice that we have 2^{c-1} buckets instead of 2^{c} (see step1) 338 // we use jacobian extended formulas here as they are faster than mixed addition 339 // msmProcessChunk places points into buckets base on their selector and return the weighted bucket sum in given channel 340 // step 3 341 // reduce the buckets weighed sums into our result (msmReduceChunk) 342 343 // ensure len(points) == len(scalars) 344 nbPoints := len(points) 345 if nbPoints != len(scalars) { 346 return nil, errors.New("len(points) != len(scalars)") 347 } 348 349 // if nbTasks is not set, use all available CPUs 350 if config.NbTasks <= 0 { 351 config.NbTasks = runtime.NumCPU() * 2 352 } else if config.NbTasks > 1024 { 353 return nil, errors.New("invalid config: config.NbTasks > 1024") 354 } 355 356 // here, we compute the best C for nbPoints 357 // we split recursively until nbChunks(c) >= nbTasks, 358 bestC := func(nbPoints int) uint64 { 359 // implemented msmC methods (the c we use must be in this slice) 360 implementedCs := []uint64{4, 5, 6, 8, 12, 16} 361 var C uint64 362 // approximate cost (in group operations) 363 // cost = bits/c * (nbPoints + 2^{c}) 364 // this needs to be verified empirically. 365 // for example, on a MBP 2016, for G2 MultiExp > 8M points, hand picking c gives better results 366 min := math.MaxFloat64 367 for _, c := range implementedCs { 368 cc := (fr.Bits + 1) * (nbPoints + (1 << c)) 369 cost := float64(cc) / float64(c) 370 if cost < min { 371 min = cost 372 C = c 373 } 374 } 375 return C 376 } 377 378 C := bestC(nbPoints) 379 nbChunks := int(computeNbChunks(C)) 380 381 // should we recursively split the msm in half? (see below) 382 // we want to minimize the execution time of the algorithm; 383 // splitting the msm will **add** operations, but if it allows to use more CPU, it might be worth it. 384 385 // costFunction returns a metric that represent the "wall time" of the algorithm 386 costFunction := func(nbTasks, nbCpus, costPerTask int) int { 387 // cost for the reduction of all tasks (msmReduceChunk) 388 totalCost := nbTasks 389 390 // cost for the computation of each task (msmProcessChunk) 391 for nbTasks >= nbCpus { 392 nbTasks -= nbCpus 393 totalCost += costPerTask 394 } 395 if nbTasks > 0 { 396 totalCost += costPerTask 397 } 398 return totalCost 399 } 400 401 // costPerTask is the approximate number of group ops per task 402 costPerTask := func(c uint64, nbPoints int) int { return (nbPoints + int((1 << c))) } 403 404 costPreSplit := costFunction(nbChunks, config.NbTasks, costPerTask(C, nbPoints)) 405 406 cPostSplit := bestC(nbPoints / 2) 407 nbChunksPostSplit := int(computeNbChunks(cPostSplit)) 408 costPostSplit := costFunction(nbChunksPostSplit*2, config.NbTasks, costPerTask(cPostSplit, nbPoints/2)) 409 410 // if the cost of the split msm is lower than the cost of the non split msm, we split 411 if costPostSplit < costPreSplit { 412 config.NbTasks = int(math.Ceil(float64(config.NbTasks) / 2.0)) 413 var _p G2Jac 414 chDone := make(chan struct{}, 1) 415 go func() { 416 _p.MultiExp(points[:nbPoints/2], scalars[:nbPoints/2], config) 417 close(chDone) 418 }() 419 p.MultiExp(points[nbPoints/2:], scalars[nbPoints/2:], config) 420 <-chDone 421 p.AddAssign(&_p) 422 return p, nil 423 } 424 425 // if we don't split, we use the best C we found 426 _innerMsmG2(p, C, points, scalars, config) 427 428 return p, nil 429 } 430 431 func _innerMsmG2(p *G2Jac, c uint64, points []G2Affine, scalars []fr.Element, config ecc.MultiExpConfig) *G2Jac { 432 // partition the scalars 433 digits, chunkStats := partitionScalars(scalars, c, config.NbTasks) 434 435 nbChunks := computeNbChunks(c) 436 437 // for each chunk, spawn one go routine that'll loop through all the scalars in the 438 // corresponding bit-window 439 // note that buckets is an array allocated on the stack and this is critical for performance 440 441 // each go routine sends its result in chChunks[i] channel 442 chChunks := make([]chan g2JacExtended, nbChunks) 443 for i := 0; i < len(chChunks); i++ { 444 chChunks[i] = make(chan g2JacExtended, 1) 445 } 446 447 // we use a semaphore to limit the number of go routines running concurrently 448 // (only if nbTasks < nbCPU) 449 var sem chan struct{} 450 if config.NbTasks < runtime.NumCPU() { 451 // we add nbChunks because if chunk is overweight we split it in two 452 sem = make(chan struct{}, config.NbTasks+int(nbChunks)) 453 for i := 0; i < config.NbTasks; i++ { 454 sem <- struct{}{} 455 } 456 defer func() { 457 close(sem) 458 }() 459 } 460 461 // the last chunk may be processed with a different method than the rest, as it could be smaller. 462 n := len(points) 463 for j := int(nbChunks - 1); j >= 0; j-- { 464 processChunk := getChunkProcessorG2(c, chunkStats[j]) 465 if j == int(nbChunks-1) { 466 processChunk = getChunkProcessorG2(lastC(c), chunkStats[j]) 467 } 468 if chunkStats[j].weight >= 115 { 469 // we split this in more go routines since this chunk has more work to do than the others. 470 // else what would happen is this go routine would finish much later than the others. 471 chSplit := make(chan g2JacExtended, 2) 472 split := n / 2 473 474 if sem != nil { 475 sem <- struct{}{} // add another token to the semaphore, since we split in two. 476 } 477 go processChunk(uint64(j), chSplit, c, points[:split], digits[j*n:(j*n)+split], sem) 478 go processChunk(uint64(j), chSplit, c, points[split:], digits[(j*n)+split:(j+1)*n], sem) 479 go func(chunkID int) { 480 s1 := <-chSplit 481 s2 := <-chSplit 482 close(chSplit) 483 s1.add(&s2) 484 chChunks[chunkID] <- s1 485 }(j) 486 continue 487 } 488 go processChunk(uint64(j), chChunks[j], c, points, digits[j*n:(j+1)*n], sem) 489 } 490 491 return msmReduceChunkG2Affine(p, int(c), chChunks[:]) 492 } 493 494 // getChunkProcessorG2 decides, depending on c window size and statistics for the chunk 495 // to return the best algorithm to process the chunk. 496 func getChunkProcessorG2(c uint64, stat chunkStat) func(chunkID uint64, chRes chan<- g2JacExtended, c uint64, points []G2Affine, digits []uint16, sem chan struct{}) { 497 switch c { 498 499 case 4: 500 return processChunkG2Jacobian[bucketg2JacExtendedC4] 501 case 5: 502 return processChunkG2Jacobian[bucketg2JacExtendedC5] 503 case 6: 504 return processChunkG2Jacobian[bucketg2JacExtendedC6] 505 case 8: 506 return processChunkG2Jacobian[bucketg2JacExtendedC8] 507 case 12: 508 const batchSize = 200 509 // here we could check some chunk statistic (deviation, ...) to determine if calling 510 // the batch affine version is worth it. 511 if stat.nbBucketFilled < batchSize { 512 // clear indicator that batch affine method is not appropriate here. 513 return processChunkG2Jacobian[bucketg2JacExtendedC12] 514 } 515 return processChunkG2BatchAffine[bucketg2JacExtendedC12, bucketG2AffineC12, bitSetC12, pG2AffineC12, ppG2AffineC12, qG2AffineC12, cG2AffineC12] 516 case 16: 517 const batchSize = 640 518 // here we could check some chunk statistic (deviation, ...) to determine if calling 519 // the batch affine version is worth it. 520 if stat.nbBucketFilled < batchSize { 521 // clear indicator that batch affine method is not appropriate here. 522 return processChunkG2Jacobian[bucketg2JacExtendedC16] 523 } 524 return processChunkG2BatchAffine[bucketg2JacExtendedC16, bucketG2AffineC16, bitSetC16, pG2AffineC16, ppG2AffineC16, qG2AffineC16, cG2AffineC16] 525 default: 526 // panic("will not happen c != previous values is not generated by templates") 527 return processChunkG2Jacobian[bucketg2JacExtendedC16] 528 } 529 } 530 531 // msmReduceChunkG2Affine reduces the weighted sum of the buckets into the result of the multiExp 532 func msmReduceChunkG2Affine(p *G2Jac, c int, chChunks []chan g2JacExtended) *G2Jac { 533 var _p g2JacExtended 534 totalj := <-chChunks[len(chChunks)-1] 535 _p.Set(&totalj) 536 for j := len(chChunks) - 2; j >= 0; j-- { 537 for l := 0; l < c; l++ { 538 _p.double(&_p) 539 } 540 totalj := <-chChunks[j] 541 _p.add(&totalj) 542 } 543 544 return p.unsafeFromJacExtended(&_p) 545 } 546 547 // Fold computes the multi-exponentiation \sum_{i=0}^{len(points)-1} points[i] * 548 // combinationCoeff^i and stores the result in p. It returns error in case 549 // configuration is invalid. 550 func (p *G2Affine) Fold(points []G2Affine, combinationCoeff fr.Element, config ecc.MultiExpConfig) (*G2Affine, error) { 551 var _p G2Jac 552 if _, err := _p.Fold(points, combinationCoeff, config); err != nil { 553 return nil, err 554 } 555 p.FromJacobian(&_p) 556 return p, nil 557 } 558 559 // Fold computes the multi-exponentiation \sum_{i=0}^{len(points)-1} points[i] * 560 // combinationCoeff^i and stores the result in p. It returns error in case 561 // configuration is invalid. 562 func (p *G2Jac) Fold(points []G2Affine, combinationCoeff fr.Element, config ecc.MultiExpConfig) (*G2Jac, error) { 563 scalars := make([]fr.Element, len(points)) 564 scalar := fr.NewElement(1) 565 for i := 0; i < len(points); i++ { 566 scalars[i].Set(&scalar) 567 scalar.Mul(&scalar, &combinationCoeff) 568 } 569 return p.MultiExp(points, scalars, config) 570 } 571 572 // selector stores the index, mask and shifts needed to select bits from a scalar 573 // it is used during the multiExp algorithm or the batch scalar multiplication 574 type selector struct { 575 index uint64 // index in the multi-word scalar to select bits from 576 mask uint64 // mask (c-bit wide) 577 shift uint64 // shift needed to get our bits on low positions 578 579 multiWordSelect bool // set to true if we need to select bits from 2 words (case where c doesn't divide 64) 580 maskHigh uint64 // same than mask, for index+1 581 shiftHigh uint64 // same than shift, for index+1 582 } 583 584 // return number of chunks for a given window size c 585 // the last chunk may be bigger to accommodate a potential carry from the NAF decomposition 586 func computeNbChunks(c uint64) uint64 { 587 return (fr.Bits + c - 1) / c 588 } 589 590 // return the last window size for a scalar; 591 // this last window should accommodate a carry (from the NAF decomposition) 592 // it can be == c if we have 1 available bit 593 // it can be > c if we have 0 available bit 594 // it can be < c if we have 2+ available bits 595 func lastC(c uint64) uint64 { 596 nbAvailableBits := (computeNbChunks(c) * c) - fr.Bits 597 return c + 1 - nbAvailableBits 598 } 599 600 type chunkStat struct { 601 // relative weight of work compared to other chunks. 100.0 -> nominal weight. 602 weight float32 603 604 // percentage of bucket filled in the window; 605 ppBucketFilled float32 606 nbBucketFilled int 607 } 608 609 // partitionScalars compute, for each scalars over c-bit wide windows, nbChunk digits 610 // if the digit is larger than 2^{c-1}, then, we borrow 2^c from the next window and subtract 611 // 2^{c} to the current digit, making it negative. 612 // negative digits can be processed in a later step as adding -G into the bucket instead of G 613 // (computing -G is cheap, and this saves us half of the buckets in the MultiExp or BatchScalarMultiplication) 614 func partitionScalars(scalars []fr.Element, c uint64, nbTasks int) ([]uint16, []chunkStat) { 615 // no benefit here to have more tasks than CPUs 616 if nbTasks > runtime.NumCPU() { 617 nbTasks = runtime.NumCPU() 618 } 619 620 // number of c-bit radixes in a scalar 621 nbChunks := computeNbChunks(c) 622 623 digits := make([]uint16, len(scalars)*int(nbChunks)) 624 625 mask := uint64((1 << c) - 1) // low c bits are 1 626 max := int(1<<(c-1)) - 1 // max value (inclusive) we want for our digits 627 cDivides64 := (64 % c) == 0 // if c doesn't divide 64, we may need to select over multiple words 628 629 // compute offset and word selector / shift to select the right bits of our windows 630 selectors := make([]selector, nbChunks) 631 for chunk := uint64(0); chunk < nbChunks; chunk++ { 632 jc := uint64(chunk * c) 633 d := selector{} 634 d.index = jc / 64 635 d.shift = jc - (d.index * 64) 636 d.mask = mask << d.shift 637 d.multiWordSelect = !cDivides64 && d.shift > (64-c) && d.index < (fr.Limbs-1) 638 if d.multiWordSelect { 639 nbBitsHigh := d.shift - uint64(64-c) 640 d.maskHigh = (1 << nbBitsHigh) - 1 641 d.shiftHigh = (c - nbBitsHigh) 642 } 643 selectors[chunk] = d 644 } 645 646 parallel.Execute(len(scalars), func(start, end int) { 647 for i := start; i < end; i++ { 648 if scalars[i].IsZero() { 649 // everything is 0, no need to process this scalar 650 continue 651 } 652 scalar := scalars[i].Bits() 653 654 var carry int 655 656 // for each chunk in the scalar, compute the current digit, and an eventual carry 657 for chunk := uint64(0); chunk < nbChunks-1; chunk++ { 658 s := selectors[chunk] 659 660 // init with carry if any 661 digit := carry 662 carry = 0 663 664 // digit = value of the c-bit window 665 digit += int((scalar[s.index] & s.mask) >> s.shift) 666 667 if s.multiWordSelect { 668 // we are selecting bits over 2 words 669 digit += int(scalar[s.index+1]&s.maskHigh) << s.shiftHigh 670 } 671 672 // if the digit is larger than 2^{c-1}, then, we borrow 2^c from the next window and subtract 673 // 2^{c} to the current digit, making it negative. 674 if digit > max { 675 digit -= (1 << c) 676 carry = 1 677 } 678 679 // if digit is zero, no impact on result 680 if digit == 0 { 681 continue 682 } 683 684 var bits uint16 685 if digit > 0 { 686 bits = uint16(digit) << 1 687 } else { 688 bits = (uint16(-digit-1) << 1) + 1 689 } 690 digits[int(chunk)*len(scalars)+i] = bits 691 } 692 693 // for the last chunk, we don't want to borrow from a next window 694 // (but may have a larger max value) 695 chunk := nbChunks - 1 696 s := selectors[chunk] 697 // init with carry if any 698 digit := carry 699 // digit = value of the c-bit window 700 digit += int((scalar[s.index] & s.mask) >> s.shift) 701 if s.multiWordSelect { 702 // we are selecting bits over 2 words 703 digit += int(scalar[s.index+1]&s.maskHigh) << s.shiftHigh 704 } 705 digits[int(chunk)*len(scalars)+i] = uint16(digit) << 1 706 } 707 708 }, nbTasks) 709 710 // aggregate chunk stats 711 chunkStats := make([]chunkStat, nbChunks) 712 if c <= 9 { 713 // no need to compute stats for small window sizes 714 return digits, chunkStats 715 } 716 parallel.Execute(len(chunkStats), func(start, end int) { 717 // for each chunk compute the statistics 718 for chunkID := start; chunkID < end; chunkID++ { 719 // indicates if a bucket is hit. 720 var b bitSetC16 721 722 // digits for the chunk 723 chunkDigits := digits[chunkID*len(scalars) : (chunkID+1)*len(scalars)] 724 725 totalOps := 0 726 nz := 0 // non zero buckets count 727 for _, digit := range chunkDigits { 728 if digit == 0 { 729 continue 730 } 731 totalOps++ 732 bucketID := digit >> 1 733 if digit&1 == 0 { 734 bucketID -= 1 735 } 736 if !b[bucketID] { 737 nz++ 738 b[bucketID] = true 739 } 740 } 741 chunkStats[chunkID].weight = float32(totalOps) // count number of ops for now, we will compute the weight after 742 chunkStats[chunkID].ppBucketFilled = (float32(nz) * 100.0) / float32(int(1<<(c-1))) 743 chunkStats[chunkID].nbBucketFilled = nz 744 } 745 }, nbTasks) 746 747 totalOps := float32(0.0) 748 for _, stat := range chunkStats { 749 totalOps += stat.weight 750 } 751 752 target := totalOps / float32(nbChunks) 753 if target != 0.0 { 754 // if target == 0, it means all the scalars are 0 everywhere, there is no work to be done. 755 for i := 0; i < len(chunkStats); i++ { 756 chunkStats[i].weight = (chunkStats[i].weight * 100.0) / target 757 } 758 } 759 760 return digits, chunkStats 761 }