github.com/consensys/gnark-crypto@v0.14.0/ecc/bw6-756/g2.go (about) 1 // Copyright 2020 Consensys Software Inc. 2 // 3 // Licensed under the Apache License, Version 2.0 (the "License"); 4 // you may not use this file except in compliance with the License. 5 // You may obtain a copy of the License at 6 // 7 // http://www.apache.org/licenses/LICENSE-2.0 8 // 9 // Unless required by applicable law or agreed to in writing, software 10 // distributed under the License is distributed on an "AS IS" BASIS, 11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 // See the License for the specific language governing permissions and 13 // limitations under the License. 14 15 // Code generated by consensys/gnark-crypto DO NOT EDIT 16 17 package bw6756 18 19 import ( 20 "crypto/rand" 21 "github.com/consensys/gnark-crypto/ecc" 22 "github.com/consensys/gnark-crypto/ecc/bw6-756/fp" 23 "github.com/consensys/gnark-crypto/ecc/bw6-756/fr" 24 "github.com/consensys/gnark-crypto/internal/parallel" 25 "math/big" 26 "runtime" 27 ) 28 29 // G2Affine is a point in affine coordinates (x,y) 30 type G2Affine struct { 31 X, Y fp.Element 32 } 33 34 // G2Jac is a point in Jacobian coordinates (x=X/Z², y=Y/Z³) 35 type G2Jac struct { 36 X, Y, Z fp.Element 37 } 38 39 // g2JacExtended is a point in extended Jacobian coordinates (x=X/ZZ, y=Y/ZZZ, ZZ³=ZZZ²) 40 type g2JacExtended struct { 41 X, Y, ZZ, ZZZ fp.Element 42 } 43 44 // g2Proj point in projective coordinates 45 type g2Proj struct { 46 x, y, z fp.Element 47 } 48 49 // ------------------------------------------------------------------------------------------------- 50 // Affine coordinates 51 52 // Set sets p to a in affine coordinates. 53 func (p *G2Affine) Set(a *G2Affine) *G2Affine { 54 p.X, p.Y = a.X, a.Y 55 return p 56 } 57 58 // setInfinity sets p to the infinity point, which is encoded as (0,0). 59 // N.B.: (0,0) is never on the curve for j=0 curves (Y²=X³+B). 60 func (p *G2Affine) setInfinity() *G2Affine { 61 p.X.SetZero() 62 p.Y.SetZero() 63 return p 64 } 65 66 // ScalarMultiplication computes and returns p = [s]a 67 // where p and a are affine points. 68 func (p *G2Affine) ScalarMultiplication(a *G2Affine, s *big.Int) *G2Affine { 69 var _p G2Jac 70 _p.FromAffine(a) 71 _p.mulGLV(&_p, s) 72 p.FromJacobian(&_p) 73 return p 74 } 75 76 // ScalarMultiplicationBase computes and returns p = [s]g 77 // where g is the affine point generating the prime subgroup. 78 func (p *G2Affine) ScalarMultiplicationBase(s *big.Int) *G2Affine { 79 var _p G2Jac 80 _p.mulGLV(&g2Gen, s) 81 p.FromJacobian(&_p) 82 return p 83 } 84 85 // Add adds two points in affine coordinates. 86 // It uses the Jacobian addition with a.Z=b.Z=1 and converts the result to affine coordinates. 87 // 88 // https://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-mmadd-2007-bl 89 func (p *G2Affine) Add(a, b *G2Affine) *G2Affine { 90 var q G2Jac 91 // a is infinity, return b 92 if a.IsInfinity() { 93 p.Set(b) 94 return p 95 } 96 // b is infinity, return a 97 if b.IsInfinity() { 98 p.Set(a) 99 return p 100 } 101 if a.X.Equal(&b.X) { 102 // if b == a, we double instead 103 if a.Y.Equal(&b.Y) { 104 q.DoubleMixed(a) 105 return p.FromJacobian(&q) 106 } else { 107 // if b == -a, we return 0 108 return p.setInfinity() 109 } 110 } 111 var H, HH, I, J, r, V fp.Element 112 H.Sub(&b.X, &a.X) 113 HH.Square(&H) 114 I.Double(&HH).Double(&I) 115 J.Mul(&H, &I) 116 r.Sub(&b.Y, &a.Y) 117 r.Double(&r) 118 V.Mul(&a.X, &I) 119 q.X.Square(&r). 120 Sub(&q.X, &J). 121 Sub(&q.X, &V). 122 Sub(&q.X, &V) 123 q.Y.Sub(&V, &q.X). 124 Mul(&q.Y, &r) 125 J.Mul(&a.Y, &J).Double(&J) 126 q.Y.Sub(&q.Y, &J) 127 q.Z.Double(&H) 128 129 return p.FromJacobian(&q) 130 } 131 132 // Double doubles a point in affine coordinates. 133 // It converts the point to Jacobian coordinates, doubles it using Jacobian 134 // addition with a.Z=1, and converts it back to affine coordinates. 135 // 136 // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-mdbl-2007-bl 137 func (p *G2Affine) Double(a *G2Affine) *G2Affine { 138 var q G2Jac 139 q.FromAffine(a) 140 q.DoubleMixed(a) 141 p.FromJacobian(&q) 142 return p 143 } 144 145 // Sub subtracts two points in affine coordinates. 146 // It uses a similar approach to Add, but negates the second point before adding. 147 func (p *G2Affine) Sub(a, b *G2Affine) *G2Affine { 148 var bneg G2Affine 149 bneg.Neg(b) 150 p.Add(a, &bneg) 151 return p 152 } 153 154 // Equal tests if two points in affine coordinates are equal. 155 func (p *G2Affine) Equal(a *G2Affine) bool { 156 return p.X.Equal(&a.X) && p.Y.Equal(&a.Y) 157 } 158 159 // Neg sets p to the affine negative point -a = (a.X, -a.Y). 160 func (p *G2Affine) Neg(a *G2Affine) *G2Affine { 161 p.X = a.X 162 p.Y.Neg(&a.Y) 163 return p 164 } 165 166 // FromJacobian converts a point p1 from Jacobian to affine coordinates. 167 func (p *G2Affine) FromJacobian(p1 *G2Jac) *G2Affine { 168 169 var a, b fp.Element 170 171 if p1.Z.IsZero() { 172 p.X.SetZero() 173 p.Y.SetZero() 174 return p 175 } 176 177 a.Inverse(&p1.Z) 178 b.Square(&a) 179 p.X.Mul(&p1.X, &b) 180 p.Y.Mul(&p1.Y, &b).Mul(&p.Y, &a) 181 182 return p 183 } 184 185 // String returns the string representation E(x,y) of the affine point p or "O" if it is infinity. 186 func (p *G2Affine) String() string { 187 if p.IsInfinity() { 188 return "O" 189 } 190 return "E([" + p.X.String() + "," + p.Y.String() + "])" 191 } 192 193 // IsInfinity checks if the affine point p is infinity, which is encoded as (0,0). 194 // N.B.: (0,0) is never on the curve for j=0 curves (Y²=X³+B). 195 func (p *G2Affine) IsInfinity() bool { 196 return p.X.IsZero() && p.Y.IsZero() 197 } 198 199 // IsOnCurve returns true if the affine point p in on the curve. 200 func (p *G2Affine) IsOnCurve() bool { 201 var point G2Jac 202 point.FromAffine(p) 203 return point.IsOnCurve() // call this function to handle infinity point 204 } 205 206 // IsInSubGroup returns true if the affine point p is in the correct subgroup, false otherwise. 207 func (p *G2Affine) IsInSubGroup() bool { 208 var _p G2Jac 209 _p.FromAffine(p) 210 return _p.IsInSubGroup() 211 } 212 213 // ------------------------------------------------------------------------------------------------- 214 // Jacobian coordinates 215 216 // Set sets p to a in Jacobian coordinates. 217 func (p *G2Jac) Set(q *G2Jac) *G2Jac { 218 p.X, p.Y, p.Z = q.X, q.Y, q.Z 219 return p 220 } 221 222 // Equal tests if two points in Jacobian coordinates are equal. 223 func (p *G2Jac) Equal(q *G2Jac) bool { 224 // If one point is infinity, the other must also be infinity. 225 if p.Z.IsZero() { 226 return q.Z.IsZero() 227 } 228 // If the other point is infinity, return false since we can't 229 // the following checks would be incorrect. 230 if q.Z.IsZero() { 231 return false 232 } 233 234 var pZSquare, aZSquare fp.Element 235 pZSquare.Square(&p.Z) 236 aZSquare.Square(&q.Z) 237 238 var lhs, rhs fp.Element 239 lhs.Mul(&p.X, &aZSquare) 240 rhs.Mul(&q.X, &pZSquare) 241 if !lhs.Equal(&rhs) { 242 return false 243 } 244 lhs.Mul(&p.Y, &aZSquare).Mul(&lhs, &q.Z) 245 rhs.Mul(&q.Y, &pZSquare).Mul(&rhs, &p.Z) 246 247 return lhs.Equal(&rhs) 248 } 249 250 // Neg sets p to the Jacobian negative point -q = (q.X, -q.Y, q.Z). 251 func (p *G2Jac) Neg(q *G2Jac) *G2Jac { 252 *p = *q 253 p.Y.Neg(&q.Y) 254 return p 255 } 256 257 // AddAssign sets p to p+a in Jacobian coordinates. 258 // 259 // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl 260 func (p *G2Jac) AddAssign(q *G2Jac) *G2Jac { 261 262 // p is infinity, return q 263 if p.Z.IsZero() { 264 p.Set(q) 265 return p 266 } 267 268 // q is infinity, return p 269 if q.Z.IsZero() { 270 return p 271 } 272 273 var Z1Z1, Z2Z2, U1, U2, S1, S2, H, I, J, r, V fp.Element 274 Z1Z1.Square(&q.Z) 275 Z2Z2.Square(&p.Z) 276 U1.Mul(&q.X, &Z2Z2) 277 U2.Mul(&p.X, &Z1Z1) 278 S1.Mul(&q.Y, &p.Z). 279 Mul(&S1, &Z2Z2) 280 S2.Mul(&p.Y, &q.Z). 281 Mul(&S2, &Z1Z1) 282 283 // if p == q, we double instead 284 if U1.Equal(&U2) && S1.Equal(&S2) { 285 return p.DoubleAssign() 286 } 287 288 H.Sub(&U2, &U1) 289 I.Double(&H). 290 Square(&I) 291 J.Mul(&H, &I) 292 r.Sub(&S2, &S1).Double(&r) 293 V.Mul(&U1, &I) 294 p.X.Square(&r). 295 Sub(&p.X, &J). 296 Sub(&p.X, &V). 297 Sub(&p.X, &V) 298 p.Y.Sub(&V, &p.X). 299 Mul(&p.Y, &r) 300 S1.Mul(&S1, &J).Double(&S1) 301 p.Y.Sub(&p.Y, &S1) 302 p.Z.Add(&p.Z, &q.Z) 303 p.Z.Square(&p.Z). 304 Sub(&p.Z, &Z1Z1). 305 Sub(&p.Z, &Z2Z2). 306 Mul(&p.Z, &H) 307 308 return p 309 } 310 311 // SubAssign sets p to p-a in Jacobian coordinates. 312 // It uses a similar approach to AddAssign, but negates the point a before adding. 313 func (p *G2Jac) SubAssign(q *G2Jac) *G2Jac { 314 var tmp G2Jac 315 tmp.Set(q) 316 tmp.Y.Neg(&tmp.Y) 317 p.AddAssign(&tmp) 318 return p 319 } 320 321 // Double sets p to [2]q in Jacobian coordinates. 322 // 323 // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2007-bl 324 func (p *G2Jac) DoubleMixed(a *G2Affine) *G2Jac { 325 var XX, YY, YYYY, S, M, T fp.Element 326 XX.Square(&a.X) 327 YY.Square(&a.Y) 328 YYYY.Square(&YY) 329 S.Add(&a.X, &YY). 330 Square(&S). 331 Sub(&S, &XX). 332 Sub(&S, &YYYY). 333 Double(&S) 334 M.Double(&XX). 335 Add(&M, &XX) // -> + A, but A=0 here 336 T.Square(&M). 337 Sub(&T, &S). 338 Sub(&T, &S) 339 p.X.Set(&T) 340 p.Y.Sub(&S, &T). 341 Mul(&p.Y, &M) 342 YYYY.Double(&YYYY). 343 Double(&YYYY). 344 Double(&YYYY) 345 p.Y.Sub(&p.Y, &YYYY) 346 p.Z.Double(&a.Y) 347 348 return p 349 } 350 351 // AddMixed sets p to p+a in Jacobian coordinates, where a.Z = 1. 352 // 353 // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-madd-2007-bl 354 func (p *G2Jac) AddMixed(a *G2Affine) *G2Jac { 355 356 //if a is infinity return p 357 if a.IsInfinity() { 358 return p 359 } 360 // p is infinity, return a 361 if p.Z.IsZero() { 362 p.X = a.X 363 p.Y = a.Y 364 p.Z.SetOne() 365 return p 366 } 367 368 var Z1Z1, U2, S2, H, HH, I, J, r, V fp.Element 369 Z1Z1.Square(&p.Z) 370 U2.Mul(&a.X, &Z1Z1) 371 S2.Mul(&a.Y, &p.Z). 372 Mul(&S2, &Z1Z1) 373 374 // if p == a, we double instead 375 if U2.Equal(&p.X) && S2.Equal(&p.Y) { 376 return p.DoubleMixed(a) 377 } 378 379 H.Sub(&U2, &p.X) 380 HH.Square(&H) 381 I.Double(&HH).Double(&I) 382 J.Mul(&H, &I) 383 r.Sub(&S2, &p.Y).Double(&r) 384 V.Mul(&p.X, &I) 385 p.X.Square(&r). 386 Sub(&p.X, &J). 387 Sub(&p.X, &V). 388 Sub(&p.X, &V) 389 J.Mul(&J, &p.Y).Double(&J) 390 p.Y.Sub(&V, &p.X). 391 Mul(&p.Y, &r) 392 p.Y.Sub(&p.Y, &J) 393 p.Z.Add(&p.Z, &H) 394 p.Z.Square(&p.Z). 395 Sub(&p.Z, &Z1Z1). 396 Sub(&p.Z, &HH) 397 398 return p 399 } 400 401 // Double sets p to [2]q in Jacobian coordinates. 402 // 403 // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2007-bl 404 func (p *G2Jac) Double(q *G2Jac) *G2Jac { 405 p.Set(q) 406 p.DoubleAssign() 407 return p 408 } 409 410 // DoubleAssign doubles p in Jacobian coordinates. 411 // 412 // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2007-bl 413 func (p *G2Jac) DoubleAssign() *G2Jac { 414 415 var XX, YY, YYYY, ZZ, S, M, T fp.Element 416 417 XX.Square(&p.X) 418 YY.Square(&p.Y) 419 YYYY.Square(&YY) 420 ZZ.Square(&p.Z) 421 S.Add(&p.X, &YY) 422 S.Square(&S). 423 Sub(&S, &XX). 424 Sub(&S, &YYYY). 425 Double(&S) 426 M.Double(&XX).Add(&M, &XX) 427 p.Z.Add(&p.Z, &p.Y). 428 Square(&p.Z). 429 Sub(&p.Z, &YY). 430 Sub(&p.Z, &ZZ) 431 T.Square(&M) 432 p.X = T 433 T.Double(&S) 434 p.X.Sub(&p.X, &T) 435 p.Y.Sub(&S, &p.X). 436 Mul(&p.Y, &M) 437 YYYY.Double(&YYYY).Double(&YYYY).Double(&YYYY) 438 p.Y.Sub(&p.Y, &YYYY) 439 440 return p 441 } 442 443 // ScalarMultiplication computes and returns p = [s]a 444 // where p and a are Jacobian points. 445 // using the GLV technique. 446 // see https://www.iacr.org/archive/crypto2001/21390189.pdf 447 func (p *G2Jac) ScalarMultiplication(q *G2Jac, s *big.Int) *G2Jac { 448 return p.mulGLV(q, s) 449 } 450 451 // ScalarMultiplicationBase computes and returns p = [s]g 452 // where g is the prime subgroup generator. 453 func (p *G2Jac) ScalarMultiplicationBase(s *big.Int) *G2Jac { 454 return p.mulGLV(&g2Gen, s) 455 456 } 457 458 // String converts p to affine coordinates and returns its string representation E(x,y) or "O" if it is infinity. 459 func (p *G2Jac) String() string { 460 _p := G2Affine{} 461 _p.FromJacobian(p) 462 return _p.String() 463 } 464 465 // FromAffine converts a point a from affine to Jacobian coordinates. 466 func (p *G2Jac) FromAffine(a *G2Affine) *G2Jac { 467 if a.IsInfinity() { 468 p.Z.SetZero() 469 p.X.SetOne() 470 p.Y.SetOne() 471 return p 472 } 473 p.Z.SetOne() 474 p.X.Set(&a.X) 475 p.Y.Set(&a.Y) 476 return p 477 } 478 479 // IsOnCurve returns true if the Jacobian point p in on the curve. 480 func (p *G2Jac) IsOnCurve() bool { 481 var left, right, tmp, ZZ fp.Element 482 left.Square(&p.Y) 483 right.Square(&p.X).Mul(&right, &p.X) 484 ZZ.Square(&p.Z) 485 tmp.Square(&ZZ).Mul(&tmp, &ZZ) 486 tmp.Mul(&tmp, &bTwistCurveCoeff) 487 right.Add(&right, &tmp) 488 return left.Equal(&right) 489 } 490 491 // IsInSubGroup returns true if p is on the r-torsion, false otherwise. 492 493 // Z[r,0]+Z[-lambdaG2Affine, 1] is the kernel 494 // of (u,v)->u+lambdaG2Affinev mod r. Expressing r, lambdaG2Affine as 495 // polynomials in x, a short vector of this Zmodule is 496 // (x+1), (x³-x²+1). So we check that (x+1)p+(x³-x²+1)ϕ(p) 497 // is the infinity. 498 func (p *G2Jac) IsInSubGroup() bool { 499 500 var res, phip G2Jac 501 phip.phi(p) 502 res.ScalarMultiplication(&phip, &xGen). 503 SubAssign(&phip). 504 ScalarMultiplication(&res, &xGen). 505 ScalarMultiplication(&res, &xGen). 506 AddAssign(&phip) 507 508 phip.ScalarMultiplication(p, &xGen).AddAssign(p).AddAssign(&res) 509 510 return phip.IsOnCurve() && phip.Z.IsZero() 511 512 } 513 514 // mulWindowed computes the 2-bits windowed double-and-add scalar 515 // multiplication p=[s]q in Jacobian coordinates. 516 func (p *G2Jac) mulWindowed(q *G2Jac, s *big.Int) *G2Jac { 517 518 var res G2Jac 519 var ops [3]G2Jac 520 521 ops[0].Set(q) 522 if s.Sign() == -1 { 523 ops[0].Neg(&ops[0]) 524 } 525 res.Set(&g2Infinity) 526 ops[1].Double(&ops[0]) 527 ops[2].Set(&ops[0]).AddAssign(&ops[1]) 528 529 b := s.Bytes() 530 for i := range b { 531 w := b[i] 532 mask := byte(0xc0) 533 for j := 0; j < 4; j++ { 534 res.DoubleAssign().DoubleAssign() 535 c := (w & mask) >> (6 - 2*j) 536 if c != 0 { 537 res.AddAssign(&ops[c-1]) 538 } 539 mask = mask >> 2 540 } 541 } 542 p.Set(&res) 543 544 return p 545 546 } 547 548 // phi sets p to ϕ(a) where ϕ: (x,y) → (w x,y), 549 // where w is a third root of unity. 550 func (p *G2Jac) phi(q *G2Jac) *G2Jac { 551 p.Set(q) 552 p.X.Mul(&p.X, &thirdRootOneG2) 553 return p 554 } 555 556 // mulGLV computes the scalar multiplication using a windowed-GLV method 557 // 558 // see https://www.iacr.org/archive/crypto2001/21390189.pdf 559 func (p *G2Jac) mulGLV(q *G2Jac, s *big.Int) *G2Jac { 560 561 var table [15]G2Jac 562 var res G2Jac 563 var k1, k2 fr.Element 564 565 res.Set(&g2Infinity) 566 567 // table[b3b2b1b0-1] = b3b2 ⋅ ϕ(q) + b1b0*q 568 table[0].Set(q) 569 table[3].phi(q) 570 571 // split the scalar, modifies ±q, ϕ(q) accordingly 572 k := ecc.SplitScalar(s, &glvBasis) 573 574 if k[0].Sign() == -1 { 575 k[0].Neg(&k[0]) 576 table[0].Neg(&table[0]) 577 } 578 if k[1].Sign() == -1 { 579 k[1].Neg(&k[1]) 580 table[3].Neg(&table[3]) 581 } 582 583 // precompute table (2 bits sliding window) 584 // table[b3b2b1b0-1] = b3b2 ⋅ ϕ(q) + b1b0 ⋅ q if b3b2b1b0 != 0 585 table[1].Double(&table[0]) 586 table[2].Set(&table[1]).AddAssign(&table[0]) 587 table[4].Set(&table[3]).AddAssign(&table[0]) 588 table[5].Set(&table[3]).AddAssign(&table[1]) 589 table[6].Set(&table[3]).AddAssign(&table[2]) 590 table[7].Double(&table[3]) 591 table[8].Set(&table[7]).AddAssign(&table[0]) 592 table[9].Set(&table[7]).AddAssign(&table[1]) 593 table[10].Set(&table[7]).AddAssign(&table[2]) 594 table[11].Set(&table[7]).AddAssign(&table[3]) 595 table[12].Set(&table[11]).AddAssign(&table[0]) 596 table[13].Set(&table[11]).AddAssign(&table[1]) 597 table[14].Set(&table[11]).AddAssign(&table[2]) 598 599 // bounds on the lattice base vectors guarantee that k1, k2 are len(r)/2 or len(r)/2+1 bits long max 600 // this is because we use a probabilistic scalar decomposition that replaces a division by a right-shift 601 k1 = k1.SetBigInt(&k[0]).Bits() 602 k2 = k2.SetBigInt(&k[1]).Bits() 603 604 // we don't target constant-timeness so we check first if we increase the bounds or not 605 maxBit := k1.BitLen() 606 if k2.BitLen() > maxBit { 607 maxBit = k2.BitLen() 608 } 609 hiWordIndex := (maxBit - 1) / 64 610 611 // loop starts from len(k1)/2 or len(k1)/2+1 due to the bounds 612 for i := hiWordIndex; i >= 0; i-- { 613 mask := uint64(3) << 62 614 for j := 0; j < 32; j++ { 615 res.Double(&res).Double(&res) 616 b1 := (k1[i] & mask) >> (62 - 2*j) 617 b2 := (k2[i] & mask) >> (62 - 2*j) 618 if b1|b2 != 0 { 619 s := (b2<<2 | b1) 620 res.AddAssign(&table[s-1]) 621 } 622 mask = mask >> 2 623 } 624 } 625 626 p.Set(&res) 627 return p 628 } 629 630 // ClearCofactor maps a point in curve to r-torsion 631 func (p *G2Affine) ClearCofactor(a *G2Affine) *G2Affine { 632 var _p G2Jac 633 _p.FromAffine(a) 634 _p.ClearCofactor(&_p) 635 p.FromJacobian(&_p) 636 return p 637 } 638 639 // ClearCofactor maps a point in curve to r-torsion 640 func (p *G2Jac) ClearCofactor(q *G2Jac) *G2Jac { 641 var L0, L1, uP, u2P, u3P, tmp G2Jac 642 643 uP.ScalarMultiplication(q, &xGen) 644 u2P.ScalarMultiplication(&uP, &xGen) 645 u3P.ScalarMultiplication(&u2P, &xGen) 646 // ht=-2, hy=0 647 // d1=1, d2=-1, d3=-1 648 649 L0.Set(q). 650 AddAssign(&u2P). 651 SubAssign(&uP) 652 tmp.Set(&u2P). 653 AddAssign(q). 654 SubAssign(&uP). 655 Double(&tmp) 656 L1.Set(&u3P). 657 SubAssign(&tmp) 658 659 p.phi(&L0). 660 AddAssign(&L1) 661 662 return p 663 } 664 665 // ------------------------------------------------------------------------------------------------- 666 // extended Jacobian coordinates 667 668 // Set sets p to a in extended Jacobian coordinates. 669 func (p *g2JacExtended) Set(q *g2JacExtended) *g2JacExtended { 670 p.X, p.Y, p.ZZ, p.ZZZ = q.X, q.Y, q.ZZ, q.ZZZ 671 return p 672 } 673 674 // setInfinity sets p to the infinity point (1,1,0,0). 675 func (p *g2JacExtended) setInfinity() *g2JacExtended { 676 p.X.SetOne() 677 p.Y.SetOne() 678 p.ZZ = fp.Element{} 679 p.ZZZ = fp.Element{} 680 return p 681 } 682 683 // IsInfinity checks if the p is infinity, i.e. p.ZZ=0. 684 func (p *g2JacExtended) IsInfinity() bool { 685 return p.ZZ.IsZero() 686 } 687 688 // fromJacExtended converts an extended Jacobian point to an affine point. 689 func (p *G2Affine) fromJacExtended(q *g2JacExtended) *G2Affine { 690 if q.ZZ.IsZero() { 691 p.X = fp.Element{} 692 p.Y = fp.Element{} 693 return p 694 } 695 p.X.Inverse(&q.ZZ).Mul(&p.X, &q.X) 696 p.Y.Inverse(&q.ZZZ).Mul(&p.Y, &q.Y) 697 return p 698 } 699 700 // fromJacExtended converts an extended Jacobian point to a Jacobian point. 701 func (p *G2Jac) fromJacExtended(q *g2JacExtended) *G2Jac { 702 if q.ZZ.IsZero() { 703 p.Set(&g2Infinity) 704 return p 705 } 706 p.X.Mul(&q.ZZ, &q.X).Mul(&p.X, &q.ZZ) 707 p.Y.Mul(&q.ZZZ, &q.Y).Mul(&p.Y, &q.ZZZ) 708 p.Z.Set(&q.ZZZ) 709 return p 710 } 711 712 // unsafeFromJacExtended converts an extended Jacobian point, distinct from Infinity, to a Jacobian point. 713 func (p *G2Jac) unsafeFromJacExtended(q *g2JacExtended) *G2Jac { 714 p.X.Square(&q.ZZ).Mul(&p.X, &q.X) 715 p.Y.Square(&q.ZZZ).Mul(&p.Y, &q.Y) 716 p.Z = q.ZZZ 717 return p 718 } 719 720 // add sets p to p+q in extended Jacobian coordinates. 721 // 722 // https://www.hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#addition-add-2008-s 723 func (p *g2JacExtended) add(q *g2JacExtended) *g2JacExtended { 724 //if q is infinity return p 725 if q.ZZ.IsZero() { 726 return p 727 } 728 // p is infinity, return q 729 if p.ZZ.IsZero() { 730 p.Set(q) 731 return p 732 } 733 734 var A, B, U1, U2, S1, S2 fp.Element 735 736 // p2: q, p1: p 737 U2.Mul(&q.X, &p.ZZ) 738 U1.Mul(&p.X, &q.ZZ) 739 A.Sub(&U2, &U1) 740 S2.Mul(&q.Y, &p.ZZZ) 741 S1.Mul(&p.Y, &q.ZZZ) 742 B.Sub(&S2, &S1) 743 744 if A.IsZero() { 745 if B.IsZero() { 746 return p.double(q) 747 748 } 749 p.ZZ = fp.Element{} 750 p.ZZZ = fp.Element{} 751 return p 752 } 753 754 var P, R, PP, PPP, Q, V fp.Element 755 P.Sub(&U2, &U1) 756 R.Sub(&S2, &S1) 757 PP.Square(&P) 758 PPP.Mul(&P, &PP) 759 Q.Mul(&U1, &PP) 760 V.Mul(&S1, &PPP) 761 762 p.X.Square(&R). 763 Sub(&p.X, &PPP). 764 Sub(&p.X, &Q). 765 Sub(&p.X, &Q) 766 p.Y.Sub(&Q, &p.X). 767 Mul(&p.Y, &R). 768 Sub(&p.Y, &V) 769 p.ZZ.Mul(&p.ZZ, &q.ZZ). 770 Mul(&p.ZZ, &PP) 771 p.ZZZ.Mul(&p.ZZZ, &q.ZZZ). 772 Mul(&p.ZZZ, &PPP) 773 774 return p 775 } 776 777 // double sets p to [2]q in Jacobian extended coordinates. 778 // 779 // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#doubling-dbl-2008-s-1 780 // N.B.: since we consider any point on Z=0 as the point at infinity 781 // this doubling formula works for infinity points as well. 782 func (p *g2JacExtended) double(q *g2JacExtended) *g2JacExtended { 783 var U, V, W, S, XX, M fp.Element 784 785 U.Double(&q.Y) 786 V.Square(&U) 787 W.Mul(&U, &V) 788 S.Mul(&q.X, &V) 789 XX.Square(&q.X) 790 M.Double(&XX). 791 Add(&M, &XX) // -> + A, but A=0 here 792 U.Mul(&W, &q.Y) 793 794 p.X.Square(&M). 795 Sub(&p.X, &S). 796 Sub(&p.X, &S) 797 p.Y.Sub(&S, &p.X). 798 Mul(&p.Y, &M). 799 Sub(&p.Y, &U) 800 p.ZZ.Mul(&V, &q.ZZ) 801 p.ZZZ.Mul(&W, &q.ZZZ) 802 803 return p 804 } 805 806 // addMixed sets p to p+q in extended Jacobian coordinates, where a.ZZ=1. 807 // 808 // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#addition-madd-2008-s 809 func (p *g2JacExtended) addMixed(a *G2Affine) *g2JacExtended { 810 811 //if a is infinity return p 812 if a.IsInfinity() { 813 return p 814 } 815 // p is infinity, return a 816 if p.ZZ.IsZero() { 817 p.X = a.X 818 p.Y = a.Y 819 p.ZZ.SetOne() 820 p.ZZZ.SetOne() 821 return p 822 } 823 824 var P, R fp.Element 825 826 // p2: a, p1: p 827 P.Mul(&a.X, &p.ZZ) 828 P.Sub(&P, &p.X) 829 830 R.Mul(&a.Y, &p.ZZZ) 831 R.Sub(&R, &p.Y) 832 833 if P.IsZero() { 834 if R.IsZero() { 835 return p.doubleMixed(a) 836 837 } 838 p.ZZ = fp.Element{} 839 p.ZZZ = fp.Element{} 840 return p 841 } 842 843 var PP, PPP, Q, Q2, RR, X3, Y3 fp.Element 844 845 PP.Square(&P) 846 PPP.Mul(&P, &PP) 847 Q.Mul(&p.X, &PP) 848 RR.Square(&R) 849 X3.Sub(&RR, &PPP) 850 Q2.Double(&Q) 851 p.X.Sub(&X3, &Q2) 852 Y3.Sub(&Q, &p.X).Mul(&Y3, &R) 853 R.Mul(&p.Y, &PPP) 854 p.Y.Sub(&Y3, &R) 855 p.ZZ.Mul(&p.ZZ, &PP) 856 p.ZZZ.Mul(&p.ZZZ, &PPP) 857 858 return p 859 860 } 861 862 // subMixed works the same as addMixed, but negates a.Y. 863 // 864 // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#addition-madd-2008-s 865 func (p *g2JacExtended) subMixed(a *G2Affine) *g2JacExtended { 866 867 //if a is infinity return p 868 if a.IsInfinity() { 869 return p 870 } 871 // p is infinity, return a 872 if p.ZZ.IsZero() { 873 p.X = a.X 874 p.Y.Neg(&a.Y) 875 p.ZZ.SetOne() 876 p.ZZZ.SetOne() 877 return p 878 } 879 880 var P, R fp.Element 881 882 // p2: a, p1: p 883 P.Mul(&a.X, &p.ZZ) 884 P.Sub(&P, &p.X) 885 886 R.Mul(&a.Y, &p.ZZZ) 887 R.Neg(&R) 888 R.Sub(&R, &p.Y) 889 890 if P.IsZero() { 891 if R.IsZero() { 892 return p.doubleNegMixed(a) 893 894 } 895 p.ZZ = fp.Element{} 896 p.ZZZ = fp.Element{} 897 return p 898 } 899 900 var PP, PPP, Q, Q2, RR, X3, Y3 fp.Element 901 902 PP.Square(&P) 903 PPP.Mul(&P, &PP) 904 Q.Mul(&p.X, &PP) 905 RR.Square(&R) 906 X3.Sub(&RR, &PPP) 907 Q2.Double(&Q) 908 p.X.Sub(&X3, &Q2) 909 Y3.Sub(&Q, &p.X).Mul(&Y3, &R) 910 R.Mul(&p.Y, &PPP) 911 p.Y.Sub(&Y3, &R) 912 p.ZZ.Mul(&p.ZZ, &PP) 913 p.ZZZ.Mul(&p.ZZZ, &PPP) 914 915 return p 916 917 } 918 919 // doubleNegMixed works the same as double, but negates q.Y. 920 func (p *g2JacExtended) doubleNegMixed(a *G2Affine) *g2JacExtended { 921 922 var U, V, W, S, XX, M, S2, L fp.Element 923 924 U.Double(&a.Y) 925 U.Neg(&U) 926 V.Square(&U) 927 W.Mul(&U, &V) 928 S.Mul(&a.X, &V) 929 XX.Square(&a.X) 930 M.Double(&XX). 931 Add(&M, &XX) // -> + A, but A=0 here 932 S2.Double(&S) 933 L.Mul(&W, &a.Y) 934 935 p.X.Square(&M). 936 Sub(&p.X, &S2) 937 p.Y.Sub(&S, &p.X). 938 Mul(&p.Y, &M). 939 Add(&p.Y, &L) 940 p.ZZ.Set(&V) 941 p.ZZZ.Set(&W) 942 943 return p 944 } 945 946 // doubleMixed sets p to [2]a in Jacobian extended coordinates, where a.ZZ=1. 947 // 948 // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#doubling-dbl-2008-s-1 949 func (p *g2JacExtended) doubleMixed(a *G2Affine) *g2JacExtended { 950 951 var U, V, W, S, XX, M, S2, L fp.Element 952 953 U.Double(&a.Y) 954 V.Square(&U) 955 W.Mul(&U, &V) 956 S.Mul(&a.X, &V) 957 XX.Square(&a.X) 958 M.Double(&XX). 959 Add(&M, &XX) // -> + A, but A=0 here 960 S2.Double(&S) 961 L.Mul(&W, &a.Y) 962 963 p.X.Square(&M). 964 Sub(&p.X, &S2) 965 p.Y.Sub(&S, &p.X). 966 Mul(&p.Y, &M). 967 Sub(&p.Y, &L) 968 p.ZZ.Set(&V) 969 p.ZZZ.Set(&W) 970 971 return p 972 } 973 974 // ------------------------------------------------------------------------------------------------- 975 // Homogenous projective coordinates 976 977 // Set sets p to a in projective coordinates. 978 func (p *g2Proj) Set(q *g2Proj) *g2Proj { 979 p.x, p.y, p.z = q.x, q.y, q.z 980 return p 981 } 982 983 // Neg sets p to the projective negative point -q = (q.X, -q.Y). 984 func (p *g2Proj) Neg(q *g2Proj) *g2Proj { 985 *p = *q 986 p.y.Neg(&q.y) 987 return p 988 } 989 990 // FromAffine converts q in affine to p in projective coordinates. 991 func (p *g2Proj) FromAffine(a *G2Affine) *g2Proj { 992 if a.X.IsZero() && a.Y.IsZero() { 993 p.z.SetZero() 994 p.x.SetOne() 995 p.y.SetOne() 996 return p 997 } 998 p.z.SetOne() 999 p.x.Set(&a.X) 1000 p.y.Set(&a.Y) 1001 return p 1002 } 1003 1004 // BatchScalarMultiplicationG2 multiplies the same base by all scalars 1005 // and return resulting points in affine coordinates 1006 // uses a simple windowed-NAF-like multiplication algorithm. 1007 func BatchScalarMultiplicationG2(base *G2Affine, scalars []fr.Element) []G2Affine { 1008 // approximate cost in group ops is 1009 // cost = 2^{c-1} + n(scalar.nbBits+nbChunks) 1010 1011 nbPoints := uint64(len(scalars)) 1012 min := ^uint64(0) 1013 bestC := 0 1014 for c := 2; c <= 16; c++ { 1015 cost := uint64(1 << (c - 1)) // pre compute the table 1016 nbChunks := computeNbChunks(uint64(c)) 1017 cost += nbPoints * (uint64(c) + 1) * nbChunks // doublings + point add 1018 if cost < min { 1019 min = cost 1020 bestC = c 1021 } 1022 } 1023 c := uint64(bestC) // window size 1024 nbChunks := int(computeNbChunks(c)) 1025 1026 // last window may be slightly larger than c; in which case we need to compute one 1027 // extra element in the baseTable 1028 maxC := lastC(c) 1029 if c > maxC { 1030 maxC = c 1031 } 1032 1033 // precompute all powers of base for our window 1034 // note here that if performance is critical, we can implement as in the msmX methods 1035 // this allocation to be on the stack 1036 baseTable := make([]G2Jac, (1 << (maxC - 1))) 1037 baseTable[0].FromAffine(base) 1038 for i := 1; i < len(baseTable); i++ { 1039 baseTable[i] = baseTable[i-1] 1040 baseTable[i].AddMixed(base) 1041 } 1042 toReturn := make([]G2Affine, len(scalars)) 1043 1044 // partition the scalars into digits 1045 digits, _ := partitionScalars(scalars, c, runtime.NumCPU()) 1046 1047 // for each digit, take value in the base table, double it c time, voilà. 1048 parallel.Execute(len(scalars), func(start, end int) { 1049 var p G2Jac 1050 for i := start; i < end; i++ { 1051 p.Set(&g2Infinity) 1052 for chunk := nbChunks - 1; chunk >= 0; chunk-- { 1053 if chunk != nbChunks-1 { 1054 for j := uint64(0); j < c; j++ { 1055 p.DoubleAssign() 1056 } 1057 } 1058 offset := chunk * len(scalars) 1059 digit := digits[i+offset] 1060 1061 if digit == 0 { 1062 continue 1063 } 1064 1065 // if msbWindow bit is set, we need to subtract 1066 if digit&1 == 0 { 1067 // add 1068 p.AddAssign(&baseTable[(digit>>1)-1]) 1069 } else { 1070 // sub 1071 t := baseTable[digit>>1] 1072 t.Neg(&t) 1073 p.AddAssign(&t) 1074 } 1075 } 1076 1077 // set our result point 1078 toReturn[i].FromJacobian(&p) 1079 1080 } 1081 }) 1082 return toReturn 1083 } 1084 1085 // batchAddG2Affine adds affine points using the Montgomery batch inversion trick. 1086 // Special cases (doubling, infinity) must be filtered out before this call. 1087 func batchAddG2Affine[TP pG2Affine, TPP ppG2Affine, TC cG2Affine](R *TPP, P *TP, batchSize int) { 1088 var lambda, lambdain TC 1089 1090 // add part 1091 for j := 0; j < batchSize; j++ { 1092 lambdain[j].Sub(&(*P)[j].X, &(*R)[j].X) 1093 } 1094 1095 // invert denominator using montgomery batch invert technique 1096 { 1097 var accumulator fp.Element 1098 lambda[0].SetOne() 1099 accumulator.Set(&lambdain[0]) 1100 1101 for i := 1; i < batchSize; i++ { 1102 lambda[i] = accumulator 1103 accumulator.Mul(&accumulator, &lambdain[i]) 1104 } 1105 1106 accumulator.Inverse(&accumulator) 1107 1108 for i := batchSize - 1; i > 0; i-- { 1109 lambda[i].Mul(&lambda[i], &accumulator) 1110 accumulator.Mul(&accumulator, &lambdain[i]) 1111 } 1112 lambda[0].Set(&accumulator) 1113 } 1114 1115 var d fp.Element 1116 var rr G2Affine 1117 1118 // add part 1119 for j := 0; j < batchSize; j++ { 1120 // computa lambda 1121 d.Sub(&(*P)[j].Y, &(*R)[j].Y) 1122 lambda[j].Mul(&lambda[j], &d) 1123 1124 // compute X, Y 1125 rr.X.Square(&lambda[j]) 1126 rr.X.Sub(&rr.X, &(*R)[j].X) 1127 rr.X.Sub(&rr.X, &(*P)[j].X) 1128 d.Sub(&(*R)[j].X, &rr.X) 1129 rr.Y.Mul(&lambda[j], &d) 1130 rr.Y.Sub(&rr.Y, &(*R)[j].Y) 1131 (*R)[j].Set(&rr) 1132 } 1133 } 1134 1135 // RandomOnG2 produces a random point in G2 1136 // using standard map-to-curve methods, which means the relative discrete log 1137 // of the generated point with respect to the canonical generator is not known. 1138 func RandomOnG2() (G2Affine, error) { 1139 if gBytes, err := randomFrSizedBytes(); err != nil { 1140 return G2Affine{}, err 1141 } else { 1142 return HashToG2(gBytes, []byte("random on g2")) 1143 } 1144 } 1145 1146 func randomFrSizedBytes() ([]byte, error) { 1147 res := make([]byte, fr.Bytes) 1148 _, err := rand.Read(res) 1149 return res, err 1150 }