github.com/consensys/gnark-crypto@v0.14.0/ecc/secp256k1/g1.go (about) 1 // Copyright 2020 Consensys Software Inc. 2 // 3 // Licensed under the Apache License, Version 2.0 (the "License"); 4 // you may not use this file except in compliance with the License. 5 // You may obtain a copy of the License at 6 // 7 // http://www.apache.org/licenses/LICENSE-2.0 8 // 9 // Unless required by applicable law or agreed to in writing, software 10 // distributed under the License is distributed on an "AS IS" BASIS, 11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 // See the License for the specific language governing permissions and 13 // limitations under the License. 14 15 // Code generated by consensys/gnark-crypto DO NOT EDIT 16 17 package secp256k1 18 19 import ( 20 "github.com/consensys/gnark-crypto/ecc" 21 "github.com/consensys/gnark-crypto/ecc/secp256k1/fp" 22 "github.com/consensys/gnark-crypto/ecc/secp256k1/fr" 23 "github.com/consensys/gnark-crypto/internal/parallel" 24 "math/big" 25 "runtime" 26 ) 27 28 // G1Affine is a point in affine coordinates (x,y) 29 type G1Affine struct { 30 X, Y fp.Element 31 } 32 33 // G1Jac is a point in Jacobian coordinates (x=X/Z², y=Y/Z³) 34 type G1Jac struct { 35 X, Y, Z fp.Element 36 } 37 38 // g1JacExtended is a point in extended Jacobian coordinates (x=X/ZZ, y=Y/ZZZ, ZZ³=ZZZ²) 39 type g1JacExtended struct { 40 X, Y, ZZ, ZZZ fp.Element 41 } 42 43 // ------------------------------------------------------------------------------------------------- 44 // Affine coordinates 45 46 // Set sets p to a in affine coordinates. 47 func (p *G1Affine) Set(a *G1Affine) *G1Affine { 48 p.X, p.Y = a.X, a.Y 49 return p 50 } 51 52 // setInfinity sets p to the infinity point, which is encoded as (0,0). 53 // N.B.: (0,0) is never on the curve for j=0 curves (Y²=X³+B). 54 func (p *G1Affine) setInfinity() *G1Affine { 55 p.X.SetZero() 56 p.Y.SetZero() 57 return p 58 } 59 60 // ScalarMultiplication computes and returns p = [s]a 61 // where p and a are affine points. 62 func (p *G1Affine) ScalarMultiplication(a *G1Affine, s *big.Int) *G1Affine { 63 var _p G1Jac 64 _p.FromAffine(a) 65 _p.mulGLV(&_p, s) 66 p.FromJacobian(&_p) 67 return p 68 } 69 70 // ScalarMultiplicationBase computes and returns p = [s]g 71 // where g is the affine point generating the prime subgroup. 72 func (p *G1Affine) ScalarMultiplicationBase(s *big.Int) *G1Affine { 73 var _p G1Jac 74 _p.mulGLV(&g1Gen, s) 75 p.FromJacobian(&_p) 76 return p 77 } 78 79 // Add adds two points in affine coordinates. 80 // It uses the Jacobian addition with a.Z=b.Z=1 and converts the result to affine coordinates. 81 // 82 // https://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-mmadd-2007-bl 83 func (p *G1Affine) Add(a, b *G1Affine) *G1Affine { 84 var q G1Jac 85 // a is infinity, return b 86 if a.IsInfinity() { 87 p.Set(b) 88 return p 89 } 90 // b is infinity, return a 91 if b.IsInfinity() { 92 p.Set(a) 93 return p 94 } 95 if a.X.Equal(&b.X) { 96 // if b == a, we double instead 97 if a.Y.Equal(&b.Y) { 98 q.DoubleMixed(a) 99 return p.FromJacobian(&q) 100 } else { 101 // if b == -a, we return 0 102 return p.setInfinity() 103 } 104 } 105 var H, HH, I, J, r, V fp.Element 106 H.Sub(&b.X, &a.X) 107 HH.Square(&H) 108 I.Double(&HH).Double(&I) 109 J.Mul(&H, &I) 110 r.Sub(&b.Y, &a.Y) 111 r.Double(&r) 112 V.Mul(&a.X, &I) 113 q.X.Square(&r). 114 Sub(&q.X, &J). 115 Sub(&q.X, &V). 116 Sub(&q.X, &V) 117 q.Y.Sub(&V, &q.X). 118 Mul(&q.Y, &r) 119 J.Mul(&a.Y, &J).Double(&J) 120 q.Y.Sub(&q.Y, &J) 121 q.Z.Double(&H) 122 123 return p.FromJacobian(&q) 124 } 125 126 // Double doubles a point in affine coordinates. 127 // It converts the point to Jacobian coordinates, doubles it using Jacobian 128 // addition with a.Z=1, and converts it back to affine coordinates. 129 // 130 // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-mdbl-2007-bl 131 func (p *G1Affine) Double(a *G1Affine) *G1Affine { 132 var q G1Jac 133 q.FromAffine(a) 134 q.DoubleMixed(a) 135 p.FromJacobian(&q) 136 return p 137 } 138 139 // Sub subtracts two points in affine coordinates. 140 // It uses a similar approach to Add, but negates the second point before adding. 141 func (p *G1Affine) Sub(a, b *G1Affine) *G1Affine { 142 var bneg G1Affine 143 bneg.Neg(b) 144 p.Add(a, &bneg) 145 return p 146 } 147 148 // Equal tests if two points in affine coordinates are equal. 149 func (p *G1Affine) Equal(a *G1Affine) bool { 150 return p.X.Equal(&a.X) && p.Y.Equal(&a.Y) 151 } 152 153 // Neg sets p to the affine negative point -a = (a.X, -a.Y). 154 func (p *G1Affine) Neg(a *G1Affine) *G1Affine { 155 p.X = a.X 156 p.Y.Neg(&a.Y) 157 return p 158 } 159 160 // FromJacobian converts a point p1 from Jacobian to affine coordinates. 161 func (p *G1Affine) FromJacobian(p1 *G1Jac) *G1Affine { 162 163 var a, b fp.Element 164 165 if p1.Z.IsZero() { 166 p.X.SetZero() 167 p.Y.SetZero() 168 return p 169 } 170 171 a.Inverse(&p1.Z) 172 b.Square(&a) 173 p.X.Mul(&p1.X, &b) 174 p.Y.Mul(&p1.Y, &b).Mul(&p.Y, &a) 175 176 return p 177 } 178 179 // String returns the string representation E(x,y) of the affine point p or "O" if it is infinity. 180 func (p *G1Affine) String() string { 181 if p.IsInfinity() { 182 return "O" 183 } 184 return "E([" + p.X.String() + "," + p.Y.String() + "])" 185 } 186 187 // IsInfinity checks if the affine point p is infinity, which is encoded as (0,0). 188 // N.B.: (0,0) is never on the curve for j=0 curves (Y²=X³+B). 189 func (p *G1Affine) IsInfinity() bool { 190 return p.X.IsZero() && p.Y.IsZero() 191 } 192 193 // IsOnCurve returns true if the affine point p in on the curve. 194 func (p *G1Affine) IsOnCurve() bool { 195 var point G1Jac 196 point.FromAffine(p) 197 return point.IsOnCurve() // call this function to handle infinity point 198 } 199 200 // IsInSubGroup returns true if the affine point p is in the correct subgroup, false otherwise. 201 func (p *G1Affine) IsInSubGroup() bool { 202 var _p G1Jac 203 _p.FromAffine(p) 204 return _p.IsInSubGroup() 205 } 206 207 // ------------------------------------------------------------------------------------------------- 208 // Jacobian coordinates 209 210 // Set sets p to a in Jacobian coordinates. 211 func (p *G1Jac) Set(q *G1Jac) *G1Jac { 212 p.X, p.Y, p.Z = q.X, q.Y, q.Z 213 return p 214 } 215 216 // Equal tests if two points in Jacobian coordinates are equal. 217 func (p *G1Jac) Equal(q *G1Jac) bool { 218 // If one point is infinity, the other must also be infinity. 219 if p.Z.IsZero() { 220 return q.Z.IsZero() 221 } 222 // If the other point is infinity, return false since we can't 223 // the following checks would be incorrect. 224 if q.Z.IsZero() { 225 return false 226 } 227 228 var pZSquare, aZSquare fp.Element 229 pZSquare.Square(&p.Z) 230 aZSquare.Square(&q.Z) 231 232 var lhs, rhs fp.Element 233 lhs.Mul(&p.X, &aZSquare) 234 rhs.Mul(&q.X, &pZSquare) 235 if !lhs.Equal(&rhs) { 236 return false 237 } 238 lhs.Mul(&p.Y, &aZSquare).Mul(&lhs, &q.Z) 239 rhs.Mul(&q.Y, &pZSquare).Mul(&rhs, &p.Z) 240 241 return lhs.Equal(&rhs) 242 } 243 244 // Neg sets p to the Jacobian negative point -q = (q.X, -q.Y, q.Z). 245 func (p *G1Jac) Neg(q *G1Jac) *G1Jac { 246 *p = *q 247 p.Y.Neg(&q.Y) 248 return p 249 } 250 251 // AddAssign sets p to p+a in Jacobian coordinates. 252 // 253 // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl 254 func (p *G1Jac) AddAssign(q *G1Jac) *G1Jac { 255 256 // p is infinity, return q 257 if p.Z.IsZero() { 258 p.Set(q) 259 return p 260 } 261 262 // q is infinity, return p 263 if q.Z.IsZero() { 264 return p 265 } 266 267 var Z1Z1, Z2Z2, U1, U2, S1, S2, H, I, J, r, V fp.Element 268 Z1Z1.Square(&q.Z) 269 Z2Z2.Square(&p.Z) 270 U1.Mul(&q.X, &Z2Z2) 271 U2.Mul(&p.X, &Z1Z1) 272 S1.Mul(&q.Y, &p.Z). 273 Mul(&S1, &Z2Z2) 274 S2.Mul(&p.Y, &q.Z). 275 Mul(&S2, &Z1Z1) 276 277 // if p == q, we double instead 278 if U1.Equal(&U2) && S1.Equal(&S2) { 279 return p.DoubleAssign() 280 } 281 282 H.Sub(&U2, &U1) 283 I.Double(&H). 284 Square(&I) 285 J.Mul(&H, &I) 286 r.Sub(&S2, &S1).Double(&r) 287 V.Mul(&U1, &I) 288 p.X.Square(&r). 289 Sub(&p.X, &J). 290 Sub(&p.X, &V). 291 Sub(&p.X, &V) 292 p.Y.Sub(&V, &p.X). 293 Mul(&p.Y, &r) 294 S1.Mul(&S1, &J).Double(&S1) 295 p.Y.Sub(&p.Y, &S1) 296 p.Z.Add(&p.Z, &q.Z) 297 p.Z.Square(&p.Z). 298 Sub(&p.Z, &Z1Z1). 299 Sub(&p.Z, &Z2Z2). 300 Mul(&p.Z, &H) 301 302 return p 303 } 304 305 // SubAssign sets p to p-a in Jacobian coordinates. 306 // It uses a similar approach to AddAssign, but negates the point a before adding. 307 func (p *G1Jac) SubAssign(q *G1Jac) *G1Jac { 308 var tmp G1Jac 309 tmp.Set(q) 310 tmp.Y.Neg(&tmp.Y) 311 p.AddAssign(&tmp) 312 return p 313 } 314 315 // Double sets p to [2]q in Jacobian coordinates. 316 // 317 // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2007-bl 318 func (p *G1Jac) DoubleMixed(a *G1Affine) *G1Jac { 319 var XX, YY, YYYY, S, M, T fp.Element 320 XX.Square(&a.X) 321 YY.Square(&a.Y) 322 YYYY.Square(&YY) 323 S.Add(&a.X, &YY). 324 Square(&S). 325 Sub(&S, &XX). 326 Sub(&S, &YYYY). 327 Double(&S) 328 M.Double(&XX). 329 Add(&M, &XX) // -> + A, but A=0 here 330 T.Square(&M). 331 Sub(&T, &S). 332 Sub(&T, &S) 333 p.X.Set(&T) 334 p.Y.Sub(&S, &T). 335 Mul(&p.Y, &M) 336 YYYY.Double(&YYYY). 337 Double(&YYYY). 338 Double(&YYYY) 339 p.Y.Sub(&p.Y, &YYYY) 340 p.Z.Double(&a.Y) 341 342 return p 343 } 344 345 // AddMixed sets p to p+a in Jacobian coordinates, where a.Z = 1. 346 // 347 // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-madd-2007-bl 348 func (p *G1Jac) AddMixed(a *G1Affine) *G1Jac { 349 350 //if a is infinity return p 351 if a.IsInfinity() { 352 return p 353 } 354 // p is infinity, return a 355 if p.Z.IsZero() { 356 p.X = a.X 357 p.Y = a.Y 358 p.Z.SetOne() 359 return p 360 } 361 362 var Z1Z1, U2, S2, H, HH, I, J, r, V fp.Element 363 Z1Z1.Square(&p.Z) 364 U2.Mul(&a.X, &Z1Z1) 365 S2.Mul(&a.Y, &p.Z). 366 Mul(&S2, &Z1Z1) 367 368 // if p == a, we double instead 369 if U2.Equal(&p.X) && S2.Equal(&p.Y) { 370 return p.DoubleMixed(a) 371 } 372 373 H.Sub(&U2, &p.X) 374 HH.Square(&H) 375 I.Double(&HH).Double(&I) 376 J.Mul(&H, &I) 377 r.Sub(&S2, &p.Y).Double(&r) 378 V.Mul(&p.X, &I) 379 p.X.Square(&r). 380 Sub(&p.X, &J). 381 Sub(&p.X, &V). 382 Sub(&p.X, &V) 383 J.Mul(&J, &p.Y).Double(&J) 384 p.Y.Sub(&V, &p.X). 385 Mul(&p.Y, &r) 386 p.Y.Sub(&p.Y, &J) 387 p.Z.Add(&p.Z, &H) 388 p.Z.Square(&p.Z). 389 Sub(&p.Z, &Z1Z1). 390 Sub(&p.Z, &HH) 391 392 return p 393 } 394 395 // Double sets p to [2]q in Jacobian coordinates. 396 // 397 // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2007-bl 398 func (p *G1Jac) Double(q *G1Jac) *G1Jac { 399 p.Set(q) 400 p.DoubleAssign() 401 return p 402 } 403 404 // DoubleAssign doubles p in Jacobian coordinates. 405 // 406 // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2007-bl 407 func (p *G1Jac) DoubleAssign() *G1Jac { 408 409 var XX, YY, YYYY, ZZ, S, M, T fp.Element 410 411 XX.Square(&p.X) 412 YY.Square(&p.Y) 413 YYYY.Square(&YY) 414 ZZ.Square(&p.Z) 415 S.Add(&p.X, &YY) 416 S.Square(&S). 417 Sub(&S, &XX). 418 Sub(&S, &YYYY). 419 Double(&S) 420 M.Double(&XX).Add(&M, &XX) 421 p.Z.Add(&p.Z, &p.Y). 422 Square(&p.Z). 423 Sub(&p.Z, &YY). 424 Sub(&p.Z, &ZZ) 425 T.Square(&M) 426 p.X = T 427 T.Double(&S) 428 p.X.Sub(&p.X, &T) 429 p.Y.Sub(&S, &p.X). 430 Mul(&p.Y, &M) 431 YYYY.Double(&YYYY).Double(&YYYY).Double(&YYYY) 432 p.Y.Sub(&p.Y, &YYYY) 433 434 return p 435 } 436 437 // ScalarMultiplication computes and returns p = [s]a 438 // where p and a are Jacobian points. 439 // using the GLV technique. 440 // see https://www.iacr.org/archive/crypto2001/21390189.pdf 441 func (p *G1Jac) ScalarMultiplication(q *G1Jac, s *big.Int) *G1Jac { 442 return p.mulGLV(q, s) 443 } 444 445 // ScalarMultiplicationBase computes and returns p = [s]g 446 // where g is the prime subgroup generator. 447 func (p *G1Jac) ScalarMultiplicationBase(s *big.Int) *G1Jac { 448 return p.mulGLV(&g1Gen, s) 449 450 } 451 452 // String converts p to affine coordinates and returns its string representation E(x,y) or "O" if it is infinity. 453 func (p *G1Jac) String() string { 454 _p := G1Affine{} 455 _p.FromJacobian(p) 456 return _p.String() 457 } 458 459 // FromAffine converts a point a from affine to Jacobian coordinates. 460 func (p *G1Jac) FromAffine(a *G1Affine) *G1Jac { 461 if a.IsInfinity() { 462 p.Z.SetZero() 463 p.X.SetOne() 464 p.Y.SetOne() 465 return p 466 } 467 p.Z.SetOne() 468 p.X.Set(&a.X) 469 p.Y.Set(&a.Y) 470 return p 471 } 472 473 // IsOnCurve returns true if the Jacobian point p in on the curve. 474 func (p *G1Jac) IsOnCurve() bool { 475 var left, right, tmp, ZZ fp.Element 476 left.Square(&p.Y) 477 right.Square(&p.X).Mul(&right, &p.X) 478 ZZ.Square(&p.Z) 479 tmp.Square(&ZZ).Mul(&tmp, &ZZ) 480 tmp.Mul(&tmp, &bCurveCoeff) 481 right.Add(&right, &tmp) 482 return left.Equal(&right) 483 } 484 485 // IsInSubGroup returns true if p is on the r-torsion, false otherwise. 486 // the curve is of prime order i.e. E(𝔽p) is the full group 487 // so we just check that the point is on the curve. 488 func (p *G1Jac) IsInSubGroup() bool { 489 490 return p.IsOnCurve() 491 492 } 493 494 // mulWindowed computes the 2-bits windowed double-and-add scalar 495 // multiplication p=[s]q in Jacobian coordinates. 496 func (p *G1Jac) mulWindowed(q *G1Jac, s *big.Int) *G1Jac { 497 498 var res G1Jac 499 var ops [3]G1Jac 500 501 ops[0].Set(q) 502 if s.Sign() == -1 { 503 ops[0].Neg(&ops[0]) 504 } 505 res.Set(&g1Infinity) 506 ops[1].Double(&ops[0]) 507 ops[2].Set(&ops[0]).AddAssign(&ops[1]) 508 509 b := s.Bytes() 510 for i := range b { 511 w := b[i] 512 mask := byte(0xc0) 513 for j := 0; j < 4; j++ { 514 res.DoubleAssign().DoubleAssign() 515 c := (w & mask) >> (6 - 2*j) 516 if c != 0 { 517 res.AddAssign(&ops[c-1]) 518 } 519 mask = mask >> 2 520 } 521 } 522 p.Set(&res) 523 524 return p 525 526 } 527 528 // phi sets p to ϕ(a) where ϕ: (x,y) → (w x,y), 529 // where w is a third root of unity. 530 func (p *G1Jac) phi(q *G1Jac) *G1Jac { 531 p.Set(q) 532 p.X.Mul(&p.X, &thirdRootOneG1) 533 return p 534 } 535 536 // mulGLV computes the scalar multiplication using a windowed-GLV method 537 // 538 // see https://www.iacr.org/archive/crypto2001/21390189.pdf 539 func (p *G1Jac) mulGLV(q *G1Jac, s *big.Int) *G1Jac { 540 541 var table [15]G1Jac 542 var res G1Jac 543 var k1, k2 fr.Element 544 545 res.Set(&g1Infinity) 546 547 // table[b3b2b1b0-1] = b3b2 ⋅ ϕ(q) + b1b0*q 548 table[0].Set(q) 549 table[3].phi(q) 550 551 // split the scalar, modifies ±q, ϕ(q) accordingly 552 k := ecc.SplitScalar(s, &glvBasis) 553 554 if k[0].Sign() == -1 { 555 k[0].Neg(&k[0]) 556 table[0].Neg(&table[0]) 557 } 558 if k[1].Sign() == -1 { 559 k[1].Neg(&k[1]) 560 table[3].Neg(&table[3]) 561 } 562 563 // precompute table (2 bits sliding window) 564 // table[b3b2b1b0-1] = b3b2 ⋅ ϕ(q) + b1b0 ⋅ q if b3b2b1b0 != 0 565 table[1].Double(&table[0]) 566 table[2].Set(&table[1]).AddAssign(&table[0]) 567 table[4].Set(&table[3]).AddAssign(&table[0]) 568 table[5].Set(&table[3]).AddAssign(&table[1]) 569 table[6].Set(&table[3]).AddAssign(&table[2]) 570 table[7].Double(&table[3]) 571 table[8].Set(&table[7]).AddAssign(&table[0]) 572 table[9].Set(&table[7]).AddAssign(&table[1]) 573 table[10].Set(&table[7]).AddAssign(&table[2]) 574 table[11].Set(&table[7]).AddAssign(&table[3]) 575 table[12].Set(&table[11]).AddAssign(&table[0]) 576 table[13].Set(&table[11]).AddAssign(&table[1]) 577 table[14].Set(&table[11]).AddAssign(&table[2]) 578 579 // bounds on the lattice base vectors guarantee that k1, k2 are len(r)/2 or len(r)/2+1 bits long max 580 // this is because we use a probabilistic scalar decomposition that replaces a division by a right-shift 581 k1 = k1.SetBigInt(&k[0]).Bits() 582 k2 = k2.SetBigInt(&k[1]).Bits() 583 584 // we don't target constant-timeness so we check first if we increase the bounds or not 585 maxBit := k1.BitLen() 586 if k2.BitLen() > maxBit { 587 maxBit = k2.BitLen() 588 } 589 hiWordIndex := (maxBit - 1) / 64 590 591 // loop starts from len(k1)/2 or len(k1)/2+1 due to the bounds 592 for i := hiWordIndex; i >= 0; i-- { 593 mask := uint64(3) << 62 594 for j := 0; j < 32; j++ { 595 res.Double(&res).Double(&res) 596 b1 := (k1[i] & mask) >> (62 - 2*j) 597 b2 := (k2[i] & mask) >> (62 - 2*j) 598 if b1|b2 != 0 { 599 s := (b2<<2 | b1) 600 res.AddAssign(&table[s-1]) 601 } 602 mask = mask >> 2 603 } 604 } 605 606 p.Set(&res) 607 return p 608 } 609 610 // JointScalarMultiplication computes [s1]a1+[s2]a2 using Strauss-Shamir technique 611 // where a1 and a2 are affine points. 612 func (p *G1Jac) JointScalarMultiplication(a1, a2 *G1Affine, s1, s2 *big.Int) *G1Jac { 613 614 var res, p1, p2 G1Jac 615 res.Set(&g1Infinity) 616 p1.FromAffine(a1) 617 p2.FromAffine(a2) 618 619 var table [15]G1Jac 620 621 var k1, k2 big.Int 622 if s1.Sign() == -1 { 623 k1.Neg(s1) 624 table[0].Neg(&p1) 625 } else { 626 k1.Set(s1) 627 table[0].Set(&p1) 628 } 629 if s2.Sign() == -1 { 630 k2.Neg(s2) 631 table[3].Neg(&p2) 632 } else { 633 k2.Set(s2) 634 table[3].Set(&p2) 635 } 636 637 // precompute table (2 bits sliding window) 638 table[1].Double(&table[0]) 639 table[2].Set(&table[1]).AddAssign(&table[0]) 640 table[4].Set(&table[3]).AddAssign(&table[0]) 641 table[5].Set(&table[3]).AddAssign(&table[1]) 642 table[6].Set(&table[3]).AddAssign(&table[2]) 643 table[7].Double(&table[3]) 644 table[8].Set(&table[7]).AddAssign(&table[0]) 645 table[9].Set(&table[7]).AddAssign(&table[1]) 646 table[10].Set(&table[7]).AddAssign(&table[2]) 647 table[11].Set(&table[7]).AddAssign(&table[3]) 648 table[12].Set(&table[11]).AddAssign(&table[0]) 649 table[13].Set(&table[11]).AddAssign(&table[1]) 650 table[14].Set(&table[11]).AddAssign(&table[2]) 651 652 var s [2]fr.Element 653 s[0] = s[0].SetBigInt(&k1).Bits() 654 s[1] = s[1].SetBigInt(&k2).Bits() 655 656 maxBit := k1.BitLen() 657 if k2.BitLen() > maxBit { 658 maxBit = k2.BitLen() 659 } 660 hiWordIndex := (maxBit - 1) / 64 661 662 for i := hiWordIndex; i >= 0; i-- { 663 mask := uint64(3) << 62 664 for j := 0; j < 32; j++ { 665 res.Double(&res).Double(&res) 666 b1 := (s[0][i] & mask) >> (62 - 2*j) 667 b2 := (s[1][i] & mask) >> (62 - 2*j) 668 if b1|b2 != 0 { 669 s := (b2<<2 | b1) 670 res.AddAssign(&table[s-1]) 671 } 672 mask = mask >> 2 673 } 674 } 675 676 p.Set(&res) 677 return p 678 679 } 680 681 // JointScalarMultiplicationBase computes [s1]g+[s2]a using Straus-Shamir technique 682 // where g is the prime subgroup generator. 683 func (p *G1Jac) JointScalarMultiplicationBase(a *G1Affine, s1, s2 *big.Int) *G1Jac { 684 return p.JointScalarMultiplication(&g1GenAff, a, s1, s2) 685 686 } 687 688 // ------------------------------------------------------------------------------------------------- 689 // extended Jacobian coordinates 690 691 // Set sets p to a in extended Jacobian coordinates. 692 func (p *g1JacExtended) Set(q *g1JacExtended) *g1JacExtended { 693 p.X, p.Y, p.ZZ, p.ZZZ = q.X, q.Y, q.ZZ, q.ZZZ 694 return p 695 } 696 697 // setInfinity sets p to the infinity point (1,1,0,0). 698 func (p *g1JacExtended) setInfinity() *g1JacExtended { 699 p.X.SetOne() 700 p.Y.SetOne() 701 p.ZZ = fp.Element{} 702 p.ZZZ = fp.Element{} 703 return p 704 } 705 706 // IsInfinity checks if the p is infinity, i.e. p.ZZ=0. 707 func (p *g1JacExtended) IsInfinity() bool { 708 return p.ZZ.IsZero() 709 } 710 711 // fromJacExtended converts an extended Jacobian point to an affine point. 712 func (p *G1Affine) fromJacExtended(q *g1JacExtended) *G1Affine { 713 if q.ZZ.IsZero() { 714 p.X = fp.Element{} 715 p.Y = fp.Element{} 716 return p 717 } 718 p.X.Inverse(&q.ZZ).Mul(&p.X, &q.X) 719 p.Y.Inverse(&q.ZZZ).Mul(&p.Y, &q.Y) 720 return p 721 } 722 723 // fromJacExtended converts an extended Jacobian point to a Jacobian point. 724 func (p *G1Jac) fromJacExtended(q *g1JacExtended) *G1Jac { 725 if q.ZZ.IsZero() { 726 p.Set(&g1Infinity) 727 return p 728 } 729 p.X.Mul(&q.ZZ, &q.X).Mul(&p.X, &q.ZZ) 730 p.Y.Mul(&q.ZZZ, &q.Y).Mul(&p.Y, &q.ZZZ) 731 p.Z.Set(&q.ZZZ) 732 return p 733 } 734 735 // unsafeFromJacExtended converts an extended Jacobian point, distinct from Infinity, to a Jacobian point. 736 func (p *G1Jac) unsafeFromJacExtended(q *g1JacExtended) *G1Jac { 737 p.X.Square(&q.ZZ).Mul(&p.X, &q.X) 738 p.Y.Square(&q.ZZZ).Mul(&p.Y, &q.Y) 739 p.Z = q.ZZZ 740 return p 741 } 742 743 // add sets p to p+q in extended Jacobian coordinates. 744 // 745 // https://www.hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#addition-add-2008-s 746 func (p *g1JacExtended) add(q *g1JacExtended) *g1JacExtended { 747 //if q is infinity return p 748 if q.ZZ.IsZero() { 749 return p 750 } 751 // p is infinity, return q 752 if p.ZZ.IsZero() { 753 p.Set(q) 754 return p 755 } 756 757 var A, B, U1, U2, S1, S2 fp.Element 758 759 // p2: q, p1: p 760 U2.Mul(&q.X, &p.ZZ) 761 U1.Mul(&p.X, &q.ZZ) 762 A.Sub(&U2, &U1) 763 S2.Mul(&q.Y, &p.ZZZ) 764 S1.Mul(&p.Y, &q.ZZZ) 765 B.Sub(&S2, &S1) 766 767 if A.IsZero() { 768 if B.IsZero() { 769 return p.double(q) 770 771 } 772 p.ZZ = fp.Element{} 773 p.ZZZ = fp.Element{} 774 return p 775 } 776 777 var P, R, PP, PPP, Q, V fp.Element 778 P.Sub(&U2, &U1) 779 R.Sub(&S2, &S1) 780 PP.Square(&P) 781 PPP.Mul(&P, &PP) 782 Q.Mul(&U1, &PP) 783 V.Mul(&S1, &PPP) 784 785 p.X.Square(&R). 786 Sub(&p.X, &PPP). 787 Sub(&p.X, &Q). 788 Sub(&p.X, &Q) 789 p.Y.Sub(&Q, &p.X). 790 Mul(&p.Y, &R). 791 Sub(&p.Y, &V) 792 p.ZZ.Mul(&p.ZZ, &q.ZZ). 793 Mul(&p.ZZ, &PP) 794 p.ZZZ.Mul(&p.ZZZ, &q.ZZZ). 795 Mul(&p.ZZZ, &PPP) 796 797 return p 798 } 799 800 // double sets p to [2]q in Jacobian extended coordinates. 801 // 802 // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#doubling-dbl-2008-s-1 803 // N.B.: since we consider any point on Z=0 as the point at infinity 804 // this doubling formula works for infinity points as well. 805 func (p *g1JacExtended) double(q *g1JacExtended) *g1JacExtended { 806 var U, V, W, S, XX, M fp.Element 807 808 U.Double(&q.Y) 809 V.Square(&U) 810 W.Mul(&U, &V) 811 S.Mul(&q.X, &V) 812 XX.Square(&q.X) 813 M.Double(&XX). 814 Add(&M, &XX) // -> + A, but A=0 here 815 U.Mul(&W, &q.Y) 816 817 p.X.Square(&M). 818 Sub(&p.X, &S). 819 Sub(&p.X, &S) 820 p.Y.Sub(&S, &p.X). 821 Mul(&p.Y, &M). 822 Sub(&p.Y, &U) 823 p.ZZ.Mul(&V, &q.ZZ) 824 p.ZZZ.Mul(&W, &q.ZZZ) 825 826 return p 827 } 828 829 // addMixed sets p to p+q in extended Jacobian coordinates, where a.ZZ=1. 830 // 831 // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#addition-madd-2008-s 832 func (p *g1JacExtended) addMixed(a *G1Affine) *g1JacExtended { 833 834 //if a is infinity return p 835 if a.IsInfinity() { 836 return p 837 } 838 // p is infinity, return a 839 if p.ZZ.IsZero() { 840 p.X = a.X 841 p.Y = a.Y 842 p.ZZ.SetOne() 843 p.ZZZ.SetOne() 844 return p 845 } 846 847 var P, R fp.Element 848 849 // p2: a, p1: p 850 P.Mul(&a.X, &p.ZZ) 851 P.Sub(&P, &p.X) 852 853 R.Mul(&a.Y, &p.ZZZ) 854 R.Sub(&R, &p.Y) 855 856 if P.IsZero() { 857 if R.IsZero() { 858 return p.doubleMixed(a) 859 860 } 861 p.ZZ = fp.Element{} 862 p.ZZZ = fp.Element{} 863 return p 864 } 865 866 var PP, PPP, Q, Q2, RR, X3, Y3 fp.Element 867 868 PP.Square(&P) 869 PPP.Mul(&P, &PP) 870 Q.Mul(&p.X, &PP) 871 RR.Square(&R) 872 X3.Sub(&RR, &PPP) 873 Q2.Double(&Q) 874 p.X.Sub(&X3, &Q2) 875 Y3.Sub(&Q, &p.X).Mul(&Y3, &R) 876 R.Mul(&p.Y, &PPP) 877 p.Y.Sub(&Y3, &R) 878 p.ZZ.Mul(&p.ZZ, &PP) 879 p.ZZZ.Mul(&p.ZZZ, &PPP) 880 881 return p 882 883 } 884 885 // subMixed works the same as addMixed, but negates a.Y. 886 // 887 // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#addition-madd-2008-s 888 func (p *g1JacExtended) subMixed(a *G1Affine) *g1JacExtended { 889 890 //if a is infinity return p 891 if a.IsInfinity() { 892 return p 893 } 894 // p is infinity, return a 895 if p.ZZ.IsZero() { 896 p.X = a.X 897 p.Y.Neg(&a.Y) 898 p.ZZ.SetOne() 899 p.ZZZ.SetOne() 900 return p 901 } 902 903 var P, R fp.Element 904 905 // p2: a, p1: p 906 P.Mul(&a.X, &p.ZZ) 907 P.Sub(&P, &p.X) 908 909 R.Mul(&a.Y, &p.ZZZ) 910 R.Neg(&R) 911 R.Sub(&R, &p.Y) 912 913 if P.IsZero() { 914 if R.IsZero() { 915 return p.doubleNegMixed(a) 916 917 } 918 p.ZZ = fp.Element{} 919 p.ZZZ = fp.Element{} 920 return p 921 } 922 923 var PP, PPP, Q, Q2, RR, X3, Y3 fp.Element 924 925 PP.Square(&P) 926 PPP.Mul(&P, &PP) 927 Q.Mul(&p.X, &PP) 928 RR.Square(&R) 929 X3.Sub(&RR, &PPP) 930 Q2.Double(&Q) 931 p.X.Sub(&X3, &Q2) 932 Y3.Sub(&Q, &p.X).Mul(&Y3, &R) 933 R.Mul(&p.Y, &PPP) 934 p.Y.Sub(&Y3, &R) 935 p.ZZ.Mul(&p.ZZ, &PP) 936 p.ZZZ.Mul(&p.ZZZ, &PPP) 937 938 return p 939 940 } 941 942 // doubleNegMixed works the same as double, but negates q.Y. 943 func (p *g1JacExtended) doubleNegMixed(a *G1Affine) *g1JacExtended { 944 945 var U, V, W, S, XX, M, S2, L fp.Element 946 947 U.Double(&a.Y) 948 U.Neg(&U) 949 V.Square(&U) 950 W.Mul(&U, &V) 951 S.Mul(&a.X, &V) 952 XX.Square(&a.X) 953 M.Double(&XX). 954 Add(&M, &XX) // -> + A, but A=0 here 955 S2.Double(&S) 956 L.Mul(&W, &a.Y) 957 958 p.X.Square(&M). 959 Sub(&p.X, &S2) 960 p.Y.Sub(&S, &p.X). 961 Mul(&p.Y, &M). 962 Add(&p.Y, &L) 963 p.ZZ.Set(&V) 964 p.ZZZ.Set(&W) 965 966 return p 967 } 968 969 // doubleMixed sets p to [2]a in Jacobian extended coordinates, where a.ZZ=1. 970 // 971 // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-xyzz.html#doubling-dbl-2008-s-1 972 func (p *g1JacExtended) doubleMixed(a *G1Affine) *g1JacExtended { 973 974 var U, V, W, S, XX, M, S2, L fp.Element 975 976 U.Double(&a.Y) 977 V.Square(&U) 978 W.Mul(&U, &V) 979 S.Mul(&a.X, &V) 980 XX.Square(&a.X) 981 M.Double(&XX). 982 Add(&M, &XX) // -> + A, but A=0 here 983 S2.Double(&S) 984 L.Mul(&W, &a.Y) 985 986 p.X.Square(&M). 987 Sub(&p.X, &S2) 988 p.Y.Sub(&S, &p.X). 989 Mul(&p.Y, &M). 990 Sub(&p.Y, &L) 991 p.ZZ.Set(&V) 992 p.ZZZ.Set(&W) 993 994 return p 995 } 996 997 // BatchJacobianToAffineG1 converts points in Jacobian coordinates to Affine coordinates 998 // performing a single field inversion using the Montgomery batch inversion trick. 999 func BatchJacobianToAffineG1(points []G1Jac) []G1Affine { 1000 result := make([]G1Affine, len(points)) 1001 zeroes := make([]bool, len(points)) 1002 accumulator := fp.One() 1003 1004 // batch invert all points[].Z coordinates with Montgomery batch inversion trick 1005 // (stores points[].Z^-1 in result[i].X to avoid allocating a slice of fr.Elements) 1006 for i := 0; i < len(points); i++ { 1007 if points[i].Z.IsZero() { 1008 zeroes[i] = true 1009 continue 1010 } 1011 result[i].X = accumulator 1012 accumulator.Mul(&accumulator, &points[i].Z) 1013 } 1014 1015 var accInverse fp.Element 1016 accInverse.Inverse(&accumulator) 1017 1018 for i := len(points) - 1; i >= 0; i-- { 1019 if zeroes[i] { 1020 // do nothing, (X=0, Y=0) is infinity point in affine 1021 continue 1022 } 1023 result[i].X.Mul(&result[i].X, &accInverse) 1024 accInverse.Mul(&accInverse, &points[i].Z) 1025 } 1026 1027 // batch convert to affine. 1028 parallel.Execute(len(points), func(start, end int) { 1029 for i := start; i < end; i++ { 1030 if zeroes[i] { 1031 // do nothing, (X=0, Y=0) is infinity point in affine 1032 continue 1033 } 1034 var a, b fp.Element 1035 a = result[i].X 1036 b.Square(&a) 1037 result[i].X.Mul(&points[i].X, &b) 1038 result[i].Y.Mul(&points[i].Y, &b). 1039 Mul(&result[i].Y, &a) 1040 } 1041 }) 1042 1043 return result 1044 } 1045 1046 // BatchScalarMultiplicationG1 multiplies the same base by all scalars 1047 // and return resulting points in affine coordinates 1048 // uses a simple windowed-NAF-like multiplication algorithm. 1049 func BatchScalarMultiplicationG1(base *G1Affine, scalars []fr.Element) []G1Affine { 1050 // approximate cost in group ops is 1051 // cost = 2^{c-1} + n(scalar.nbBits+nbChunks) 1052 1053 nbPoints := uint64(len(scalars)) 1054 min := ^uint64(0) 1055 bestC := 0 1056 for c := 2; c <= 16; c++ { 1057 cost := uint64(1 << (c - 1)) // pre compute the table 1058 nbChunks := computeNbChunks(uint64(c)) 1059 cost += nbPoints * (uint64(c) + 1) * nbChunks // doublings + point add 1060 if cost < min { 1061 min = cost 1062 bestC = c 1063 } 1064 } 1065 c := uint64(bestC) // window size 1066 nbChunks := int(computeNbChunks(c)) 1067 1068 // last window may be slightly larger than c; in which case we need to compute one 1069 // extra element in the baseTable 1070 maxC := lastC(c) 1071 if c > maxC { 1072 maxC = c 1073 } 1074 1075 // precompute all powers of base for our window 1076 // note here that if performance is critical, we can implement as in the msmX methods 1077 // this allocation to be on the stack 1078 baseTable := make([]G1Jac, (1 << (maxC - 1))) 1079 baseTable[0].FromAffine(base) 1080 for i := 1; i < len(baseTable); i++ { 1081 baseTable[i] = baseTable[i-1] 1082 baseTable[i].AddMixed(base) 1083 } 1084 // convert our base exp table into affine to use AddMixed 1085 baseTableAff := BatchJacobianToAffineG1(baseTable) 1086 toReturn := make([]G1Jac, len(scalars)) 1087 1088 // partition the scalars into digits 1089 digits, _ := partitionScalars(scalars, c, runtime.NumCPU()) 1090 1091 // for each digit, take value in the base table, double it c time, voilà. 1092 parallel.Execute(len(scalars), func(start, end int) { 1093 var p G1Jac 1094 for i := start; i < end; i++ { 1095 p.Set(&g1Infinity) 1096 for chunk := nbChunks - 1; chunk >= 0; chunk-- { 1097 if chunk != nbChunks-1 { 1098 for j := uint64(0); j < c; j++ { 1099 p.DoubleAssign() 1100 } 1101 } 1102 offset := chunk * len(scalars) 1103 digit := digits[i+offset] 1104 1105 if digit == 0 { 1106 continue 1107 } 1108 1109 // if msbWindow bit is set, we need to subtract 1110 if digit&1 == 0 { 1111 // add 1112 p.AddMixed(&baseTableAff[(digit>>1)-1]) 1113 } else { 1114 // sub 1115 t := baseTableAff[digit>>1] 1116 t.Neg(&t) 1117 p.AddMixed(&t) 1118 } 1119 } 1120 1121 // set our result point 1122 toReturn[i] = p 1123 1124 } 1125 }) 1126 toReturnAff := BatchJacobianToAffineG1(toReturn) 1127 return toReturnAff 1128 } 1129 1130 // batchAddG1Affine adds affine points using the Montgomery batch inversion trick. 1131 // Special cases (doubling, infinity) must be filtered out before this call. 1132 func batchAddG1Affine[TP pG1Affine, TPP ppG1Affine, TC cG1Affine](R *TPP, P *TP, batchSize int) { 1133 var lambda, lambdain TC 1134 1135 // add part 1136 for j := 0; j < batchSize; j++ { 1137 lambdain[j].Sub(&(*P)[j].X, &(*R)[j].X) 1138 } 1139 1140 // invert denominator using montgomery batch invert technique 1141 { 1142 var accumulator fp.Element 1143 lambda[0].SetOne() 1144 accumulator.Set(&lambdain[0]) 1145 1146 for i := 1; i < batchSize; i++ { 1147 lambda[i] = accumulator 1148 accumulator.Mul(&accumulator, &lambdain[i]) 1149 } 1150 1151 accumulator.Inverse(&accumulator) 1152 1153 for i := batchSize - 1; i > 0; i-- { 1154 lambda[i].Mul(&lambda[i], &accumulator) 1155 accumulator.Mul(&accumulator, &lambdain[i]) 1156 } 1157 lambda[0].Set(&accumulator) 1158 } 1159 1160 var d fp.Element 1161 var rr G1Affine 1162 1163 // add part 1164 for j := 0; j < batchSize; j++ { 1165 // computa lambda 1166 d.Sub(&(*P)[j].Y, &(*R)[j].Y) 1167 lambda[j].Mul(&lambda[j], &d) 1168 1169 // compute X, Y 1170 rr.X.Square(&lambda[j]) 1171 rr.X.Sub(&rr.X, &(*R)[j].X) 1172 rr.X.Sub(&rr.X, &(*P)[j].X) 1173 d.Sub(&(*R)[j].X, &rr.X) 1174 rr.Y.Mul(&lambda[j], &d) 1175 rr.Y.Sub(&rr.Y, &(*R)[j].Y) 1176 (*R)[j].Set(&rr) 1177 } 1178 }