github.com/consensys/gnark-crypto@v0.14.0/ecc/secp256k1/multiexp.go (about)

     1  // Copyright 2020 Consensys Software Inc.
     2  //
     3  // Licensed under the Apache License, Version 2.0 (the "License");
     4  // you may not use this file except in compliance with the License.
     5  // You may obtain a copy of the License at
     6  //
     7  //     http://www.apache.org/licenses/LICENSE-2.0
     8  //
     9  // Unless required by applicable law or agreed to in writing, software
    10  // distributed under the License is distributed on an "AS IS" BASIS,
    11  // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    12  // See the License for the specific language governing permissions and
    13  // limitations under the License.
    14  
    15  // Code generated by consensys/gnark-crypto DO NOT EDIT
    16  
    17  package secp256k1
    18  
    19  import (
    20  	"errors"
    21  	"github.com/consensys/gnark-crypto/ecc"
    22  	"github.com/consensys/gnark-crypto/ecc/secp256k1/fr"
    23  	"github.com/consensys/gnark-crypto/internal/parallel"
    24  	"math"
    25  	"runtime"
    26  )
    27  
    28  // MultiExp implements section 4 of https://eprint.iacr.org/2012/549.pdf
    29  //
    30  // This call return an error if len(scalars) != len(points) or if provided config is invalid.
    31  func (p *G1Affine) MultiExp(points []G1Affine, scalars []fr.Element, config ecc.MultiExpConfig) (*G1Affine, error) {
    32  	var _p G1Jac
    33  	if _, err := _p.MultiExp(points, scalars, config); err != nil {
    34  		return nil, err
    35  	}
    36  	p.FromJacobian(&_p)
    37  	return p, nil
    38  }
    39  
    40  // MultiExp implements section 4 of https://eprint.iacr.org/2012/549.pdf
    41  //
    42  // This call return an error if len(scalars) != len(points) or if provided config is invalid.
    43  func (p *G1Jac) MultiExp(points []G1Affine, scalars []fr.Element, config ecc.MultiExpConfig) (*G1Jac, error) {
    44  	// TODO @gbotrel replace the ecc.MultiExpConfig by a Option pattern for maintainability.
    45  	// note:
    46  	// each of the msmCX method is the same, except for the c constant it declares
    47  	// duplicating (through template generation) these methods allows to declare the buckets on the stack
    48  	// the choice of c needs to be improved:
    49  	// there is a theoretical value that gives optimal asymptotics
    50  	// but in practice, other factors come into play, including:
    51  	// * if c doesn't divide 64, the word size, then we're bound to select bits over 2 words of our scalars, instead of 1
    52  	// * number of CPUs
    53  	// * cache friendliness (which depends on the host, G1 or G2... )
    54  	//	--> for example, on BN254, a G1 point fits into one cache line of 64bytes, but a G2 point don't.
    55  
    56  	// for each msmCX
    57  	// step 1
    58  	// we compute, for each scalars over c-bit wide windows, nbChunk digits
    59  	// if the digit is larger than 2^{c-1}, then, we borrow 2^c from the next window and subtract
    60  	// 2^{c} to the current digit, making it negative.
    61  	// negative digits will be processed in the next step as adding -G into the bucket instead of G
    62  	// (computing -G is cheap, and this saves us half of the buckets)
    63  	// step 2
    64  	// buckets are declared on the stack
    65  	// notice that we have 2^{c-1} buckets instead of 2^{c} (see step1)
    66  	// we use jacobian extended formulas here as they are faster than mixed addition
    67  	// msmProcessChunk places points into buckets base on their selector and return the weighted bucket sum in given channel
    68  	// step 3
    69  	// reduce the buckets weighed sums into our result (msmReduceChunk)
    70  
    71  	// ensure len(points) == len(scalars)
    72  	nbPoints := len(points)
    73  	if nbPoints != len(scalars) {
    74  		return nil, errors.New("len(points) != len(scalars)")
    75  	}
    76  
    77  	// if nbTasks is not set, use all available CPUs
    78  	if config.NbTasks <= 0 {
    79  		config.NbTasks = runtime.NumCPU() * 2
    80  	} else if config.NbTasks > 1024 {
    81  		return nil, errors.New("invalid config: config.NbTasks > 1024")
    82  	}
    83  
    84  	// here, we compute the best C for nbPoints
    85  	// we split recursively until nbChunks(c) >= nbTasks,
    86  	bestC := func(nbPoints int) uint64 {
    87  		// implemented msmC methods (the c we use must be in this slice)
    88  		implementedCs := []uint64{4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
    89  		var C uint64
    90  		// approximate cost (in group operations)
    91  		// cost = bits/c * (nbPoints + 2^{c})
    92  		// this needs to be verified empirically.
    93  		// for example, on a MBP 2016, for G2 MultiExp > 8M points, hand picking c gives better results
    94  		min := math.MaxFloat64
    95  		for _, c := range implementedCs {
    96  			cc := (fr.Bits + 1) * (nbPoints + (1 << c))
    97  			cost := float64(cc) / float64(c)
    98  			if cost < min {
    99  				min = cost
   100  				C = c
   101  			}
   102  		}
   103  		return C
   104  	}
   105  
   106  	C := bestC(nbPoints)
   107  	nbChunks := int(computeNbChunks(C))
   108  
   109  	// should we recursively split the msm in half? (see below)
   110  	// we want to minimize the execution time of the algorithm;
   111  	// splitting the msm will **add** operations, but if it allows to use more CPU, it might be worth it.
   112  
   113  	// costFunction returns a metric that represent the "wall time" of the algorithm
   114  	costFunction := func(nbTasks, nbCpus, costPerTask int) int {
   115  		// cost for the reduction of all tasks (msmReduceChunk)
   116  		totalCost := nbTasks
   117  
   118  		// cost for the computation of each task (msmProcessChunk)
   119  		for nbTasks >= nbCpus {
   120  			nbTasks -= nbCpus
   121  			totalCost += costPerTask
   122  		}
   123  		if nbTasks > 0 {
   124  			totalCost += costPerTask
   125  		}
   126  		return totalCost
   127  	}
   128  
   129  	// costPerTask is the approximate number of group ops per task
   130  	costPerTask := func(c uint64, nbPoints int) int { return (nbPoints + int((1 << c))) }
   131  
   132  	costPreSplit := costFunction(nbChunks, config.NbTasks, costPerTask(C, nbPoints))
   133  
   134  	cPostSplit := bestC(nbPoints / 2)
   135  	nbChunksPostSplit := int(computeNbChunks(cPostSplit))
   136  	costPostSplit := costFunction(nbChunksPostSplit*2, config.NbTasks, costPerTask(cPostSplit, nbPoints/2))
   137  
   138  	// if the cost of the split msm is lower than the cost of the non split msm, we split
   139  	if costPostSplit < costPreSplit {
   140  		config.NbTasks = int(math.Ceil(float64(config.NbTasks) / 2.0))
   141  		var _p G1Jac
   142  		chDone := make(chan struct{}, 1)
   143  		go func() {
   144  			_p.MultiExp(points[:nbPoints/2], scalars[:nbPoints/2], config)
   145  			close(chDone)
   146  		}()
   147  		p.MultiExp(points[nbPoints/2:], scalars[nbPoints/2:], config)
   148  		<-chDone
   149  		p.AddAssign(&_p)
   150  		return p, nil
   151  	}
   152  
   153  	// if we don't split, we use the best C we found
   154  	_innerMsmG1(p, C, points, scalars, config)
   155  
   156  	return p, nil
   157  }
   158  
   159  func _innerMsmG1(p *G1Jac, c uint64, points []G1Affine, scalars []fr.Element, config ecc.MultiExpConfig) *G1Jac {
   160  	// partition the scalars
   161  	digits, chunkStats := partitionScalars(scalars, c, config.NbTasks)
   162  
   163  	nbChunks := computeNbChunks(c)
   164  
   165  	// for each chunk, spawn one go routine that'll loop through all the scalars in the
   166  	// corresponding bit-window
   167  	// note that buckets is an array allocated on the stack and this is critical for performance
   168  
   169  	// each go routine sends its result in chChunks[i] channel
   170  	chChunks := make([]chan g1JacExtended, nbChunks)
   171  	for i := 0; i < len(chChunks); i++ {
   172  		chChunks[i] = make(chan g1JacExtended, 1)
   173  	}
   174  
   175  	// we use a semaphore to limit the number of go routines running concurrently
   176  	// (only if nbTasks < nbCPU)
   177  	var sem chan struct{}
   178  	if config.NbTasks < runtime.NumCPU() {
   179  		// we add nbChunks because if chunk is overweight we split it in two
   180  		sem = make(chan struct{}, config.NbTasks+int(nbChunks))
   181  		for i := 0; i < config.NbTasks; i++ {
   182  			sem <- struct{}{}
   183  		}
   184  		defer func() {
   185  			close(sem)
   186  		}()
   187  	}
   188  
   189  	// the last chunk may be processed with a different method than the rest, as it could be smaller.
   190  	n := len(points)
   191  	for j := int(nbChunks - 1); j >= 0; j-- {
   192  		processChunk := getChunkProcessorG1(c, chunkStats[j])
   193  		if j == int(nbChunks-1) {
   194  			processChunk = getChunkProcessorG1(lastC(c), chunkStats[j])
   195  		}
   196  		if chunkStats[j].weight >= 115 {
   197  			// we split this in more go routines since this chunk has more work to do than the others.
   198  			// else what would happen is this go routine would finish much later than the others.
   199  			chSplit := make(chan g1JacExtended, 2)
   200  			split := n / 2
   201  
   202  			if sem != nil {
   203  				sem <- struct{}{} // add another token to the semaphore, since we split in two.
   204  			}
   205  			go processChunk(uint64(j), chSplit, c, points[:split], digits[j*n:(j*n)+split], sem)
   206  			go processChunk(uint64(j), chSplit, c, points[split:], digits[(j*n)+split:(j+1)*n], sem)
   207  			go func(chunkID int) {
   208  				s1 := <-chSplit
   209  				s2 := <-chSplit
   210  				close(chSplit)
   211  				s1.add(&s2)
   212  				chChunks[chunkID] <- s1
   213  			}(j)
   214  			continue
   215  		}
   216  		go processChunk(uint64(j), chChunks[j], c, points, digits[j*n:(j+1)*n], sem)
   217  	}
   218  
   219  	return msmReduceChunkG1Affine(p, int(c), chChunks[:])
   220  }
   221  
   222  // getChunkProcessorG1 decides, depending on c window size and statistics for the chunk
   223  // to return the best algorithm to process the chunk.
   224  func getChunkProcessorG1(c uint64, stat chunkStat) func(chunkID uint64, chRes chan<- g1JacExtended, c uint64, points []G1Affine, digits []uint16, sem chan struct{}) {
   225  	switch c {
   226  
   227  	case 2:
   228  		return processChunkG1Jacobian[bucketg1JacExtendedC2]
   229  	case 3:
   230  		return processChunkG1Jacobian[bucketg1JacExtendedC3]
   231  	case 4:
   232  		return processChunkG1Jacobian[bucketg1JacExtendedC4]
   233  	case 5:
   234  		return processChunkG1Jacobian[bucketg1JacExtendedC5]
   235  	case 6:
   236  		return processChunkG1Jacobian[bucketg1JacExtendedC6]
   237  	case 7:
   238  		return processChunkG1Jacobian[bucketg1JacExtendedC7]
   239  	case 8:
   240  		return processChunkG1Jacobian[bucketg1JacExtendedC8]
   241  	case 9:
   242  		return processChunkG1Jacobian[bucketg1JacExtendedC9]
   243  	case 10:
   244  		const batchSize = 80
   245  		// here we could check some chunk statistic (deviation, ...) to determine if calling
   246  		// the batch affine version is worth it.
   247  		if stat.nbBucketFilled < batchSize {
   248  			// clear indicator that batch affine method is not appropriate here.
   249  			return processChunkG1Jacobian[bucketg1JacExtendedC10]
   250  		}
   251  		return processChunkG1BatchAffine[bucketg1JacExtendedC10, bucketG1AffineC10, bitSetC10, pG1AffineC10, ppG1AffineC10, qG1AffineC10, cG1AffineC10]
   252  	case 11:
   253  		const batchSize = 150
   254  		// here we could check some chunk statistic (deviation, ...) to determine if calling
   255  		// the batch affine version is worth it.
   256  		if stat.nbBucketFilled < batchSize {
   257  			// clear indicator that batch affine method is not appropriate here.
   258  			return processChunkG1Jacobian[bucketg1JacExtendedC11]
   259  		}
   260  		return processChunkG1BatchAffine[bucketg1JacExtendedC11, bucketG1AffineC11, bitSetC11, pG1AffineC11, ppG1AffineC11, qG1AffineC11, cG1AffineC11]
   261  	case 12:
   262  		const batchSize = 200
   263  		// here we could check some chunk statistic (deviation, ...) to determine if calling
   264  		// the batch affine version is worth it.
   265  		if stat.nbBucketFilled < batchSize {
   266  			// clear indicator that batch affine method is not appropriate here.
   267  			return processChunkG1Jacobian[bucketg1JacExtendedC12]
   268  		}
   269  		return processChunkG1BatchAffine[bucketg1JacExtendedC12, bucketG1AffineC12, bitSetC12, pG1AffineC12, ppG1AffineC12, qG1AffineC12, cG1AffineC12]
   270  	case 13:
   271  		const batchSize = 350
   272  		// here we could check some chunk statistic (deviation, ...) to determine if calling
   273  		// the batch affine version is worth it.
   274  		if stat.nbBucketFilled < batchSize {
   275  			// clear indicator that batch affine method is not appropriate here.
   276  			return processChunkG1Jacobian[bucketg1JacExtendedC13]
   277  		}
   278  		return processChunkG1BatchAffine[bucketg1JacExtendedC13, bucketG1AffineC13, bitSetC13, pG1AffineC13, ppG1AffineC13, qG1AffineC13, cG1AffineC13]
   279  	case 14:
   280  		const batchSize = 400
   281  		// here we could check some chunk statistic (deviation, ...) to determine if calling
   282  		// the batch affine version is worth it.
   283  		if stat.nbBucketFilled < batchSize {
   284  			// clear indicator that batch affine method is not appropriate here.
   285  			return processChunkG1Jacobian[bucketg1JacExtendedC14]
   286  		}
   287  		return processChunkG1BatchAffine[bucketg1JacExtendedC14, bucketG1AffineC14, bitSetC14, pG1AffineC14, ppG1AffineC14, qG1AffineC14, cG1AffineC14]
   288  	case 15:
   289  		const batchSize = 500
   290  		// here we could check some chunk statistic (deviation, ...) to determine if calling
   291  		// the batch affine version is worth it.
   292  		if stat.nbBucketFilled < batchSize {
   293  			// clear indicator that batch affine method is not appropriate here.
   294  			return processChunkG1Jacobian[bucketg1JacExtendedC15]
   295  		}
   296  		return processChunkG1BatchAffine[bucketg1JacExtendedC15, bucketG1AffineC15, bitSetC15, pG1AffineC15, ppG1AffineC15, qG1AffineC15, cG1AffineC15]
   297  	default:
   298  		// panic("will not happen c != previous values is not generated by templates")
   299  		return processChunkG1Jacobian[bucketg1JacExtendedC15]
   300  	}
   301  }
   302  
   303  // msmReduceChunkG1Affine reduces the weighted sum of the buckets into the result of the multiExp
   304  func msmReduceChunkG1Affine(p *G1Jac, c int, chChunks []chan g1JacExtended) *G1Jac {
   305  	var _p g1JacExtended
   306  	totalj := <-chChunks[len(chChunks)-1]
   307  	_p.Set(&totalj)
   308  	for j := len(chChunks) - 2; j >= 0; j-- {
   309  		for l := 0; l < c; l++ {
   310  			_p.double(&_p)
   311  		}
   312  		totalj := <-chChunks[j]
   313  		_p.add(&totalj)
   314  	}
   315  
   316  	return p.unsafeFromJacExtended(&_p)
   317  }
   318  
   319  // Fold computes the multi-exponentiation \sum_{i=0}^{len(points)-1} points[i] *
   320  // combinationCoeff^i and stores the result in p. It returns error in case
   321  // configuration is invalid.
   322  func (p *G1Affine) Fold(points []G1Affine, combinationCoeff fr.Element, config ecc.MultiExpConfig) (*G1Affine, error) {
   323  	var _p G1Jac
   324  	if _, err := _p.Fold(points, combinationCoeff, config); err != nil {
   325  		return nil, err
   326  	}
   327  	p.FromJacobian(&_p)
   328  	return p, nil
   329  }
   330  
   331  // Fold computes the multi-exponentiation \sum_{i=0}^{len(points)-1} points[i] *
   332  // combinationCoeff^i and stores the result in p. It returns error in case
   333  // configuration is invalid.
   334  func (p *G1Jac) Fold(points []G1Affine, combinationCoeff fr.Element, config ecc.MultiExpConfig) (*G1Jac, error) {
   335  	scalars := make([]fr.Element, len(points))
   336  	scalar := fr.NewElement(1)
   337  	for i := 0; i < len(points); i++ {
   338  		scalars[i].Set(&scalar)
   339  		scalar.Mul(&scalar, &combinationCoeff)
   340  	}
   341  	return p.MultiExp(points, scalars, config)
   342  }
   343  
   344  // selector stores the index, mask and shifts needed to select bits from a scalar
   345  // it is used during the multiExp algorithm or the batch scalar multiplication
   346  type selector struct {
   347  	index uint64 // index in the multi-word scalar to select bits from
   348  	mask  uint64 // mask (c-bit wide)
   349  	shift uint64 // shift needed to get our bits on low positions
   350  
   351  	multiWordSelect bool   // set to true if we need to select bits from 2 words (case where c doesn't divide 64)
   352  	maskHigh        uint64 // same than mask, for index+1
   353  	shiftHigh       uint64 // same than shift, for index+1
   354  }
   355  
   356  // return number of chunks for a given window size c
   357  // the last chunk may be bigger to accommodate a potential carry from the NAF decomposition
   358  func computeNbChunks(c uint64) uint64 {
   359  	return (fr.Bits + c - 1) / c
   360  }
   361  
   362  // return the last window size for a scalar;
   363  // this last window should accommodate a carry (from the NAF decomposition)
   364  // it can be == c if we have 1 available bit
   365  // it can be > c if we have 0 available bit
   366  // it can be < c if we have 2+ available bits
   367  func lastC(c uint64) uint64 {
   368  	nbAvailableBits := (computeNbChunks(c) * c) - fr.Bits
   369  	return c + 1 - nbAvailableBits
   370  }
   371  
   372  type chunkStat struct {
   373  	// relative weight of work compared to other chunks. 100.0 -> nominal weight.
   374  	weight float32
   375  
   376  	// percentage of bucket filled in the window;
   377  	ppBucketFilled float32
   378  	nbBucketFilled int
   379  }
   380  
   381  // partitionScalars  compute, for each scalars over c-bit wide windows, nbChunk digits
   382  // if the digit is larger than 2^{c-1}, then, we borrow 2^c from the next window and subtract
   383  // 2^{c} to the current digit, making it negative.
   384  // negative digits can be processed in a later step as adding -G into the bucket instead of G
   385  // (computing -G is cheap, and this saves us half of the buckets in the MultiExp or BatchScalarMultiplication)
   386  func partitionScalars(scalars []fr.Element, c uint64, nbTasks int) ([]uint16, []chunkStat) {
   387  	// no benefit here to have more tasks than CPUs
   388  	if nbTasks > runtime.NumCPU() {
   389  		nbTasks = runtime.NumCPU()
   390  	}
   391  
   392  	// number of c-bit radixes in a scalar
   393  	nbChunks := computeNbChunks(c)
   394  
   395  	digits := make([]uint16, len(scalars)*int(nbChunks))
   396  
   397  	mask := uint64((1 << c) - 1) // low c bits are 1
   398  	max := int(1<<(c-1)) - 1     // max value (inclusive) we want for our digits
   399  	cDivides64 := (64 % c) == 0  // if c doesn't divide 64, we may need to select over multiple words
   400  
   401  	// compute offset and word selector / shift to select the right bits of our windows
   402  	selectors := make([]selector, nbChunks)
   403  	for chunk := uint64(0); chunk < nbChunks; chunk++ {
   404  		jc := uint64(chunk * c)
   405  		d := selector{}
   406  		d.index = jc / 64
   407  		d.shift = jc - (d.index * 64)
   408  		d.mask = mask << d.shift
   409  		d.multiWordSelect = !cDivides64 && d.shift > (64-c) && d.index < (fr.Limbs-1)
   410  		if d.multiWordSelect {
   411  			nbBitsHigh := d.shift - uint64(64-c)
   412  			d.maskHigh = (1 << nbBitsHigh) - 1
   413  			d.shiftHigh = (c - nbBitsHigh)
   414  		}
   415  		selectors[chunk] = d
   416  	}
   417  
   418  	parallel.Execute(len(scalars), func(start, end int) {
   419  		for i := start; i < end; i++ {
   420  			if scalars[i].IsZero() {
   421  				// everything is 0, no need to process this scalar
   422  				continue
   423  			}
   424  			scalar := scalars[i].Bits()
   425  
   426  			var carry int
   427  
   428  			// for each chunk in the scalar, compute the current digit, and an eventual carry
   429  			for chunk := uint64(0); chunk < nbChunks-1; chunk++ {
   430  				s := selectors[chunk]
   431  
   432  				// init with carry if any
   433  				digit := carry
   434  				carry = 0
   435  
   436  				// digit = value of the c-bit window
   437  				digit += int((scalar[s.index] & s.mask) >> s.shift)
   438  
   439  				if s.multiWordSelect {
   440  					// we are selecting bits over 2 words
   441  					digit += int(scalar[s.index+1]&s.maskHigh) << s.shiftHigh
   442  				}
   443  
   444  				// if the digit is larger than 2^{c-1}, then, we borrow 2^c from the next window and subtract
   445  				// 2^{c} to the current digit, making it negative.
   446  				if digit > max {
   447  					digit -= (1 << c)
   448  					carry = 1
   449  				}
   450  
   451  				// if digit is zero, no impact on result
   452  				if digit == 0 {
   453  					continue
   454  				}
   455  
   456  				var bits uint16
   457  				if digit > 0 {
   458  					bits = uint16(digit) << 1
   459  				} else {
   460  					bits = (uint16(-digit-1) << 1) + 1
   461  				}
   462  				digits[int(chunk)*len(scalars)+i] = bits
   463  			}
   464  
   465  			// for the last chunk, we don't want to borrow from a next window
   466  			// (but may have a larger max value)
   467  			chunk := nbChunks - 1
   468  			s := selectors[chunk]
   469  			// init with carry if any
   470  			digit := carry
   471  			// digit = value of the c-bit window
   472  			digit += int((scalar[s.index] & s.mask) >> s.shift)
   473  			if s.multiWordSelect {
   474  				// we are selecting bits over 2 words
   475  				digit += int(scalar[s.index+1]&s.maskHigh) << s.shiftHigh
   476  			}
   477  			digits[int(chunk)*len(scalars)+i] = uint16(digit) << 1
   478  		}
   479  
   480  	}, nbTasks)
   481  
   482  	// aggregate  chunk stats
   483  	chunkStats := make([]chunkStat, nbChunks)
   484  	if c <= 9 {
   485  		// no need to compute stats for small window sizes
   486  		return digits, chunkStats
   487  	}
   488  	parallel.Execute(len(chunkStats), func(start, end int) {
   489  		// for each chunk compute the statistics
   490  		for chunkID := start; chunkID < end; chunkID++ {
   491  			// indicates if a bucket is hit.
   492  			var b bitSetC15
   493  
   494  			// digits for the chunk
   495  			chunkDigits := digits[chunkID*len(scalars) : (chunkID+1)*len(scalars)]
   496  
   497  			totalOps := 0
   498  			nz := 0 // non zero buckets count
   499  			for _, digit := range chunkDigits {
   500  				if digit == 0 {
   501  					continue
   502  				}
   503  				totalOps++
   504  				bucketID := digit >> 1
   505  				if digit&1 == 0 {
   506  					bucketID -= 1
   507  				}
   508  				if !b[bucketID] {
   509  					nz++
   510  					b[bucketID] = true
   511  				}
   512  			}
   513  			chunkStats[chunkID].weight = float32(totalOps) // count number of ops for now, we will compute the weight after
   514  			chunkStats[chunkID].ppBucketFilled = (float32(nz) * 100.0) / float32(int(1<<(c-1)))
   515  			chunkStats[chunkID].nbBucketFilled = nz
   516  		}
   517  	}, nbTasks)
   518  
   519  	totalOps := float32(0.0)
   520  	for _, stat := range chunkStats {
   521  		totalOps += stat.weight
   522  	}
   523  
   524  	target := totalOps / float32(nbChunks)
   525  	if target != 0.0 {
   526  		// if target == 0, it means all the scalars are 0 everywhere, there is no work to be done.
   527  		for i := 0; i < len(chunkStats); i++ {
   528  			chunkStats[i].weight = (chunkStats[i].weight * 100.0) / target
   529  		}
   530  	}
   531  
   532  	return digits, chunkStats
   533  }