github.com/consensys/gnark-crypto@v0.14.0/ecc/stark-curve/stark_curve.go (about) 1 // Copyright 2020 ConsenSys Software Inc. 2 // 3 // Licensed under the Apache License, Version 2.0 (the "License"); 4 // you may not use this file except in compliance with the License. 5 // You may obtain a copy of the License at 6 // 7 // http://www.apache.org/licenses/LICENSE-2.0 8 // 9 // Unless required by applicable law or agreed to in writing, software 10 // distributed under the License is distributed on an "AS IS" BASIS, 11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 // See the License for the specific language governing permissions and 13 // limitations under the License. 14 15 // Package starkcurve efficient elliptic curve implementation for stark_curve. This is curve used in StarkNet: https://docs.starkware.co/starkex/crypto/stark-curve.html. 16 // 17 // stark_curve: A j!=0 curve with 18 // 19 // 𝔽r: r=3618502788666131213697322783095070105526743751716087489154079457884512865583 20 // 𝔽p: p=3618502788666131213697322783095070105623107215331596699973092056135872020481 (2^251+17*2^192+1) 21 // (E/𝔽p): Y²=X³+x+b where b=3141592653589793238462643383279502884197169399375105820974944592307816406665 22 // 23 // Security: estimated 126-bit level using Pollard's \rho attack 24 // (r is 252 bits) 25 // 26 // # Warning 27 // 28 // This code has been partially audited and is provided as-is. In particular, there is no security guarantees such as constant time implementation or side-channel attack resistance. 29 package starkcurve 30 31 import ( 32 "github.com/consensys/gnark-crypto/ecc" 33 "github.com/consensys/gnark-crypto/ecc/stark-curve/fp" 34 ) 35 36 // ID stark_curve ID 37 const ID = ecc.STARK_CURVE 38 39 // aCurveCoeff is the a coefficients of the curve Y²=X³+ax+b 40 var aCurveCoeff fp.Element 41 var bCurveCoeff fp.Element 42 43 // generator of the r-torsion group 44 var g1Gen G1Jac 45 46 var g1GenAff G1Affine 47 48 // point at infinity 49 var g1Infinity G1Jac 50 51 func init() { 52 aCurveCoeff.SetUint64(1) 53 bCurveCoeff.SetString("3141592653589793238462643383279502884197169399375105820974944592307816406665") 54 55 g1Gen.X.SetString("874739451078007766457464989774322083649278607533249481151382481072868806602") 56 g1Gen.Y.SetString("152666792071518830868575557812948353041420400780739481342941381225525861407") 57 g1Gen.Z.SetOne() 58 59 g1GenAff.FromJacobian(&g1Gen) 60 61 // (X,Y,Z) = (1,1,0) 62 g1Infinity.X.SetOne() 63 g1Infinity.Y.SetOne() 64 65 } 66 67 // Generators return the generators of the r-torsion group, resp. in ker(pi-id), ker(Tr) 68 func Generators() (g1Jac G1Jac, g1Aff G1Affine) { 69 g1Aff = g1GenAff 70 g1Jac = g1Gen 71 return 72 } 73 74 // CurveCoefficients returns the a, b coefficients of the curve equation. 75 func CurveCoefficients() (a, b fp.Element) { 76 return aCurveCoeff, bCurveCoeff 77 }