github.com/consensys/gnark@v0.11.0/backend/groth16/bn254/mpcsetup/lagrange.go (about)

     1  // Copyright 2020 ConsenSys Software Inc.
     2  //
     3  // Licensed under the Apache License, Version 2.0 (the "License");
     4  // you may not use this file except in compliance with the License.
     5  // You may obtain a copy of the License at
     6  //
     7  //     http://www.apache.org/licenses/LICENSE-2.0
     8  //
     9  // Unless required by applicable law or agreed to in writing, software
    10  // distributed under the License is distributed on an "AS IS" BASIS,
    11  // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    12  // See the License for the specific language governing permissions and
    13  // limitations under the License.
    14  
    15  // Code generated by gnark DO NOT EDIT
    16  
    17  package mpcsetup
    18  
    19  import (
    20  	"math/big"
    21  	"math/bits"
    22  	"runtime"
    23  
    24  	"github.com/consensys/gnark-crypto/ecc"
    25  	curve "github.com/consensys/gnark-crypto/ecc/bn254"
    26  	"github.com/consensys/gnark-crypto/ecc/bn254/fr"
    27  	"github.com/consensys/gnark-crypto/ecc/bn254/fr/fft"
    28  	"github.com/consensys/gnark/internal/utils"
    29  )
    30  
    31  // TODO use gnark-crypto for this op
    32  func lagrangeCoeffsG1(powers []curve.G1Affine, size int) []curve.G1Affine {
    33  	coeffs := make([]curve.G1Affine, size)
    34  	copy(coeffs, powers[:size])
    35  	domain := fft.NewDomain(uint64(size))
    36  	numCPU := uint64(runtime.NumCPU())
    37  	maxSplits := bits.TrailingZeros64(ecc.NextPowerOfTwo(numCPU))
    38  
    39  	twiddlesInv, _ := domain.TwiddlesInv()
    40  	difFFTG1(coeffs, twiddlesInv, 0, maxSplits, nil)
    41  	bitReverse(coeffs)
    42  
    43  	var invBigint big.Int
    44  	domain.CardinalityInv.BigInt(&invBigint)
    45  
    46  	utils.Parallelize(size, func(start, end int) {
    47  		for i := start; i < end; i++ {
    48  			coeffs[i].ScalarMultiplication(&coeffs[i], &invBigint)
    49  		}
    50  	})
    51  	return coeffs
    52  }
    53  
    54  // TODO use gnark-crypto for this op
    55  func lagrangeCoeffsG2(powers []curve.G2Affine, size int) []curve.G2Affine {
    56  	coeffs := make([]curve.G2Affine, size)
    57  	copy(coeffs, powers[:size])
    58  	domain := fft.NewDomain(uint64(size))
    59  	numCPU := uint64(runtime.NumCPU())
    60  	maxSplits := bits.TrailingZeros64(ecc.NextPowerOfTwo(numCPU))
    61  
    62  	twiddlesInv, _ := domain.TwiddlesInv()
    63  	difFFTG2(coeffs, twiddlesInv, 0, maxSplits, nil)
    64  	bitReverse(coeffs)
    65  
    66  	var invBigint big.Int
    67  	domain.CardinalityInv.BigInt(&invBigint)
    68  
    69  	utils.Parallelize(size, func(start, end int) {
    70  		for i := start; i < end; i++ {
    71  			coeffs[i].ScalarMultiplication(&coeffs[i], &invBigint)
    72  		}
    73  	})
    74  	return coeffs
    75  }
    76  
    77  func butterflyG1(a *curve.G1Affine, b *curve.G1Affine) {
    78  	t := *a
    79  	a.Add(a, b)
    80  	b.Sub(&t, b)
    81  }
    82  
    83  func butterflyG2(a *curve.G2Affine, b *curve.G2Affine) {
    84  	t := *a
    85  	a.Add(a, b)
    86  	b.Sub(&t, b)
    87  }
    88  
    89  // kerDIF8 is a kernel that process a FFT of size 8
    90  func kerDIF8G1(a []curve.G1Affine, twiddles [][]fr.Element, stage int) {
    91  	butterflyG1(&a[0], &a[4])
    92  	butterflyG1(&a[1], &a[5])
    93  	butterflyG1(&a[2], &a[6])
    94  	butterflyG1(&a[3], &a[7])
    95  
    96  	var twiddle big.Int
    97  	twiddles[stage+0][1].BigInt(&twiddle)
    98  	a[5].ScalarMultiplication(&a[5], &twiddle)
    99  	twiddles[stage+0][2].BigInt(&twiddle)
   100  	a[6].ScalarMultiplication(&a[6], &twiddle)
   101  	twiddles[stage+0][3].BigInt(&twiddle)
   102  	a[7].ScalarMultiplication(&a[7], &twiddle)
   103  	butterflyG1(&a[0], &a[2])
   104  	butterflyG1(&a[1], &a[3])
   105  	butterflyG1(&a[4], &a[6])
   106  	butterflyG1(&a[5], &a[7])
   107  	twiddles[stage+1][1].BigInt(&twiddle)
   108  	a[3].ScalarMultiplication(&a[3], &twiddle)
   109  	twiddles[stage+1][1].BigInt(&twiddle)
   110  	a[7].ScalarMultiplication(&a[7], &twiddle)
   111  	butterflyG1(&a[0], &a[1])
   112  	butterflyG1(&a[2], &a[3])
   113  	butterflyG1(&a[4], &a[5])
   114  	butterflyG1(&a[6], &a[7])
   115  }
   116  
   117  // kerDIF8 is a kernel that process a FFT of size 8
   118  func kerDIF8G2(a []curve.G2Affine, twiddles [][]fr.Element, stage int) {
   119  	butterflyG2(&a[0], &a[4])
   120  	butterflyG2(&a[1], &a[5])
   121  	butterflyG2(&a[2], &a[6])
   122  	butterflyG2(&a[3], &a[7])
   123  
   124  	var twiddle big.Int
   125  	twiddles[stage+0][1].BigInt(&twiddle)
   126  	a[5].ScalarMultiplication(&a[5], &twiddle)
   127  	twiddles[stage+0][2].BigInt(&twiddle)
   128  	a[6].ScalarMultiplication(&a[6], &twiddle)
   129  	twiddles[stage+0][3].BigInt(&twiddle)
   130  	a[7].ScalarMultiplication(&a[7], &twiddle)
   131  	butterflyG2(&a[0], &a[2])
   132  	butterflyG2(&a[1], &a[3])
   133  	butterflyG2(&a[4], &a[6])
   134  	butterflyG2(&a[5], &a[7])
   135  	twiddles[stage+1][1].BigInt(&twiddle)
   136  	a[3].ScalarMultiplication(&a[3], &twiddle)
   137  	twiddles[stage+1][1].BigInt(&twiddle)
   138  	a[7].ScalarMultiplication(&a[7], &twiddle)
   139  	butterflyG2(&a[0], &a[1])
   140  	butterflyG2(&a[2], &a[3])
   141  	butterflyG2(&a[4], &a[5])
   142  	butterflyG2(&a[6], &a[7])
   143  }
   144  
   145  func difFFTG1(a []curve.G1Affine, twiddles [][]fr.Element, stage, maxSplits int, chDone chan struct{}) {
   146  	if chDone != nil {
   147  		defer close(chDone)
   148  	}
   149  
   150  	n := len(a)
   151  	if n == 1 {
   152  		return
   153  	} else if n == 8 {
   154  		kerDIF8G1(a, twiddles, stage)
   155  		return
   156  	}
   157  	m := n >> 1
   158  
   159  	butterflyG1(&a[0], &a[m])
   160  
   161  	var twiddle big.Int
   162  	for i := 1; i < m; i++ {
   163  		butterflyG1(&a[i], &a[i+m])
   164  		twiddles[stage][i].BigInt(&twiddle)
   165  		a[i+m].ScalarMultiplication(&a[i+m], &twiddle)
   166  	}
   167  
   168  	if m == 1 {
   169  		return
   170  	}
   171  
   172  	nextStage := stage + 1
   173  	if stage < maxSplits {
   174  		chDone := make(chan struct{}, 1)
   175  		go difFFTG1(a[m:n], twiddles, nextStage, maxSplits, chDone)
   176  		difFFTG1(a[0:m], twiddles, nextStage, maxSplits, nil)
   177  		<-chDone
   178  	} else {
   179  		difFFTG1(a[0:m], twiddles, nextStage, maxSplits, nil)
   180  		difFFTG1(a[m:n], twiddles, nextStage, maxSplits, nil)
   181  	}
   182  }
   183  func difFFTG2(a []curve.G2Affine, twiddles [][]fr.Element, stage, maxSplits int, chDone chan struct{}) {
   184  	if chDone != nil {
   185  		defer close(chDone)
   186  	}
   187  
   188  	n := len(a)
   189  	if n == 1 {
   190  		return
   191  	} else if n == 8 {
   192  		kerDIF8G2(a, twiddles, stage)
   193  		return
   194  	}
   195  	m := n >> 1
   196  
   197  	butterflyG2(&a[0], &a[m])
   198  
   199  	var twiddle big.Int
   200  	for i := 1; i < m; i++ {
   201  		butterflyG2(&a[i], &a[i+m])
   202  		twiddles[stage][i].BigInt(&twiddle)
   203  		a[i+m].ScalarMultiplication(&a[i+m], &twiddle)
   204  	}
   205  
   206  	if m == 1 {
   207  		return
   208  	}
   209  
   210  	nextStage := stage + 1
   211  	if stage < maxSplits {
   212  		chDone := make(chan struct{}, 1)
   213  		go difFFTG2(a[m:n], twiddles, nextStage, maxSplits, chDone)
   214  		difFFTG2(a[0:m], twiddles, nextStage, maxSplits, nil)
   215  		<-chDone
   216  	} else {
   217  		difFFTG2(a[0:m], twiddles, nextStage, maxSplits, nil)
   218  		difFFTG2(a[m:n], twiddles, nextStage, maxSplits, nil)
   219  	}
   220  }