github.com/core-coin/go-core/v2@v2.0.6/core/vm/contracts.go (about)

     1  // Copyright 2014 by the Authors
     2  // This file is part of the go-core library.
     3  //
     4  // The go-core library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-core library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-core library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package vm
    18  
    19  import (
    20  	"crypto/sha256"
    21  	"encoding/binary"
    22  	"errors"
    23  	"math/big"
    24  
    25  	"golang.org/x/crypto/sha3"
    26  
    27  	"github.com/core-coin/go-core/v2/common"
    28  	"github.com/core-coin/go-core/v2/common/math"
    29  	"github.com/core-coin/go-core/v2/crypto"
    30  	"github.com/core-coin/go-core/v2/crypto/blake2b"
    31  	"github.com/core-coin/go-core/v2/crypto/bn256"
    32  	"github.com/core-coin/go-core/v2/params"
    33  
    34  	//lint:ignore SA1019 Needed for precompile
    35  	"golang.org/x/crypto/ripemd160"
    36  )
    37  
    38  // PrecompiledContract is the basic interface for native Go contracts. The implementation
    39  // requires a deterministic energy count based on the input size of the Run method of the
    40  // contract.
    41  type PrecompiledContract interface {
    42  	RequiredEnergy(input []byte) uint64 // RequiredPrice calculates the contract energy use
    43  	Run(input []byte) ([]byte, error)   // Run runs the precompiled contract
    44  }
    45  
    46  // PrecompiledContracts contains the default set of pre-compiled Core
    47  // contracts used in the release.
    48  func PrecompiledContracts(chainConfig *params.ChainConfig, blockNum *big.Int) map[common.Address]PrecompiledContract {
    49  	contracts := map[common.Address]PrecompiledContract{}
    50  
    51  	if chainConfig != nil &&
    52  		blockNum != nil &&
    53  		blockNum.Int64() <= params.DevinOldEcrecoverBlockNum &&
    54  		chainConfig.NetworkID.Int64() == common.Devin {
    55  		contracts[common.BytesToAddress([]byte{1})] = &ecrecoverOldDevin{}
    56  	} else {
    57  		contracts[common.BytesToAddress([]byte{1})] = &ecrecover{}
    58  	}
    59  	contracts[common.BytesToAddress([]byte{2})] = &sha256hash{}
    60  	contracts[common.BytesToAddress([]byte{3})] = &ripemd160hash{}
    61  	contracts[common.BytesToAddress([]byte{4})] = &dataCopy{}
    62  	contracts[common.BytesToAddress([]byte{5})] = &bigModExp{}
    63  	contracts[common.BytesToAddress([]byte{6})] = &bn256Add{}
    64  	contracts[common.BytesToAddress([]byte{7})] = &bn256ScalarMul{}
    65  	contracts[common.BytesToAddress([]byte{8})] = &bn256Pairing{}
    66  	contracts[common.BytesToAddress([]byte{9})] = &blake2F{}
    67  
    68  	return contracts
    69  }
    70  
    71  // RunPrecompiledContract runs and evaluates the output of a precompiled contract.
    72  // It returns
    73  // - the returned bytes,
    74  // - the _remaining_ energy,
    75  // - any error that occurred
    76  func RunPrecompiledContract(p PrecompiledContract, input []byte, suppliedEnergy uint64) (ret []byte, remainingEnergy uint64, err error) {
    77  	energyCost := p.RequiredEnergy(input)
    78  	if suppliedEnergy < energyCost {
    79  		return nil, 0, ErrOutOfEnergy
    80  	}
    81  	suppliedEnergy -= energyCost
    82  	output, err := p.Run(input)
    83  	return output, suppliedEnergy, err
    84  }
    85  
    86  // ECRECOVER implemented as a native contract.
    87  type ecrecover struct{}
    88  
    89  func (c *ecrecover) RequiredEnergy(input []byte) uint64 {
    90  	return params.EcrecoverEnergy
    91  }
    92  
    93  func (c *ecrecover) Run(input []byte) ([]byte, error) {
    94  	var ecRecoverInputLength = sha3.New256().Size() + crypto.ExtendedSignatureLength // 32 + 171
    95  
    96  	input = common.RightPadBytes(input, ecRecoverInputLength)
    97  
    98  	pubKey, err := crypto.Ecrecover(input[:32], input[96:267])
    99  	// make sure the public key is a valid one
   100  	if err != nil {
   101  		return nil, err
   102  	}
   103  	if pubKey != nil {
   104  		pub, err := crypto.UnmarshalPubKey(pubKey)
   105  		if err != nil {
   106  			return nil, err
   107  		}
   108  		return common.LeftPadBytes(crypto.PubkeyToAddress(pub).Bytes(), 32), nil
   109  	}
   110  	return nil, errors.New("invalid signature")
   111  }
   112  
   113  // ECRECOVER implemented as a native contract.
   114  type ecrecoverOldDevin struct{}
   115  
   116  func (c *ecrecoverOldDevin) RequiredEnergy(input []byte) uint64 {
   117  	return params.EcrecoverEnergy
   118  }
   119  
   120  func (c *ecrecoverOldDevin) Run(input []byte) ([]byte, error) {
   121  	var ecRecoverInputLength = sha3.New256().Size() + crypto.ExtendedSignatureLength // 32 + 171
   122  
   123  	input = common.RightPadBytes(input, ecRecoverInputLength)
   124  
   125  	pubKey, err := crypto.Ecrecover(input[:32], input[96:267])
   126  	// make sure the public key is a valid one
   127  	if err != nil {
   128  		return nil, nil
   129  	}
   130  	if pubKey != nil {
   131  		pub, err := crypto.UnmarshalPubKey(pubKey)
   132  		if err != nil {
   133  			return nil, err
   134  		}
   135  		return common.LeftPadBytes(crypto.PubkeyToAddress(pub).Bytes(), 32), nil
   136  	}
   137  	return nil, errors.New("invalid signature")
   138  }
   139  
   140  // SHA256 implemented as a native contract.
   141  type sha256hash struct{}
   142  
   143  // RequiredEnergy returns the energy required to execute the pre-compiled contract.
   144  //
   145  // This method does not require any overflow checking as the input size energy costs
   146  // required for anything significant is so high it's impossible to pay for.
   147  func (c *sha256hash) RequiredEnergy(input []byte) uint64 {
   148  	return uint64(len(input)+31)/32*params.Sha256PerWordEnergy + params.Sha256BaseEnergy
   149  }
   150  func (c *sha256hash) Run(input []byte) ([]byte, error) {
   151  	h := sha256.Sum256(input)
   152  	return h[:], nil
   153  }
   154  
   155  // RIPEMD160 implemented as a native contract.
   156  type ripemd160hash struct{}
   157  
   158  // RequiredEnergy returns the energy required to execute the pre-compiled contract.
   159  //
   160  // This method does not require any overflow checking as the input size energy costs
   161  // required for anything significant is so high it's impossible to pay for.
   162  func (c *ripemd160hash) RequiredEnergy(input []byte) uint64 {
   163  	return uint64(len(input)+31)/32*params.Ripemd160PerWordEnergy + params.Ripemd160BaseEnergy
   164  }
   165  func (c *ripemd160hash) Run(input []byte) ([]byte, error) {
   166  	ripemd := ripemd160.New()
   167  	ripemd.Write(input)
   168  	return common.LeftPadBytes(ripemd.Sum(nil), 32), nil
   169  }
   170  
   171  // data copy implemented as a native contract.
   172  type dataCopy struct{}
   173  
   174  // RequiredEnergy returns the energy required to execute the pre-compiled contract.
   175  //
   176  // This method does not require any overflow checking as the input size energy costs
   177  // required for anything significant is so high it's impossible to pay for.
   178  func (c *dataCopy) RequiredEnergy(input []byte) uint64 {
   179  	return uint64(len(input)+31)/32*params.IdentityPerWordEnergy + params.IdentityBaseEnergy
   180  }
   181  func (c *dataCopy) Run(in []byte) ([]byte, error) {
   182  	return in, nil
   183  }
   184  
   185  // bigModExp implements a native big integer exponential modular operation.
   186  type bigModExp struct {
   187  }
   188  
   189  var (
   190  	big0      = big.NewInt(0)
   191  	big1      = big.NewInt(1)
   192  	big3      = big.NewInt(3)
   193  	big4      = big.NewInt(4)
   194  	big7      = big.NewInt(7)
   195  	big8      = big.NewInt(8)
   196  	big16     = big.NewInt(16)
   197  	big20     = big.NewInt(20)
   198  	big32     = big.NewInt(32)
   199  	big64     = big.NewInt(64)
   200  	big96     = big.NewInt(96)
   201  	big480    = big.NewInt(480)
   202  	big1024   = big.NewInt(1024)
   203  	big3072   = big.NewInt(3072)
   204  	big199680 = big.NewInt(199680)
   205  )
   206  
   207  // RequiredEnergy returns the energy required to execute the pre-compiled contract.
   208  func (c *bigModExp) RequiredEnergy(input []byte) uint64 {
   209  	var (
   210  		baseLen = new(big.Int).SetBytes(getData(input, 0, 32))
   211  		expLen  = new(big.Int).SetBytes(getData(input, 32, 32))
   212  		modLen  = new(big.Int).SetBytes(getData(input, 64, 32))
   213  	)
   214  	if len(input) > 96 {
   215  		input = input[96:]
   216  	} else {
   217  		input = input[:0]
   218  	}
   219  	// Retrieve the head 32 bytes of exp for the adjusted exponent length
   220  	var expHead *big.Int
   221  	if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 {
   222  		expHead = new(big.Int)
   223  	} else {
   224  		if expLen.Cmp(big32) > 0 {
   225  			expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32))
   226  		} else {
   227  			expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64()))
   228  		}
   229  	}
   230  	// Calculate the adjusted exponent length
   231  	var msb int
   232  	if bitlen := expHead.BitLen(); bitlen > 0 {
   233  		msb = bitlen - 1
   234  	}
   235  	adjExpLen := new(big.Int)
   236  	if expLen.Cmp(big32) > 0 {
   237  		adjExpLen.Sub(expLen, big32)
   238  		adjExpLen.Mul(big8, adjExpLen)
   239  	}
   240  	adjExpLen.Add(adjExpLen, big.NewInt(int64(msb)))
   241  
   242  	// Calculate the energy cost of the operation
   243  	energy := new(big.Int).Set(math.BigMax(modLen, baseLen))
   244  	switch {
   245  	case energy.Cmp(big64) <= 0:
   246  		energy.Mul(energy, energy)
   247  	case energy.Cmp(big1024) <= 0:
   248  		energy = new(big.Int).Add(
   249  			new(big.Int).Div(new(big.Int).Mul(energy, energy), big4),
   250  			new(big.Int).Sub(new(big.Int).Mul(big96, energy), big3072),
   251  		)
   252  	default:
   253  		energy = new(big.Int).Add(
   254  			new(big.Int).Div(new(big.Int).Mul(energy, energy), big16),
   255  			new(big.Int).Sub(new(big.Int).Mul(big480, energy), big199680),
   256  		)
   257  	}
   258  	energy.Mul(energy, math.BigMax(adjExpLen, big1))
   259  	energy.Div(energy, new(big.Int).SetUint64(params.ModExpQuadCoeffDiv))
   260  
   261  	if energy.BitLen() > 64 {
   262  		return math.MaxUint64
   263  	}
   264  	return energy.Uint64()
   265  }
   266  
   267  func (c *bigModExp) Run(input []byte) ([]byte, error) {
   268  	var (
   269  		baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64()
   270  		expLen  = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64()
   271  		modLen  = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64()
   272  	)
   273  	if len(input) > 96 {
   274  		input = input[96:]
   275  	} else {
   276  		input = input[:0]
   277  	}
   278  	// Handle a special case when both the base and mod length is zero
   279  	if baseLen == 0 && modLen == 0 {
   280  		return []byte{}, nil
   281  	}
   282  	// Retrieve the operands and execute the exponentiation
   283  	var (
   284  		base = new(big.Int).SetBytes(getData(input, 0, baseLen))
   285  		exp  = new(big.Int).SetBytes(getData(input, baseLen, expLen))
   286  		mod  = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen))
   287  	)
   288  	if mod.BitLen() == 0 {
   289  		// Modulo 0 is undefined, return zero
   290  		return common.LeftPadBytes([]byte{}, int(modLen)), nil
   291  	}
   292  	return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil
   293  }
   294  
   295  // newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point,
   296  // returning it, or an error if the point is invalid.
   297  func newCurvePoint(blob []byte) (*bn256.G1, error) {
   298  	p := new(bn256.G1)
   299  	if _, err := p.Unmarshal(blob); err != nil {
   300  		return nil, err
   301  	}
   302  	return p, nil
   303  }
   304  
   305  // newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point,
   306  // returning it, or an error if the point is invalid.
   307  func newTwistPoint(blob []byte) (*bn256.G2, error) {
   308  	p := new(bn256.G2)
   309  	if _, err := p.Unmarshal(blob); err != nil {
   310  		return nil, err
   311  	}
   312  	return p, nil
   313  }
   314  
   315  // bn256Add implements a native elliptic curve point addition conforming to
   316  // consensus rules.
   317  type bn256Add struct{}
   318  
   319  // RequiredEnergy returns the energy required to execute the pre-compiled contract.
   320  func (c *bn256Add) RequiredEnergy(input []byte) uint64 {
   321  	return params.Bn256AddEnergy
   322  }
   323  
   324  func (c *bn256Add) Run(input []byte) ([]byte, error) {
   325  	x, err := newCurvePoint(getData(input, 0, 64))
   326  	if err != nil {
   327  		return nil, err
   328  	}
   329  	y, err := newCurvePoint(getData(input, 64, 64))
   330  	if err != nil {
   331  		return nil, err
   332  	}
   333  	res := new(bn256.G1)
   334  	res.Add(x, y)
   335  	return res.Marshal(), nil
   336  }
   337  
   338  // bn256ScalarMul implements a native elliptic curve scalar
   339  // multiplication conforming to  consensus rules.
   340  type bn256ScalarMul struct{}
   341  
   342  // RequiredEnergy returns the energy required to execute the pre-compiled contract.
   343  func (c *bn256ScalarMul) RequiredEnergy(input []byte) uint64 {
   344  	return params.Bn256ScalarMulEnergy
   345  }
   346  
   347  func (c *bn256ScalarMul) Run(input []byte) ([]byte, error) {
   348  	p, err := newCurvePoint(getData(input, 0, 64))
   349  	if err != nil {
   350  		return nil, err
   351  	}
   352  	res := new(bn256.G1)
   353  	res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32)))
   354  	return res.Marshal(), nil
   355  }
   356  
   357  var (
   358  	// true32Byte is returned if the bn256 pairing check succeeds.
   359  	true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
   360  
   361  	// false32Byte is returned if the bn256 pairing check fails.
   362  	false32Byte = make([]byte, 32)
   363  
   364  	// errBadPairingInput is returned if the bn256 pairing input is invalid.
   365  	errBadPairingInput = errors.New("bad elliptic curve pairing size")
   366  )
   367  
   368  // bn256Pairing implements a pairing pre-compile for the bn256 curve
   369  // conforming to consensus rules.
   370  type bn256Pairing struct{}
   371  
   372  // RequiredEnergy returns the energy required to execute the pre-compiled contract.
   373  func (c *bn256Pairing) RequiredEnergy(input []byte) uint64 {
   374  	return params.Bn256PairingBaseEnergy + uint64(len(input)/192)*params.Bn256PairingPerPointEnergy
   375  }
   376  
   377  func (c *bn256Pairing) Run(input []byte) ([]byte, error) {
   378  	// Handle some corner cases cheaply
   379  	if len(input)%192 > 0 {
   380  		return nil, errBadPairingInput
   381  	}
   382  	// Convert the input into a set of coordinates
   383  	var (
   384  		cs []*bn256.G1
   385  		ts []*bn256.G2
   386  	)
   387  	for i := 0; i < len(input); i += 192 {
   388  		c, err := newCurvePoint(input[i : i+64])
   389  		if err != nil {
   390  			return nil, err
   391  		}
   392  		t, err := newTwistPoint(input[i+64 : i+192])
   393  		if err != nil {
   394  			return nil, err
   395  		}
   396  		cs = append(cs, c)
   397  		ts = append(ts, t)
   398  	}
   399  	// Execute the pairing checks and return the results
   400  	if bn256.PairingCheck(cs, ts) {
   401  		return true32Byte, nil
   402  	}
   403  	return false32Byte, nil
   404  }
   405  
   406  type blake2F struct{}
   407  
   408  func (c *blake2F) RequiredEnergy(input []byte) uint64 {
   409  	// If the input is malformed, we can't calculate the energy, return 0 and let the
   410  	// actual call choke and fault.
   411  	if len(input) != blake2FInputLength {
   412  		return 0
   413  	}
   414  	return uint64(binary.BigEndian.Uint32(input[0:4]))
   415  }
   416  
   417  const (
   418  	blake2FInputLength        = 213
   419  	blake2FFinalBlockBytes    = byte(1)
   420  	blake2FNonFinalBlockBytes = byte(0)
   421  )
   422  
   423  var (
   424  	errBlake2FInvalidInputLength = errors.New("invalid input length")
   425  	errBlake2FInvalidFinalFlag   = errors.New("invalid final flag")
   426  )
   427  
   428  func (c *blake2F) Run(input []byte) ([]byte, error) {
   429  	// Make sure the input is valid (correct length and final flag)
   430  	if len(input) != blake2FInputLength {
   431  		return nil, errBlake2FInvalidInputLength
   432  	}
   433  	if input[212] != blake2FNonFinalBlockBytes && input[212] != blake2FFinalBlockBytes {
   434  		return nil, errBlake2FInvalidFinalFlag
   435  	}
   436  	// Parse the input into the Blake2b call parameters
   437  	var (
   438  		rounds = binary.BigEndian.Uint32(input[0:4])
   439  		final  = (input[212] == blake2FFinalBlockBytes)
   440  
   441  		h [8]uint64
   442  		m [16]uint64
   443  		t [2]uint64
   444  	)
   445  	for i := 0; i < 8; i++ {
   446  		offset := 4 + i*8
   447  		h[i] = binary.LittleEndian.Uint64(input[offset : offset+8])
   448  	}
   449  	for i := 0; i < 16; i++ {
   450  		offset := 68 + i*8
   451  		m[i] = binary.LittleEndian.Uint64(input[offset : offset+8])
   452  	}
   453  	t[0] = binary.LittleEndian.Uint64(input[196:204])
   454  	t[1] = binary.LittleEndian.Uint64(input[204:212])
   455  
   456  	// Execute the compression function, extract and return the result
   457  	blake2b.F(&h, m, t, final, rounds)
   458  
   459  	output := make([]byte, 64)
   460  	for i := 0; i < 8; i++ {
   461  		offset := i * 8
   462  		binary.LittleEndian.PutUint64(output[offset:offset+8], h[i])
   463  	}
   464  	return output, nil
   465  }