github.com/core-coin/go-core/v2@v2.1.9/core/state/sync_test.go (about) 1 // Copyright 2015 by the Authors 2 // This file is part of the go-core library. 3 // 4 // The go-core library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-core library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-core library. If not, see <http://www.gnu.org/licenses/>. 16 17 package state 18 19 import ( 20 "bytes" 21 "math/big" 22 "testing" 23 24 "github.com/core-coin/go-core/v2/xcbdb" 25 "github.com/core-coin/go-core/v2/xcbdb/memorydb" 26 27 "github.com/core-coin/go-core/v2/common" 28 "github.com/core-coin/go-core/v2/core/rawdb" 29 "github.com/core-coin/go-core/v2/crypto" 30 "github.com/core-coin/go-core/v2/rlp" 31 "github.com/core-coin/go-core/v2/trie" 32 ) 33 34 // testAccount is the data associated with an account used by the state tests. 35 type testAccount struct { 36 address common.Address 37 balance *big.Int 38 nonce uint64 39 code []byte 40 } 41 42 // makeTestState create a sample test state to test node-wise reconstruction. 43 func makeTestState() (Database, common.Hash, []*testAccount) { 44 // Create an empty state 45 db := NewDatabase(rawdb.NewMemoryDatabase()) 46 state, _ := New(common.Hash{}, db, nil) 47 48 // Fill it with some arbitrary data 49 var accounts []*testAccount 50 for i := byte(0); i < 96; i++ { 51 obj := state.GetOrNewStateObject(common.BytesToAddress([]byte{i})) 52 acc := &testAccount{address: common.BytesToAddress([]byte{i})} 53 54 obj.AddBalance(big.NewInt(int64(11 * i))) 55 acc.balance = big.NewInt(int64(11 * i)) 56 57 obj.SetNonce(uint64(42 * i)) 58 acc.nonce = uint64(42 * i) 59 60 if i%3 == 0 { 61 obj.SetCode(crypto.SHA3Hash([]byte{i, i, i, i, i}), []byte{i, i, i, i, i}) 62 acc.code = []byte{i, i, i, i, i} 63 } 64 if i%5 == 0 { 65 for j := byte(0); j < 5; j++ { 66 hash := crypto.SHA3Hash([]byte{i, i, i, i, i, j, j}) 67 obj.SetState(db, hash, hash) 68 } 69 } 70 state.updateStateObject(obj) 71 accounts = append(accounts, acc) 72 } 73 root, _ := state.Commit(false) 74 75 // Return the generated state 76 return db, root, accounts 77 } 78 79 // checkStateAccounts cross references a reconstructed state with an expected 80 // account array. 81 func checkStateAccounts(t *testing.T, db xcbdb.Database, root common.Hash, accounts []*testAccount) { 82 // Check root availability and state contents 83 state, err := New(root, NewDatabase(db), nil) 84 if err != nil { 85 t.Fatalf("failed to create state trie at %x: %v", root, err) 86 } 87 if err := checkStateConsistency(db, root); err != nil { 88 t.Fatalf("inconsistent state trie at %x: %v", root, err) 89 } 90 for i, acc := range accounts { 91 if balance := state.GetBalance(acc.address); balance.Cmp(acc.balance) != 0 { 92 t.Errorf("account %d: balance mismatch: have %v, want %v", i, balance, acc.balance) 93 } 94 if nonce := state.GetNonce(acc.address); nonce != acc.nonce { 95 t.Errorf("account %d: nonce mismatch: have %v, want %v", i, nonce, acc.nonce) 96 } 97 if code := state.GetCode(acc.address); !bytes.Equal(code, acc.code) { 98 t.Errorf("account %d: code mismatch: have %x, want %x", i, code, acc.code) 99 } 100 } 101 } 102 103 // checkTrieConsistency checks that all nodes in a (sub-)trie are indeed present. 104 func checkTrieConsistency(db xcbdb.Database, root common.Hash) error { 105 if v, _ := db.Get(root[:]); v == nil { 106 return nil // Consider a non existent state consistent. 107 } 108 trie, err := trie.New(root, trie.NewDatabase(db)) 109 if err != nil { 110 return err 111 } 112 it := trie.NodeIterator(nil) 113 for it.Next(true) { 114 } 115 return it.Error() 116 } 117 118 // checkStateConsistency checks that all data of a state root is present. 119 func checkStateConsistency(db xcbdb.Database, root common.Hash) error { 120 // Create and iterate a state trie rooted in a sub-node 121 if _, err := db.Get(root.Bytes()); err != nil { 122 return nil // Consider a non existent state consistent. 123 } 124 state, err := New(root, NewDatabase(db), nil) 125 if err != nil { 126 return err 127 } 128 it := NewNodeIterator(state) 129 for it.Next() { 130 } 131 return it.Error 132 } 133 134 // Tests that an empty state is not scheduled for syncing. 135 func TestEmptyStateSync(t *testing.T) { 136 empty := common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421") 137 sync := NewStateSync(empty, rawdb.NewMemoryDatabase(), trie.NewSyncBloom(1, memorydb.New())) 138 if nodes, paths, codes := sync.Missing(1); len(nodes) != 0 || len(paths) != 0 || len(codes) != 0 { 139 t.Errorf(" content requested for empty state: %v, %v, %v", nodes, paths, codes) 140 } 141 } 142 143 // Tests that given a root hash, a state can sync iteratively on a single thread, 144 // requesting retrieval tasks and returning all of them in one go. 145 func TestIterativeStateSyncIndividual(t *testing.T) { 146 testIterativeStateSync(t, 1, false, false) 147 } 148 func TestIterativeStateSyncBatched(t *testing.T) { 149 testIterativeStateSync(t, 100, false, false) 150 } 151 func TestIterativeStateSyncIndividualFromDisk(t *testing.T) { 152 testIterativeStateSync(t, 1, true, false) 153 } 154 func TestIterativeStateSyncBatchedFromDisk(t *testing.T) { 155 testIterativeStateSync(t, 100, true, false) 156 } 157 func TestIterativeStateSyncIndividualByPath(t *testing.T) { 158 testIterativeStateSync(t, 1, false, true) 159 } 160 func TestIterativeStateSyncBatchedByPath(t *testing.T) { 161 testIterativeStateSync(t, 100, false, true) 162 } 163 164 func testIterativeStateSync(t *testing.T, count int, commit bool, bypath bool) { 165 // Create a random state to copy 166 srcDb, srcRoot, srcAccounts := makeTestState() 167 if commit { 168 srcDb.TrieDB().Commit(srcRoot, false, nil) 169 } 170 srcTrie, _ := trie.New(srcRoot, srcDb.TrieDB()) 171 172 // Create a destination state and sync with the scheduler 173 dstDb := rawdb.NewMemoryDatabase() 174 sched := NewStateSync(srcRoot, dstDb, trie.NewSyncBloom(1, dstDb)) 175 176 nodes, paths, codes := sched.Missing(count) 177 var ( 178 hashQueue []common.Hash 179 pathQueue []trie.SyncPath 180 ) 181 if !bypath { 182 hashQueue = append(append(hashQueue[:0], nodes...), codes...) 183 } else { 184 hashQueue = append(hashQueue[:0], codes...) 185 pathQueue = append(pathQueue[:0], paths...) 186 } 187 for len(hashQueue)+len(pathQueue) > 0 { 188 results := make([]trie.SyncResult, len(hashQueue)+len(pathQueue)) 189 for i, hash := range hashQueue { 190 data, err := srcDb.TrieDB().Node(hash) 191 if err != nil { 192 data, err = srcDb.ContractCode(common.Hash{}, hash) 193 } 194 if err != nil { 195 t.Fatalf("failed to retrieve node data for hash %x", hash) 196 } 197 results[i] = trie.SyncResult{Hash: hash, Data: data} 198 } 199 for i, path := range pathQueue { 200 if len(path) == 1 { 201 data, _, err := srcTrie.TryGetNode(path[0]) 202 if err != nil { 203 t.Fatalf("failed to retrieve node data for path %x: %v", path, err) 204 } 205 results[len(hashQueue)+i] = trie.SyncResult{Hash: crypto.SHA3Hash(data), Data: data} 206 } else { 207 var acc Account 208 if err := rlp.DecodeBytes(srcTrie.Get(path[0]), &acc); err != nil { 209 t.Fatalf("failed to decode account on path %x: %v", path, err) 210 } 211 stTrie, err := trie.New(acc.Root, srcDb.TrieDB()) 212 if err != nil { 213 t.Fatalf("failed to retriev storage trie for path %x: %v", path, err) 214 } 215 data, _, err := stTrie.TryGetNode(path[1]) 216 if err != nil { 217 t.Fatalf("failed to retrieve node data for path %x: %v", path, err) 218 } 219 results[len(hashQueue)+i] = trie.SyncResult{Hash: crypto.SHA3Hash(data), Data: data} 220 } 221 } 222 for _, result := range results { 223 if err := sched.Process(result); err != nil { 224 t.Errorf("failed to process result %v", err) 225 } 226 } 227 batch := dstDb.NewBatch() 228 if err := sched.Commit(batch); err != nil { 229 t.Fatalf("failed to commit data: %v", err) 230 } 231 batch.Write() 232 233 nodes, paths, codes = sched.Missing(count) 234 if !bypath { 235 hashQueue = append(append(hashQueue[:0], nodes...), codes...) 236 } else { 237 hashQueue = append(hashQueue[:0], codes...) 238 pathQueue = append(pathQueue[:0], paths...) 239 } 240 } 241 // Cross check that the two states are in sync 242 checkStateAccounts(t, dstDb, srcRoot, srcAccounts) 243 } 244 245 // Tests that the trie scheduler can correctly reconstruct the state even if only 246 // partial results are returned, and the others sent only later. 247 func TestIterativeDelayedStateSync(t *testing.T) { 248 // Create a random state to copy 249 srcDb, srcRoot, srcAccounts := makeTestState() 250 251 // Create a destination state and sync with the scheduler 252 dstDb := rawdb.NewMemoryDatabase() 253 sched := NewStateSync(srcRoot, dstDb, trie.NewSyncBloom(1, dstDb)) 254 255 nodes, _, codes := sched.Missing(0) 256 queue := append(append([]common.Hash{}, nodes...), codes...) 257 258 for len(queue) > 0 { 259 // Sync only half of the scheduled nodes 260 results := make([]trie.SyncResult, len(queue)/2+1) 261 for i, hash := range queue[:len(results)] { 262 data, err := srcDb.TrieDB().Node(hash) 263 if err != nil { 264 data, err = srcDb.ContractCode(common.Hash{}, hash) 265 } 266 if err != nil { 267 t.Fatalf("failed to retrieve node data for %x", hash) 268 } 269 results[i] = trie.SyncResult{Hash: hash, Data: data} 270 } 271 for _, result := range results { 272 if err := sched.Process(result); err != nil { 273 t.Fatalf("failed to process result %v", err) 274 } 275 } 276 batch := dstDb.NewBatch() 277 if err := sched.Commit(batch); err != nil { 278 t.Fatalf("failed to commit data: %v", err) 279 } 280 batch.Write() 281 282 nodes, _, codes = sched.Missing(0) 283 queue = append(append(queue[len(results):], nodes...), codes...) 284 } 285 // Cross check that the two states are in sync 286 checkStateAccounts(t, dstDb, srcRoot, srcAccounts) 287 } 288 289 // Tests that given a root hash, a trie can sync iteratively on a single thread, 290 // requesting retrieval tasks and returning all of them in one go, however in a 291 // random order. 292 func TestIterativeRandomStateSyncIndividual(t *testing.T) { testIterativeRandomStateSync(t, 1) } 293 func TestIterativeRandomStateSyncBatched(t *testing.T) { testIterativeRandomStateSync(t, 100) } 294 295 func testIterativeRandomStateSync(t *testing.T, count int) { 296 // Create a random state to copy 297 srcDb, srcRoot, srcAccounts := makeTestState() 298 299 // Create a destination state and sync with the scheduler 300 dstDb := rawdb.NewMemoryDatabase() 301 sched := NewStateSync(srcRoot, dstDb, trie.NewSyncBloom(1, dstDb)) 302 303 queue := make(map[common.Hash]struct{}) 304 nodes, _, codes := sched.Missing(count) 305 for _, hash := range append(nodes, codes...) { 306 queue[hash] = struct{}{} 307 } 308 for len(queue) > 0 { 309 // Fetch all the queued nodes in a random order 310 results := make([]trie.SyncResult, 0, len(queue)) 311 for hash := range queue { 312 data, err := srcDb.TrieDB().Node(hash) 313 if err != nil { 314 data, err = srcDb.ContractCode(common.Hash{}, hash) 315 } 316 if err != nil { 317 t.Fatalf("failed to retrieve node data for %x", hash) 318 } 319 results = append(results, trie.SyncResult{Hash: hash, Data: data}) 320 } 321 // Feed the retrieved results back and queue new tasks 322 for _, result := range results { 323 if err := sched.Process(result); err != nil { 324 t.Fatalf("failed to process result %v", err) 325 } 326 } 327 batch := dstDb.NewBatch() 328 if err := sched.Commit(batch); err != nil { 329 t.Fatalf("failed to commit data: %v", err) 330 } 331 batch.Write() 332 333 queue = make(map[common.Hash]struct{}) 334 nodes, _, codes = sched.Missing(count) 335 for _, hash := range append(nodes, codes...) { 336 queue[hash] = struct{}{} 337 } 338 } 339 // Cross check that the two states are in sync 340 checkStateAccounts(t, dstDb, srcRoot, srcAccounts) 341 } 342 343 // Tests that the trie scheduler can correctly reconstruct the state even if only 344 // partial results are returned (Even those randomly), others sent only later. 345 func TestIterativeRandomDelayedStateSync(t *testing.T) { 346 // Create a random state to copy 347 srcDb, srcRoot, srcAccounts := makeTestState() 348 349 // Create a destination state and sync with the scheduler 350 dstDb := rawdb.NewMemoryDatabase() 351 sched := NewStateSync(srcRoot, dstDb, trie.NewSyncBloom(1, dstDb)) 352 353 queue := make(map[common.Hash]struct{}) 354 nodes, _, codes := sched.Missing(0) 355 for _, hash := range append(nodes, codes...) { 356 queue[hash] = struct{}{} 357 } 358 for len(queue) > 0 { 359 // Sync only half of the scheduled nodes, even those in random order 360 results := make([]trie.SyncResult, 0, len(queue)/2+1) 361 for hash := range queue { 362 delete(queue, hash) 363 364 data, err := srcDb.TrieDB().Node(hash) 365 if err != nil { 366 data, err = srcDb.ContractCode(common.Hash{}, hash) 367 } 368 if err != nil { 369 t.Fatalf("failed to retrieve node data for %x", hash) 370 } 371 results = append(results, trie.SyncResult{Hash: hash, Data: data}) 372 373 if len(results) >= cap(results) { 374 break 375 } 376 } 377 // Feed the retrieved results back and queue new tasks 378 for _, result := range results { 379 if err := sched.Process(result); err != nil { 380 t.Fatalf("failed to process result %v", err) 381 } 382 } 383 batch := dstDb.NewBatch() 384 if err := sched.Commit(batch); err != nil { 385 t.Fatalf("failed to commit data: %v", err) 386 } 387 batch.Write() 388 for _, result := range results { 389 delete(queue, result.Hash) 390 } 391 nodes, _, codes = sched.Missing(0) 392 for _, hash := range append(nodes, codes...) { 393 queue[hash] = struct{}{} 394 } 395 } 396 // Cross check that the two states are in sync 397 checkStateAccounts(t, dstDb, srcRoot, srcAccounts) 398 } 399 400 // Tests that at any point in time during a sync, only complete sub-tries are in 401 // the database. 402 func TestIncompleteStateSync(t *testing.T) { 403 // Create a random state to copy 404 srcDb, srcRoot, srcAccounts := makeTestState() 405 406 // isCodeLookup to save some hashing 407 var isCode = make(map[common.Hash]struct{}) 408 for _, acc := range srcAccounts { 409 if len(acc.code) > 0 { 410 isCode[crypto.SHA3Hash(acc.code)] = struct{}{} 411 } 412 } 413 isCode[common.BytesToHash(emptyCodeHash)] = struct{}{} 414 checkTrieConsistency(srcDb.TrieDB().DiskDB().(xcbdb.Database), srcRoot) 415 416 // Create a destination state and sync with the scheduler 417 dstDb := rawdb.NewMemoryDatabase() 418 sched := NewStateSync(srcRoot, dstDb, trie.NewSyncBloom(1, dstDb)) 419 420 var added []common.Hash 421 422 nodes, _, codes := sched.Missing(1) 423 queue := append(append([]common.Hash{}, nodes...), codes...) 424 425 for len(queue) > 0 { 426 // Fetch a batch of state nodes 427 results := make([]trie.SyncResult, len(queue)) 428 for i, hash := range queue { 429 data, err := srcDb.TrieDB().Node(hash) 430 if err != nil { 431 data, err = srcDb.ContractCode(common.Hash{}, hash) 432 } 433 if err != nil { 434 t.Fatalf("failed to retrieve node data for %x", hash) 435 } 436 results[i] = trie.SyncResult{Hash: hash, Data: data} 437 } 438 // Process each of the state nodes 439 for _, result := range results { 440 if err := sched.Process(result); err != nil { 441 t.Fatalf("failed to process result %v", err) 442 } 443 } 444 batch := dstDb.NewBatch() 445 if err := sched.Commit(batch); err != nil { 446 t.Fatalf("failed to commit data: %v", err) 447 } 448 batch.Write() 449 for _, result := range results { 450 added = append(added, result.Hash) 451 // Check that all known sub-tries added so far are complete or missing entirely. 452 if _, ok := isCode[result.Hash]; ok { 453 continue 454 } 455 // Can't use checkStateConsistency here because subtrie keys may have odd 456 // length and crash in LeafKey. 457 if err := checkTrieConsistency(dstDb, result.Hash); err != nil { 458 t.Fatalf("state inconsistent: %v", err) 459 } 460 } 461 // Fetch the next batch to retrieve 462 nodes, _, codes = sched.Missing(1) 463 queue = append(append(queue[:0], nodes...), codes...) 464 } 465 // Sanity check that removing any node from the database is detected 466 for _, node := range added[1:] { 467 var ( 468 key = node.Bytes() 469 _, code = isCode[node] 470 val []byte 471 ) 472 if code { 473 val = rawdb.ReadCode(dstDb, node) 474 rawdb.DeleteCode(dstDb, node) 475 } else { 476 val = rawdb.ReadTrieNode(dstDb, node) 477 rawdb.DeleteTrieNode(dstDb, node) 478 } 479 if err := checkStateConsistency(dstDb, added[0]); err == nil { 480 t.Fatalf("trie inconsistency not caught, missing: %x", key) 481 } 482 if code { 483 rawdb.WriteCode(dstDb, node, val) 484 } else { 485 rawdb.WriteTrieNode(dstDb, node, val) 486 } 487 } 488 }