github.com/core-coin/go-core/v2@v2.1.9/core/vm/contracts.go (about)

     1  // Copyright 2014 by the Authors
     2  // This file is part of the go-core library.
     3  //
     4  // The go-core library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-core library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-core library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package vm
    18  
    19  import (
    20  	"crypto/sha256"
    21  	"encoding/binary"
    22  	"errors"
    23  	"math/big"
    24  
    25  	"golang.org/x/crypto/sha3"
    26  
    27  	"github.com/core-coin/go-core/v2/common"
    28  	"github.com/core-coin/go-core/v2/common/math"
    29  	"github.com/core-coin/go-core/v2/crypto"
    30  	"github.com/core-coin/go-core/v2/crypto/blake2b"
    31  	"github.com/core-coin/go-core/v2/crypto/bn256"
    32  	"github.com/core-coin/go-core/v2/params"
    33  
    34  	//lint:ignore SA1019 Needed for precompile
    35  	"golang.org/x/crypto/ripemd160"
    36  )
    37  
    38  // PrecompiledContract is the basic interface for native Go contracts. The implementation
    39  // requires a deterministic energy count based on the input size of the Run method of the
    40  // contract.
    41  type PrecompiledContract interface {
    42  	RequiredEnergy(input []byte) uint64 // RequiredPrice calculates the contract energy use
    43  	Run(input []byte) ([]byte, error)   // Run runs the precompiled contract
    44  }
    45  
    46  // PrecompiledContracts contains the default set of pre-compiled Core
    47  // contracts used in the release.
    48  func PrecompiledContracts(chainConfig *params.ChainConfig, blockNum *big.Int) map[common.Address]PrecompiledContract {
    49  	contracts := map[common.Address]PrecompiledContract{}
    50  
    51  	contracts[common.BytesToAddress([]byte{1})] = &ecrecover{}
    52  	contracts[common.BytesToAddress([]byte{2})] = &sha256hash{}
    53  	contracts[common.BytesToAddress([]byte{3})] = &ripemd160hash{}
    54  	contracts[common.BytesToAddress([]byte{4})] = &dataCopy{}
    55  	contracts[common.BytesToAddress([]byte{5})] = &bigModExp{}
    56  	contracts[common.BytesToAddress([]byte{6})] = &bn256Add{}
    57  	contracts[common.BytesToAddress([]byte{7})] = &bn256ScalarMul{}
    58  	contracts[common.BytesToAddress([]byte{8})] = &bn256Pairing{}
    59  	contracts[common.BytesToAddress([]byte{9})] = &blake2F{}
    60  
    61  	return contracts
    62  }
    63  
    64  // RunPrecompiledContract runs and evaluates the output of a precompiled contract.
    65  // It returns
    66  // - the returned bytes,
    67  // - the _remaining_ energy,
    68  // - any error that occurred
    69  func RunPrecompiledContract(p PrecompiledContract, input []byte, suppliedEnergy uint64) (ret []byte, remainingEnergy uint64, err error) {
    70  	energyCost := p.RequiredEnergy(input)
    71  	if suppliedEnergy < energyCost {
    72  		return nil, 0, ErrOutOfEnergy
    73  	}
    74  	suppliedEnergy -= energyCost
    75  	output, err := p.Run(input)
    76  	return output, suppliedEnergy, err
    77  }
    78  
    79  // ECRECOVER implemented as a native contract.
    80  type ecrecover struct{}
    81  
    82  func (c *ecrecover) RequiredEnergy(input []byte) uint64 {
    83  	return params.EcrecoverEnergy
    84  }
    85  
    86  func (c *ecrecover) Run(input []byte) ([]byte, error) {
    87  	var ecRecoverInputLength = sha3.New256().Size() + crypto.ExtendedSignatureLength // 32 + 171
    88  
    89  	input = common.RightPadBytes(input, ecRecoverInputLength)
    90  
    91  	pubKey, err := crypto.Ecrecover(input[:32], input[96:267])
    92  	// make sure the public key is a valid one
    93  	if err != nil {
    94  		return nil, err
    95  	}
    96  	if pubKey != nil {
    97  		pub, err := crypto.UnmarshalPubKey(pubKey)
    98  		if err != nil {
    99  			return nil, err
   100  		}
   101  		return common.LeftPadBytes(crypto.PubkeyToAddress(pub).Bytes(), 32), nil
   102  	}
   103  	return nil, errors.New("invalid signature")
   104  }
   105  
   106  // SHA256 implemented as a native contract.
   107  type sha256hash struct{}
   108  
   109  // RequiredEnergy returns the energy required to execute the pre-compiled contract.
   110  //
   111  // This method does not require any overflow checking as the input size energy costs
   112  // required for anything significant is so high it's impossible to pay for.
   113  func (c *sha256hash) RequiredEnergy(input []byte) uint64 {
   114  	return uint64(len(input)+31)/32*params.Sha256PerWordEnergy + params.Sha256BaseEnergy
   115  }
   116  func (c *sha256hash) Run(input []byte) ([]byte, error) {
   117  	h := sha256.Sum256(input)
   118  	return h[:], nil
   119  }
   120  
   121  // RIPEMD160 implemented as a native contract.
   122  type ripemd160hash struct{}
   123  
   124  // RequiredEnergy returns the energy required to execute the pre-compiled contract.
   125  //
   126  // This method does not require any overflow checking as the input size energy costs
   127  // required for anything significant is so high it's impossible to pay for.
   128  func (c *ripemd160hash) RequiredEnergy(input []byte) uint64 {
   129  	return uint64(len(input)+31)/32*params.Ripemd160PerWordEnergy + params.Ripemd160BaseEnergy
   130  }
   131  func (c *ripemd160hash) Run(input []byte) ([]byte, error) {
   132  	ripemd := ripemd160.New()
   133  	ripemd.Write(input)
   134  	return common.LeftPadBytes(ripemd.Sum(nil), 32), nil
   135  }
   136  
   137  // data copy implemented as a native contract.
   138  type dataCopy struct{}
   139  
   140  // RequiredEnergy returns the energy required to execute the pre-compiled contract.
   141  //
   142  // This method does not require any overflow checking as the input size energy costs
   143  // required for anything significant is so high it's impossible to pay for.
   144  func (c *dataCopy) RequiredEnergy(input []byte) uint64 {
   145  	return uint64(len(input)+31)/32*params.IdentityPerWordEnergy + params.IdentityBaseEnergy
   146  }
   147  func (c *dataCopy) Run(in []byte) ([]byte, error) {
   148  	return in, nil
   149  }
   150  
   151  // bigModExp implements a native big integer exponential modular operation.
   152  type bigModExp struct {
   153  }
   154  
   155  var (
   156  	big0      = big.NewInt(0)
   157  	big1      = big.NewInt(1)
   158  	big3      = big.NewInt(3)
   159  	big4      = big.NewInt(4)
   160  	big7      = big.NewInt(7)
   161  	big8      = big.NewInt(8)
   162  	big16     = big.NewInt(16)
   163  	big20     = big.NewInt(20)
   164  	big32     = big.NewInt(32)
   165  	big64     = big.NewInt(64)
   166  	big96     = big.NewInt(96)
   167  	big480    = big.NewInt(480)
   168  	big1024   = big.NewInt(1024)
   169  	big3072   = big.NewInt(3072)
   170  	big199680 = big.NewInt(199680)
   171  )
   172  
   173  // RequiredEnergy returns the energy required to execute the pre-compiled contract.
   174  func (c *bigModExp) RequiredEnergy(input []byte) uint64 {
   175  	var (
   176  		baseLen = new(big.Int).SetBytes(getData(input, 0, 32))
   177  		expLen  = new(big.Int).SetBytes(getData(input, 32, 32))
   178  		modLen  = new(big.Int).SetBytes(getData(input, 64, 32))
   179  	)
   180  	if len(input) > 96 {
   181  		input = input[96:]
   182  	} else {
   183  		input = input[:0]
   184  	}
   185  	// Retrieve the head 32 bytes of exp for the adjusted exponent length
   186  	var expHead *big.Int
   187  	if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 {
   188  		expHead = new(big.Int)
   189  	} else {
   190  		if expLen.Cmp(big32) > 0 {
   191  			expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32))
   192  		} else {
   193  			expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64()))
   194  		}
   195  	}
   196  	// Calculate the adjusted exponent length
   197  	var msb int
   198  	if bitlen := expHead.BitLen(); bitlen > 0 {
   199  		msb = bitlen - 1
   200  	}
   201  	adjExpLen := new(big.Int)
   202  	if expLen.Cmp(big32) > 0 {
   203  		adjExpLen.Sub(expLen, big32)
   204  		adjExpLen.Mul(big8, adjExpLen)
   205  	}
   206  	adjExpLen.Add(adjExpLen, big.NewInt(int64(msb)))
   207  
   208  	// Calculate the energy cost of the operation
   209  	energy := new(big.Int).Set(math.BigMax(modLen, baseLen))
   210  	switch {
   211  	case energy.Cmp(big64) <= 0:
   212  		energy.Mul(energy, energy)
   213  	case energy.Cmp(big1024) <= 0:
   214  		energy = new(big.Int).Add(
   215  			new(big.Int).Div(new(big.Int).Mul(energy, energy), big4),
   216  			new(big.Int).Sub(new(big.Int).Mul(big96, energy), big3072),
   217  		)
   218  	default:
   219  		energy = new(big.Int).Add(
   220  			new(big.Int).Div(new(big.Int).Mul(energy, energy), big16),
   221  			new(big.Int).Sub(new(big.Int).Mul(big480, energy), big199680),
   222  		)
   223  	}
   224  	energy.Mul(energy, math.BigMax(adjExpLen, big1))
   225  	energy.Div(energy, new(big.Int).SetUint64(params.ModExpQuadCoeffDiv))
   226  
   227  	if energy.BitLen() > 64 {
   228  		return math.MaxUint64
   229  	}
   230  	return energy.Uint64()
   231  }
   232  
   233  func (c *bigModExp) Run(input []byte) ([]byte, error) {
   234  	var (
   235  		baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64()
   236  		expLen  = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64()
   237  		modLen  = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64()
   238  	)
   239  	if len(input) > 96 {
   240  		input = input[96:]
   241  	} else {
   242  		input = input[:0]
   243  	}
   244  	// Handle a special case when both the base and mod length is zero
   245  	if baseLen == 0 && modLen == 0 {
   246  		return []byte{}, nil
   247  	}
   248  	// Retrieve the operands and execute the exponentiation
   249  	var (
   250  		base = new(big.Int).SetBytes(getData(input, 0, baseLen))
   251  		exp  = new(big.Int).SetBytes(getData(input, baseLen, expLen))
   252  		mod  = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen))
   253  	)
   254  	if mod.BitLen() == 0 {
   255  		// Modulo 0 is undefined, return zero
   256  		return common.LeftPadBytes([]byte{}, int(modLen)), nil
   257  	}
   258  	return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil
   259  }
   260  
   261  // newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point,
   262  // returning it, or an error if the point is invalid.
   263  func newCurvePoint(blob []byte) (*bn256.G1, error) {
   264  	p := new(bn256.G1)
   265  	if _, err := p.Unmarshal(blob); err != nil {
   266  		return nil, err
   267  	}
   268  	return p, nil
   269  }
   270  
   271  // newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point,
   272  // returning it, or an error if the point is invalid.
   273  func newTwistPoint(blob []byte) (*bn256.G2, error) {
   274  	p := new(bn256.G2)
   275  	if _, err := p.Unmarshal(blob); err != nil {
   276  		return nil, err
   277  	}
   278  	return p, nil
   279  }
   280  
   281  // bn256Add implements a native elliptic curve point addition conforming to
   282  // consensus rules.
   283  type bn256Add struct{}
   284  
   285  // RequiredEnergy returns the energy required to execute the pre-compiled contract.
   286  func (c *bn256Add) RequiredEnergy(input []byte) uint64 {
   287  	return params.Bn256AddEnergy
   288  }
   289  
   290  func (c *bn256Add) Run(input []byte) ([]byte, error) {
   291  	x, err := newCurvePoint(getData(input, 0, 64))
   292  	if err != nil {
   293  		return nil, err
   294  	}
   295  	y, err := newCurvePoint(getData(input, 64, 64))
   296  	if err != nil {
   297  		return nil, err
   298  	}
   299  	res := new(bn256.G1)
   300  	res.Add(x, y)
   301  	return res.Marshal(), nil
   302  }
   303  
   304  // bn256ScalarMul implements a native elliptic curve scalar
   305  // multiplication conforming to  consensus rules.
   306  type bn256ScalarMul struct{}
   307  
   308  // RequiredEnergy returns the energy required to execute the pre-compiled contract.
   309  func (c *bn256ScalarMul) RequiredEnergy(input []byte) uint64 {
   310  	return params.Bn256ScalarMulEnergy
   311  }
   312  
   313  func (c *bn256ScalarMul) Run(input []byte) ([]byte, error) {
   314  	p, err := newCurvePoint(getData(input, 0, 64))
   315  	if err != nil {
   316  		return nil, err
   317  	}
   318  	res := new(bn256.G1)
   319  	res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32)))
   320  	return res.Marshal(), nil
   321  }
   322  
   323  var (
   324  	// true32Byte is returned if the bn256 pairing check succeeds.
   325  	true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
   326  
   327  	// false32Byte is returned if the bn256 pairing check fails.
   328  	false32Byte = make([]byte, 32)
   329  
   330  	// errBadPairingInput is returned if the bn256 pairing input is invalid.
   331  	errBadPairingInput = errors.New("bad elliptic curve pairing size")
   332  )
   333  
   334  // bn256Pairing implements a pairing pre-compile for the bn256 curve
   335  // conforming to consensus rules.
   336  type bn256Pairing struct{}
   337  
   338  // RequiredEnergy returns the energy required to execute the pre-compiled contract.
   339  func (c *bn256Pairing) RequiredEnergy(input []byte) uint64 {
   340  	return params.Bn256PairingBaseEnergy + uint64(len(input)/192)*params.Bn256PairingPerPointEnergy
   341  }
   342  
   343  func (c *bn256Pairing) Run(input []byte) ([]byte, error) {
   344  	// Handle some corner cases cheaply
   345  	if len(input)%192 > 0 {
   346  		return nil, errBadPairingInput
   347  	}
   348  	// Convert the input into a set of coordinates
   349  	var (
   350  		cs []*bn256.G1
   351  		ts []*bn256.G2
   352  	)
   353  	for i := 0; i < len(input); i += 192 {
   354  		c, err := newCurvePoint(input[i : i+64])
   355  		if err != nil {
   356  			return nil, err
   357  		}
   358  		t, err := newTwistPoint(input[i+64 : i+192])
   359  		if err != nil {
   360  			return nil, err
   361  		}
   362  		cs = append(cs, c)
   363  		ts = append(ts, t)
   364  	}
   365  	// Execute the pairing checks and return the results
   366  	if bn256.PairingCheck(cs, ts) {
   367  		return true32Byte, nil
   368  	}
   369  	return false32Byte, nil
   370  }
   371  
   372  type blake2F struct{}
   373  
   374  func (c *blake2F) RequiredEnergy(input []byte) uint64 {
   375  	// If the input is malformed, we can't calculate the energy, return 0 and let the
   376  	// actual call choke and fault.
   377  	if len(input) != blake2FInputLength {
   378  		return 0
   379  	}
   380  	return uint64(binary.BigEndian.Uint32(input[0:4]))
   381  }
   382  
   383  const (
   384  	blake2FInputLength        = 213
   385  	blake2FFinalBlockBytes    = byte(1)
   386  	blake2FNonFinalBlockBytes = byte(0)
   387  )
   388  
   389  var (
   390  	errBlake2FInvalidInputLength = errors.New("invalid input length")
   391  	errBlake2FInvalidFinalFlag   = errors.New("invalid final flag")
   392  )
   393  
   394  func (c *blake2F) Run(input []byte) ([]byte, error) {
   395  	// Make sure the input is valid (correct length and final flag)
   396  	if len(input) != blake2FInputLength {
   397  		return nil, errBlake2FInvalidInputLength
   398  	}
   399  	if input[212] != blake2FNonFinalBlockBytes && input[212] != blake2FFinalBlockBytes {
   400  		return nil, errBlake2FInvalidFinalFlag
   401  	}
   402  	// Parse the input into the Blake2b call parameters
   403  	var (
   404  		rounds = binary.BigEndian.Uint32(input[0:4])
   405  		final  = (input[212] == blake2FFinalBlockBytes)
   406  
   407  		h [8]uint64
   408  		m [16]uint64
   409  		t [2]uint64
   410  	)
   411  	for i := 0; i < 8; i++ {
   412  		offset := 4 + i*8
   413  		h[i] = binary.LittleEndian.Uint64(input[offset : offset+8])
   414  	}
   415  	for i := 0; i < 16; i++ {
   416  		offset := 68 + i*8
   417  		m[i] = binary.LittleEndian.Uint64(input[offset : offset+8])
   418  	}
   419  	t[0] = binary.LittleEndian.Uint64(input[196:204])
   420  	t[1] = binary.LittleEndian.Uint64(input[204:212])
   421  
   422  	// Execute the compression function, extract and return the result
   423  	blake2b.F(&h, m, t, final, rounds)
   424  
   425  	output := make([]byte, 64)
   426  	for i := 0; i < 8; i++ {
   427  		offset := i * 8
   428  		binary.LittleEndian.PutUint64(output[offset:offset+8], h[i])
   429  	}
   430  	return output, nil
   431  }