github.com/core-coin/go-core/v2@v2.1.9/les/serverpool.go (about) 1 // Copyright 2016 by the Authors 2 // This file is part of the go-core library. 3 // 4 // The go-core library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-core library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-core library. If not, see <http://www.gnu.org/licenses/>. 16 17 package les 18 19 import ( 20 "errors" 21 "math/rand" 22 "reflect" 23 "sync" 24 "sync/atomic" 25 "time" 26 27 "github.com/core-coin/go-core/v2/xcbdb" 28 29 "github.com/core-coin/go-core/v2/common/mclock" 30 lpc "github.com/core-coin/go-core/v2/les/lespay/client" 31 "github.com/core-coin/go-core/v2/les/utils" 32 "github.com/core-coin/go-core/v2/log" 33 "github.com/core-coin/go-core/v2/p2p/enode" 34 "github.com/core-coin/go-core/v2/p2p/enr" 35 "github.com/core-coin/go-core/v2/p2p/nodestate" 36 "github.com/core-coin/go-core/v2/rlp" 37 ) 38 39 const ( 40 minTimeout = time.Millisecond * 500 // minimum request timeout suggested by the server pool 41 timeoutRefresh = time.Second * 5 // recalculate timeout if older than this 42 dialCost = 10000 // cost of a TCP dial (used for known node selection weight calculation) 43 dialWaitStep = 1.5 // exponential multiplier of redial wait time when no value was provided by the server 44 queryCost = 500 // cost of a UDP pre-negotiation query 45 queryWaitStep = 1.02 // exponential multiplier of redial wait time when no value was provided by the server 46 waitThreshold = time.Hour * 2000 // drop node if waiting time is over the threshold 47 nodeWeightMul = 1000000 // multiplier constant for node weight calculation 48 nodeWeightThreshold = 100 // minimum weight for keeping a node in the the known (valuable) set 49 minRedialWait = 10 // minimum redial wait time in seconds 50 preNegLimit = 5 // maximum number of simultaneous pre-negotiation queries 51 maxQueryFails = 100 // number of consecutive UDP query failures before we print a warning 52 ) 53 54 // serverPool provides a node iterator for dial candidates. The output is a mix of newly discovered 55 // nodes, a weighted random selection of known (previously valuable) nodes and trusted/paid nodes. 56 type serverPool struct { 57 clock mclock.Clock 58 unixTime func() int64 59 db xcbdb.KeyValueStore 60 61 ns *nodestate.NodeStateMachine 62 vt *lpc.ValueTracker 63 mixer *enode.FairMix 64 mixSources []enode.Iterator 65 dialIterator enode.Iterator 66 validSchemes enr.IdentityScheme 67 trustedURLs []string 68 fillSet *lpc.FillSet 69 queryFails uint32 70 71 timeoutLock sync.RWMutex 72 timeout time.Duration 73 timeWeights lpc.ResponseTimeWeights 74 timeoutRefreshed mclock.AbsTime 75 } 76 77 // nodeHistory keeps track of dial costs which determine node weight together with the 78 // service value calculated by lpc.ValueTracker. 79 type nodeHistory struct { 80 dialCost utils.ExpiredValue 81 redialWaitStart, redialWaitEnd int64 // unix time (seconds) 82 } 83 84 type nodeHistoryEnc struct { 85 DialCost utils.ExpiredValue 86 RedialWaitStart, RedialWaitEnd uint64 87 } 88 89 // queryFunc sends a pre-negotiation query and blocks until a response arrives or timeout occurs. 90 // It returns 1 if the remote node has confirmed that connection is possible, 0 if not 91 // possible and -1 if no response arrived (timeout). 92 type queryFunc func(*enode.Node) int 93 94 var ( 95 serverPoolSetup = &nodestate.Setup{Version: 1} 96 sfHasValue = serverPoolSetup.NewPersistentFlag("hasValue") 97 sfQueried = serverPoolSetup.NewFlag("queried") 98 sfCanDial = serverPoolSetup.NewFlag("canDial") 99 sfDialing = serverPoolSetup.NewFlag("dialed") 100 sfWaitDialTimeout = serverPoolSetup.NewFlag("dialTimeout") 101 sfConnected = serverPoolSetup.NewFlag("connected") 102 sfRedialWait = serverPoolSetup.NewFlag("redialWait") 103 sfAlwaysConnect = serverPoolSetup.NewFlag("alwaysConnect") 104 sfDisableSelection = nodestate.MergeFlags(sfQueried, sfCanDial, sfDialing, sfConnected, sfRedialWait) 105 106 sfiNodeHistory = serverPoolSetup.NewPersistentField("nodeHistory", reflect.TypeOf(nodeHistory{}), 107 func(field interface{}) ([]byte, error) { 108 if n, ok := field.(nodeHistory); ok { 109 ne := nodeHistoryEnc{ 110 DialCost: n.dialCost, 111 RedialWaitStart: uint64(n.redialWaitStart), 112 RedialWaitEnd: uint64(n.redialWaitEnd), 113 } 114 enc, err := rlp.EncodeToBytes(&ne) 115 return enc, err 116 } 117 return nil, errors.New("invalid field type") 118 }, 119 func(enc []byte) (interface{}, error) { 120 var ne nodeHistoryEnc 121 err := rlp.DecodeBytes(enc, &ne) 122 n := nodeHistory{ 123 dialCost: ne.DialCost, 124 redialWaitStart: int64(ne.RedialWaitStart), 125 redialWaitEnd: int64(ne.RedialWaitEnd), 126 } 127 return n, err 128 }, 129 ) 130 sfiNodeWeight = serverPoolSetup.NewField("nodeWeight", reflect.TypeOf(uint64(0))) 131 sfiConnectedStats = serverPoolSetup.NewField("connectedStats", reflect.TypeOf(lpc.ResponseTimeStats{})) 132 ) 133 134 // newServerPool creates a new server pool 135 func newServerPool(db xcbdb.KeyValueStore, dbKey []byte, vt *lpc.ValueTracker, discovery enode.Iterator, mixTimeout time.Duration, query queryFunc, clock mclock.Clock, trustedURLs []string) *serverPool { 136 s := &serverPool{ 137 db: db, 138 clock: clock, 139 unixTime: func() int64 { return time.Now().Unix() }, 140 validSchemes: enode.ValidSchemes, 141 trustedURLs: trustedURLs, 142 vt: vt, 143 ns: nodestate.NewNodeStateMachine(db, []byte(string(dbKey)+"ns:"), clock, serverPoolSetup), 144 } 145 s.recalTimeout() 146 s.mixer = enode.NewFairMix(mixTimeout) 147 knownSelector := lpc.NewWrsIterator(s.ns, sfHasValue, sfDisableSelection, sfiNodeWeight) 148 alwaysConnect := lpc.NewQueueIterator(s.ns, sfAlwaysConnect, sfDisableSelection, true, nil) 149 s.mixSources = append(s.mixSources, knownSelector) 150 s.mixSources = append(s.mixSources, alwaysConnect) 151 if discovery != nil { 152 s.mixSources = append(s.mixSources, discovery) 153 } 154 155 iter := enode.Iterator(s.mixer) 156 if query != nil { 157 iter = s.addPreNegFilter(iter, query) 158 } 159 s.dialIterator = enode.Filter(iter, func(node *enode.Node) bool { 160 s.ns.SetState(node, sfDialing, sfCanDial, 0) 161 s.ns.SetState(node, sfWaitDialTimeout, nodestate.Flags{}, time.Second*10) 162 return true 163 }) 164 165 s.ns.SubscribeState(nodestate.MergeFlags(sfWaitDialTimeout, sfConnected), func(n *enode.Node, oldState, newState nodestate.Flags) { 166 if oldState.Equals(sfWaitDialTimeout) && newState.IsEmpty() { 167 // dial timeout, no connection 168 s.setRedialWait(n, dialCost, dialWaitStep) 169 s.ns.SetStateSub(n, nodestate.Flags{}, sfDialing, 0) 170 } 171 }) 172 173 s.ns.AddLogMetrics(sfHasValue, sfDisableSelection, "selectable", nil, nil, serverSelectableGauge) 174 s.ns.AddLogMetrics(sfDialing, nodestate.Flags{}, "dialed", serverDialedMeter, nil, nil) 175 s.ns.AddLogMetrics(sfConnected, nodestate.Flags{}, "connected", nil, nil, serverConnectedGauge) 176 return s 177 } 178 179 // addPreNegFilter installs a node filter mechanism that performs a pre-negotiation query. 180 // Nodes that are filtered out and does not appear on the output iterator are put back 181 // into redialWait state. 182 func (s *serverPool) addPreNegFilter(input enode.Iterator, query queryFunc) enode.Iterator { 183 s.fillSet = lpc.NewFillSet(s.ns, input, sfQueried) 184 s.ns.SubscribeState(sfQueried, func(n *enode.Node, oldState, newState nodestate.Flags) { 185 if newState.Equals(sfQueried) { 186 fails := atomic.LoadUint32(&s.queryFails) 187 if fails == maxQueryFails { 188 log.Warn("UDP pre-negotiation query does not seem to work") 189 } 190 if fails > maxQueryFails { 191 fails = maxQueryFails 192 } 193 if rand.Intn(maxQueryFails*2) < int(fails) { 194 // skip pre-negotiation with increasing chance, max 50% 195 // this ensures that the client can operate even if UDP is not working at all 196 s.ns.SetStateSub(n, sfCanDial, nodestate.Flags{}, time.Second*10) 197 // set canDial before resetting queried so that FillSet will not read more 198 // candidates unnecessarily 199 s.ns.SetStateSub(n, nodestate.Flags{}, sfQueried, 0) 200 return 201 } 202 go func() { 203 q := query(n) 204 if q == -1 { 205 atomic.AddUint32(&s.queryFails, 1) 206 } else { 207 atomic.StoreUint32(&s.queryFails, 0) 208 } 209 s.ns.Operation(func() { 210 // we are no longer running in the operation that the callback belongs to, start a new one because of setRedialWait 211 if q == 1 { 212 s.ns.SetStateSub(n, sfCanDial, nodestate.Flags{}, time.Second*10) 213 } else { 214 s.setRedialWait(n, queryCost, queryWaitStep) 215 } 216 s.ns.SetStateSub(n, nodestate.Flags{}, sfQueried, 0) 217 }) 218 }() 219 } 220 }) 221 return lpc.NewQueueIterator(s.ns, sfCanDial, nodestate.Flags{}, false, func(waiting bool) { 222 if waiting { 223 s.fillSet.SetTarget(preNegLimit) 224 } else { 225 s.fillSet.SetTarget(0) 226 } 227 }) 228 } 229 230 // start starts the server pool. Note that NodeStateMachine should be started first. 231 func (s *serverPool) start() { 232 s.ns.Start() 233 for _, iter := range s.mixSources { 234 // add sources to mixer at startup because the mixer instantly tries to read them 235 // which should only happen after NodeStateMachine has been started 236 s.mixer.AddSource(iter) 237 } 238 for _, url := range s.trustedURLs { 239 if node, err := enode.Parse(s.validSchemes, url); err == nil { 240 s.ns.SetState(node, sfAlwaysConnect, nodestate.Flags{}, 0) 241 } else { 242 log.Error("Invalid trusted server URL", "url", url, "error", err) 243 } 244 } 245 unixTime := s.unixTime() 246 s.ns.Operation(func() { 247 s.ns.ForEach(sfHasValue, nodestate.Flags{}, func(node *enode.Node, state nodestate.Flags) { 248 s.calculateWeight(node) 249 if n, ok := s.ns.GetField(node, sfiNodeHistory).(nodeHistory); ok && n.redialWaitEnd > unixTime { 250 wait := n.redialWaitEnd - unixTime 251 lastWait := n.redialWaitEnd - n.redialWaitStart 252 if wait > lastWait { 253 // if the time until expiration is larger than the last suggested 254 // waiting time then the system clock was probably adjusted 255 wait = lastWait 256 } 257 s.ns.SetStateSub(node, sfRedialWait, nodestate.Flags{}, time.Duration(wait)*time.Second) 258 } 259 }) 260 }) 261 } 262 263 // stop stops the server pool 264 func (s *serverPool) stop() { 265 s.dialIterator.Close() 266 if s.fillSet != nil { 267 s.fillSet.Close() 268 } 269 s.ns.Operation(func() { 270 s.ns.ForEach(sfConnected, nodestate.Flags{}, func(n *enode.Node, state nodestate.Flags) { 271 // recalculate weight of connected nodes in order to update hasValue flag if necessary 272 s.calculateWeight(n) 273 }) 274 }) 275 s.ns.Stop() 276 } 277 278 // registerPeer implements serverPeerSubscriber 279 func (s *serverPool) registerPeer(p *serverPeer) { 280 s.ns.SetState(p.Node(), sfConnected, sfDialing.Or(sfWaitDialTimeout), 0) 281 nvt := s.vt.Register(p.ID()) 282 s.ns.SetField(p.Node(), sfiConnectedStats, nvt.RtStats()) 283 p.setValueTracker(s.vt, nvt) 284 p.updateVtParams() 285 } 286 287 // unregisterPeer implements serverPeerSubscriber 288 func (s *serverPool) unregisterPeer(p *serverPeer) { 289 s.ns.Operation(func() { 290 s.setRedialWait(p.Node(), dialCost, dialWaitStep) 291 s.ns.SetStateSub(p.Node(), nodestate.Flags{}, sfConnected, 0) 292 s.ns.SetFieldSub(p.Node(), sfiConnectedStats, nil) 293 }) 294 s.vt.Unregister(p.ID()) 295 p.setValueTracker(nil, nil) 296 } 297 298 // recalTimeout calculates the current recommended timeout. This value is used by 299 // the client as a "soft timeout" value. It also affects the service value calculation 300 // of individual nodes. 301 func (s *serverPool) recalTimeout() { 302 // Use cached result if possible, avoid recalculating too frequently. 303 s.timeoutLock.RLock() 304 refreshed := s.timeoutRefreshed 305 s.timeoutLock.RUnlock() 306 now := s.clock.Now() 307 if refreshed != 0 && time.Duration(now-refreshed) < timeoutRefresh { 308 return 309 } 310 // Cached result is stale, recalculate a new one. 311 rts := s.vt.RtStats() 312 313 // Add a fake statistic here. It is an easy way to initialize with some 314 // conservative values when the database is new. As soon as we have a 315 // considerable amount of real stats this small value won't matter. 316 rts.Add(time.Second*2, 10, s.vt.StatsExpFactor()) 317 318 // Use either 10% failure rate timeout or twice the median response time 319 // as the recommended timeout. 320 timeout := minTimeout 321 if t := rts.Timeout(0.1); t > timeout { 322 timeout = t 323 } 324 if t := rts.Timeout(0.5) * 2; t > timeout { 325 timeout = t 326 } 327 s.timeoutLock.Lock() 328 if s.timeout != timeout { 329 s.timeout = timeout 330 s.timeWeights = lpc.TimeoutWeights(s.timeout) 331 332 suggestedTimeoutGauge.Update(int64(s.timeout / time.Millisecond)) 333 totalValueGauge.Update(int64(rts.Value(s.timeWeights, s.vt.StatsExpFactor()))) 334 } 335 s.timeoutRefreshed = now 336 s.timeoutLock.Unlock() 337 } 338 339 // getTimeout returns the recommended request timeout. 340 func (s *serverPool) getTimeout() time.Duration { 341 s.recalTimeout() 342 s.timeoutLock.RLock() 343 defer s.timeoutLock.RUnlock() 344 return s.timeout 345 } 346 347 // getTimeoutAndWeight returns the recommended request timeout as well as the 348 // response time weight which is necessary to calculate service value. 349 func (s *serverPool) getTimeoutAndWeight() (time.Duration, lpc.ResponseTimeWeights) { 350 s.recalTimeout() 351 s.timeoutLock.RLock() 352 defer s.timeoutLock.RUnlock() 353 return s.timeout, s.timeWeights 354 } 355 356 // addDialCost adds the given amount of dial cost to the node history and returns the current 357 // amount of total dial cost 358 func (s *serverPool) addDialCost(n *nodeHistory, amount int64) uint64 { 359 logOffset := s.vt.StatsExpirer().LogOffset(s.clock.Now()) 360 if amount > 0 { 361 n.dialCost.Add(amount, logOffset) 362 } 363 totalDialCost := n.dialCost.Value(logOffset) 364 if totalDialCost < dialCost { 365 totalDialCost = dialCost 366 } 367 return totalDialCost 368 } 369 370 // serviceValue returns the service value accumulated in this session and in total 371 func (s *serverPool) serviceValue(node *enode.Node) (sessionValue, totalValue float64) { 372 nvt := s.vt.GetNode(node.ID()) 373 if nvt == nil { 374 return 0, 0 375 } 376 currentStats := nvt.RtStats() 377 _, timeWeights := s.getTimeoutAndWeight() 378 expFactor := s.vt.StatsExpFactor() 379 380 totalValue = currentStats.Value(timeWeights, expFactor) 381 if connStats, ok := s.ns.GetField(node, sfiConnectedStats).(lpc.ResponseTimeStats); ok { 382 diff := currentStats 383 diff.SubStats(&connStats) 384 sessionValue = diff.Value(timeWeights, expFactor) 385 sessionValueMeter.Mark(int64(sessionValue)) 386 } 387 return 388 } 389 390 // updateWeight calculates the node weight and updates the nodeWeight field and the 391 // hasValue flag. It also saves the node state if necessary. 392 // Note: this function should run inside a NodeStateMachine operation 393 func (s *serverPool) updateWeight(node *enode.Node, totalValue float64, totalDialCost uint64) { 394 weight := uint64(totalValue * nodeWeightMul / float64(totalDialCost)) 395 if weight >= nodeWeightThreshold { 396 s.ns.SetStateSub(node, sfHasValue, nodestate.Flags{}, 0) 397 s.ns.SetFieldSub(node, sfiNodeWeight, weight) 398 } else { 399 s.ns.SetStateSub(node, nodestate.Flags{}, sfHasValue, 0) 400 s.ns.SetFieldSub(node, sfiNodeWeight, nil) 401 s.ns.SetFieldSub(node, sfiNodeHistory, nil) 402 } 403 s.ns.Persist(node) // saved if node history or hasValue changed 404 } 405 406 // setRedialWait calculates and sets the redialWait timeout based on the service value 407 // and dial cost accumulated during the last session/attempt and in total. 408 // The waiting time is raised exponentially if no service value has been received in order 409 // to prevent dialing an unresponsive node frequently for a very long time just because it 410 // was useful in the past. It can still be occasionally dialed though and once it provides 411 // a significant amount of service value again its waiting time is quickly reduced or reset 412 // to the minimum. 413 // Note: node weight is also recalculated and updated by this function. 414 // Note 2: this function should run inside a NodeStateMachine operation 415 func (s *serverPool) setRedialWait(node *enode.Node, addDialCost int64, waitStep float64) { 416 n, _ := s.ns.GetField(node, sfiNodeHistory).(nodeHistory) 417 sessionValue, totalValue := s.serviceValue(node) 418 totalDialCost := s.addDialCost(&n, addDialCost) 419 420 // if the current dial session has yielded at least the average value/dial cost ratio 421 // then the waiting time should be reset to the minimum. If the session value 422 // is below average but still positive then timeout is limited to the ratio of 423 // average / current service value multiplied by the minimum timeout. If the attempt 424 // was unsuccessful then timeout is raised exponentially without limitation. 425 // Note: dialCost is used in the formula below even if dial was not attempted at all 426 // because the pre-negotiation query did not return a positive result. In this case 427 // the ratio has no meaning anyway and waitFactor is always raised, though in smaller 428 // steps because queries are cheaper and therefore we can allow more failed attempts. 429 unixTime := s.unixTime() 430 plannedTimeout := float64(n.redialWaitEnd - n.redialWaitStart) // last planned redialWait timeout 431 var actualWait float64 // actual waiting time elapsed 432 if unixTime > n.redialWaitEnd { 433 // the planned timeout has elapsed 434 actualWait = plannedTimeout 435 } else { 436 // if the node was redialed earlier then we do not raise the planned timeout 437 // exponentially because that could lead to the timeout rising very high in 438 // a short amount of time 439 // Note that in case of an early redial actualWait also includes the dial 440 // timeout or connection time of the last attempt but it still serves its 441 // purpose of preventing the timeout rising quicker than linearly as a function 442 // of total time elapsed without a successful connection. 443 actualWait = float64(unixTime - n.redialWaitStart) 444 } 445 // raise timeout exponentially if the last planned timeout has elapsed 446 // (use at least the last planned timeout otherwise) 447 nextTimeout := actualWait * waitStep 448 if plannedTimeout > nextTimeout { 449 nextTimeout = plannedTimeout 450 } 451 // we reduce the waiting time if the server has provided service value during the 452 // connection (but never under the minimum) 453 a := totalValue * dialCost * float64(minRedialWait) 454 b := float64(totalDialCost) * sessionValue 455 if a < b*nextTimeout { 456 nextTimeout = a / b 457 } 458 if nextTimeout < minRedialWait { 459 nextTimeout = minRedialWait 460 } 461 wait := time.Duration(float64(time.Second) * nextTimeout) 462 if wait < waitThreshold { 463 n.redialWaitStart = unixTime 464 n.redialWaitEnd = unixTime + int64(nextTimeout) 465 s.ns.SetFieldSub(node, sfiNodeHistory, n) 466 s.ns.SetStateSub(node, sfRedialWait, nodestate.Flags{}, wait) 467 s.updateWeight(node, totalValue, totalDialCost) 468 } else { 469 // discard known node statistics if waiting time is very long because the node 470 // hasn't been responsive for a very long time 471 s.ns.SetFieldSub(node, sfiNodeHistory, nil) 472 s.ns.SetFieldSub(node, sfiNodeWeight, nil) 473 s.ns.SetStateSub(node, nodestate.Flags{}, sfHasValue, 0) 474 } 475 } 476 477 // calculateWeight calculates and sets the node weight without altering the node history. 478 // This function should be called during startup and shutdown only, otherwise setRedialWait 479 // will keep the weights updated as the underlying statistics are adjusted. 480 // Note: this function should run inside a NodeStateMachine operation 481 func (s *serverPool) calculateWeight(node *enode.Node) { 482 n, _ := s.ns.GetField(node, sfiNodeHistory).(nodeHistory) 483 _, totalValue := s.serviceValue(node) 484 totalDialCost := s.addDialCost(&n, 0) 485 s.updateWeight(node, totalValue, totalDialCost) 486 }