github.com/core-coin/go-core/v2@v2.1.9/trie/committer.go (about)

     1  // Copyright 2020 by the Authors
     2  // This file is part of the go-core library.
     3  //
     4  // The go-core library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-core library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-core library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package trie
    18  
    19  import (
    20  	"errors"
    21  	"fmt"
    22  	"sync"
    23  
    24  	"golang.org/x/crypto/sha3"
    25  
    26  	"github.com/core-coin/go-core/v2/common"
    27  	"github.com/core-coin/go-core/v2/crypto"
    28  )
    29  
    30  // leafChanSize is the size of the leafCh. It's a pretty arbitrary number, to allow
    31  // some parallelism but not incur too much memory overhead.
    32  const leafChanSize = 200
    33  
    34  // leaf represents a trie leaf value
    35  type leaf struct {
    36  	size int         // size of the rlp data (estimate)
    37  	hash common.Hash // hash of rlp data
    38  	node node        // the node to commit
    39  }
    40  
    41  // committer is a type used for the trie Commit operation. A committer has some
    42  // internal preallocated temp space, and also a callback that is invoked when
    43  // leaves are committed. The leafs are passed through the `leafCh`,  to allow
    44  // some level of parallelism.
    45  // By 'some level' of parallelism, it's still the case that all leaves will be
    46  // processed sequentially - onleaf will never be called in parallel or out of order.
    47  type committer struct {
    48  	tmp sliceBuffer
    49  	sha crypto.SHA3State
    50  
    51  	onleaf LeafCallback
    52  	leafCh chan *leaf
    53  }
    54  
    55  // committers live in a global sync.Pool
    56  var committerPool = sync.Pool{
    57  	New: func() interface{} {
    58  		return &committer{
    59  			tmp: make(sliceBuffer, 0, 550), // cap is as large as a full fullNode.
    60  			sha: sha3.New256().(crypto.SHA3State),
    61  		}
    62  	},
    63  }
    64  
    65  // newCommitter creates a new committer or picks one from the pool.
    66  func newCommitter() *committer {
    67  	return committerPool.Get().(*committer)
    68  }
    69  
    70  func returnCommitterToPool(h *committer) {
    71  	h.onleaf = nil
    72  	h.leafCh = nil
    73  	committerPool.Put(h)
    74  }
    75  
    76  // commit collapses a node down into a hash node and inserts it into the database
    77  func (c *committer) Commit(n node, db *Database) (hashNode, error) {
    78  	if db == nil {
    79  		return nil, errors.New("no db provided")
    80  	}
    81  	h, err := c.commit(n, db)
    82  	if err != nil {
    83  		return nil, err
    84  	}
    85  	return h.(hashNode), nil
    86  }
    87  
    88  // commit collapses a node down into a hash node and inserts it into the database
    89  func (c *committer) commit(n node, db *Database) (node, error) {
    90  	// if this path is clean, use available cached data
    91  	hash, dirty := n.cache()
    92  	if hash != nil && !dirty {
    93  		return hash, nil
    94  	}
    95  	// Commit children, then parent, and remove remove the dirty flag.
    96  	switch cn := n.(type) {
    97  	case *shortNode:
    98  		// Commit child
    99  		collapsed := cn.copy()
   100  
   101  		// If the child is fullnode, recursively commit.
   102  		// Otherwise it can only be hashNode or valueNode.
   103  		if _, ok := cn.Val.(*fullNode); ok {
   104  			childV, err := c.commit(cn.Val, db)
   105  			if err != nil {
   106  				return nil, err
   107  			}
   108  			collapsed.Val = childV
   109  		}
   110  		// The key needs to be copied, since we're delivering it to database
   111  		collapsed.Key = hexToCompact(cn.Key)
   112  		hashedNode := c.store(collapsed, db)
   113  		if hn, ok := hashedNode.(hashNode); ok {
   114  			return hn, nil
   115  		}
   116  		return collapsed, nil
   117  	case *fullNode:
   118  		hashedKids, err := c.commitChildren(cn, db)
   119  		if err != nil {
   120  			return nil, err
   121  		}
   122  		collapsed := cn.copy()
   123  		collapsed.Children = hashedKids
   124  
   125  		hashedNode := c.store(collapsed, db)
   126  		if hn, ok := hashedNode.(hashNode); ok {
   127  			return hn, nil
   128  		}
   129  		return collapsed, nil
   130  	case hashNode:
   131  		return cn, nil
   132  	default:
   133  		// nil, valuenode shouldn't be committed
   134  		panic(fmt.Sprintf("%T: invalid node: %v", n, n))
   135  	}
   136  }
   137  
   138  // commitChildren commits the children of the given fullnode
   139  func (c *committer) commitChildren(n *fullNode, db *Database) ([17]node, error) {
   140  	var children [17]node
   141  	for i := 0; i < 16; i++ {
   142  		child := n.Children[i]
   143  		if child == nil {
   144  			continue
   145  		}
   146  		// If it's the hashed child, save the hash value directly.
   147  		// Note: it's impossible that the child in range [0, 15]
   148  		// is a valuenode.
   149  		if hn, ok := child.(hashNode); ok {
   150  			children[i] = hn
   151  			continue
   152  		}
   153  		// Commit the child recursively and store the "hashed" value.
   154  		// Note the returned node can be some embedded nodes, so it's
   155  		// possible the type is not hashnode.
   156  		hashed, err := c.commit(child, db)
   157  		if err != nil {
   158  			return children, err
   159  		}
   160  		children[i] = hashed
   161  	}
   162  	// For the 17th child, it's possible the type is valuenode.
   163  	if n.Children[16] != nil {
   164  		children[16] = n.Children[16]
   165  	}
   166  	return children, nil
   167  }
   168  
   169  // store hashes the node n and if we have a storage layer specified, it writes
   170  // the key/value pair to it and tracks any node->child references as well as any
   171  // node->external trie references.
   172  func (c *committer) store(n node, db *Database) node {
   173  	// Larger nodes are replaced by their hash and stored in the database.
   174  	var (
   175  		hash, _ = n.cache()
   176  		size    int
   177  	)
   178  	if hash == nil {
   179  		// This was not generated - must be a small node stored in the parent.
   180  		// In theory we should apply the leafCall here if it's not nil(embedded
   181  		// node usually contains value). But small value(less than 32bytes) is
   182  		// not our target.
   183  		return n
   184  	} else {
   185  		// We have the hash already, estimate the RLP encoding-size of the node.
   186  		// The size is used for mem tracking, does not need to be exact
   187  		size = estimateSize(n)
   188  	}
   189  	// If we're using channel-based leaf-reporting, send to channel.
   190  	// The leaf channel will be active only when there an active leaf-callback
   191  	if c.leafCh != nil {
   192  		c.leafCh <- &leaf{
   193  			size: size,
   194  			hash: common.BytesToHash(hash),
   195  			node: n,
   196  		}
   197  	} else if db != nil {
   198  		// No leaf-callback used, but there's still a database. Do serial
   199  		// insertion
   200  		db.lock.Lock()
   201  		db.insert(common.BytesToHash(hash), size, n)
   202  		db.lock.Unlock()
   203  	}
   204  	return hash
   205  }
   206  
   207  // commitLoop does the actual insert + leaf callback for nodes.
   208  func (c *committer) commitLoop(db *Database) {
   209  	for item := range c.leafCh {
   210  		var (
   211  			hash = item.hash
   212  			size = item.size
   213  			n    = item.node
   214  		)
   215  		// We are pooling the trie nodes into an intermediate memory cache
   216  		db.lock.Lock()
   217  		db.insert(hash, size, n)
   218  		db.lock.Unlock()
   219  
   220  		if c.onleaf != nil {
   221  			switch n := n.(type) {
   222  			case *shortNode:
   223  				if child, ok := n.Val.(valueNode); ok {
   224  					c.onleaf(nil, child, hash)
   225  				}
   226  			case *fullNode:
   227  				// For children in range [0, 15], it's impossible
   228  				// to contain valuenode. Only check the 17th child.
   229  				if n.Children[16] != nil {
   230  					c.onleaf(nil, n.Children[16].(valueNode), hash)
   231  				}
   232  			}
   233  		}
   234  	}
   235  }
   236  
   237  func (c *committer) makeHashNode(data []byte) hashNode {
   238  	n := make(hashNode, c.sha.Size())
   239  	c.sha.Reset()
   240  	c.sha.Write(data)
   241  	c.sha.Read(n)
   242  	return n
   243  }
   244  
   245  // estimateSize estimates the size of an rlp-encoded node, without actually
   246  // rlp-encoding it (zero allocs). This method has been experimentally tried, and with a trie
   247  // with 1000 leafs, the only errors above 1% are on small shortnodes, where this
   248  // method overestimates by 2 or 3 bytes (e.g. 37 instead of 35)
   249  func estimateSize(n node) int {
   250  	switch n := n.(type) {
   251  	case *shortNode:
   252  		// A short node contains a compacted key, and a value.
   253  		return 3 + len(n.Key) + estimateSize(n.Val)
   254  	case *fullNode:
   255  		// A full node contains up to 16 hashes (some nils), and a key
   256  		s := 3
   257  		for i := 0; i < 16; i++ {
   258  			if child := n.Children[i]; child != nil {
   259  				s += estimateSize(child)
   260  			} else {
   261  				s++
   262  			}
   263  		}
   264  		return s
   265  	case valueNode:
   266  		return 1 + len(n)
   267  	case hashNode:
   268  		return 1 + len(n)
   269  	default:
   270  		panic(fmt.Sprintf("node type %T", n))
   271  	}
   272  }