github.com/core-coin/go-core/v2@v2.1.9/trie/database.go (about)

     1  // Copyright 2018 by the Authors
     2  // This file is part of the go-core library.
     3  //
     4  // The go-core library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-core library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-core library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package trie
    18  
    19  import (
    20  	"errors"
    21  	"fmt"
    22  	"io"
    23  	"reflect"
    24  	"runtime"
    25  	"sync"
    26  	"time"
    27  
    28  	"github.com/VictoriaMetrics/fastcache"
    29  
    30  	"github.com/core-coin/go-core/v2/xcbdb"
    31  
    32  	"github.com/core-coin/go-core/v2/common"
    33  	"github.com/core-coin/go-core/v2/core/rawdb"
    34  	"github.com/core-coin/go-core/v2/log"
    35  	"github.com/core-coin/go-core/v2/metrics"
    36  	"github.com/core-coin/go-core/v2/rlp"
    37  )
    38  
    39  var (
    40  	memcacheCleanHitMeter   = metrics.NewRegisteredMeter("trie/memcache/clean/hit", nil)
    41  	memcacheCleanMissMeter  = metrics.NewRegisteredMeter("trie/memcache/clean/miss", nil)
    42  	memcacheCleanReadMeter  = metrics.NewRegisteredMeter("trie/memcache/clean/read", nil)
    43  	memcacheCleanWriteMeter = metrics.NewRegisteredMeter("trie/memcache/clean/write", nil)
    44  
    45  	memcacheDirtyHitMeter   = metrics.NewRegisteredMeter("trie/memcache/dirty/hit", nil)
    46  	memcacheDirtyMissMeter  = metrics.NewRegisteredMeter("trie/memcache/dirty/miss", nil)
    47  	memcacheDirtyReadMeter  = metrics.NewRegisteredMeter("trie/memcache/dirty/read", nil)
    48  	memcacheDirtyWriteMeter = metrics.NewRegisteredMeter("trie/memcache/dirty/write", nil)
    49  
    50  	memcacheFlushTimeTimer  = metrics.NewRegisteredResettingTimer("trie/memcache/flush/time", nil)
    51  	memcacheFlushNodesMeter = metrics.NewRegisteredMeter("trie/memcache/flush/nodes", nil)
    52  	memcacheFlushSizeMeter  = metrics.NewRegisteredMeter("trie/memcache/flush/size", nil)
    53  
    54  	memcacheGCTimeTimer  = metrics.NewRegisteredResettingTimer("trie/memcache/gc/time", nil)
    55  	memcacheGCNodesMeter = metrics.NewRegisteredMeter("trie/memcache/gc/nodes", nil)
    56  	memcacheGCSizeMeter  = metrics.NewRegisteredMeter("trie/memcache/gc/size", nil)
    57  
    58  	memcacheCommitTimeTimer  = metrics.NewRegisteredResettingTimer("trie/memcache/commit/time", nil)
    59  	memcacheCommitNodesMeter = metrics.NewRegisteredMeter("trie/memcache/commit/nodes", nil)
    60  	memcacheCommitSizeMeter  = metrics.NewRegisteredMeter("trie/memcache/commit/size", nil)
    61  )
    62  
    63  // Database is an intermediate write layer between the trie data structures and
    64  // the disk database. The aim is to accumulate trie writes in-memory and only
    65  // periodically flush a couple tries to disk, garbage collecting the remainder.
    66  //
    67  // Note, the trie Database is **not** thread safe in its mutations, but it **is**
    68  // thread safe in providing individual, independent node access. The rationale
    69  // behind this split design is to provide read access to RPC handlers and sync
    70  // servers even while the trie is executing expensive garbage collection.
    71  type Database struct {
    72  	diskdb xcbdb.KeyValueStore // Persistent storage for matured trie nodes
    73  
    74  	cleans  *fastcache.Cache            // GC friendly memory cache of clean node RLPs
    75  	dirties map[common.Hash]*cachedNode // Data and references relationships of dirty trie nodes
    76  	oldest  common.Hash                 // Oldest tracked node, flush-list head
    77  	newest  common.Hash                 // Newest tracked node, flush-list tail
    78  
    79  	preimages map[common.Hash][]byte // Preimages of nodes from the secure trie
    80  
    81  	gctime  time.Duration      // Time spent on garbage collection since last commit
    82  	gcnodes uint64             // Nodes garbage collected since last commit
    83  	gcsize  common.StorageSize // Data storage garbage collected since last commit
    84  
    85  	flushtime  time.Duration      // Time spent on data flushing since last commit
    86  	flushnodes uint64             // Nodes flushed since last commit
    87  	flushsize  common.StorageSize // Data storage flushed since last commit
    88  
    89  	dirtiesSize   common.StorageSize // Storage size of the dirty node cache (exc. metadata)
    90  	childrenSize  common.StorageSize // Storage size of the external children tracking
    91  	preimagesSize common.StorageSize // Storage size of the preimages cache
    92  
    93  	lock sync.RWMutex
    94  }
    95  
    96  // rawNode is a simple binary blob used to differentiate between collapsed trie
    97  // nodes and already encoded RLP binary blobs (while at the same time store them
    98  // in the same cache fields).
    99  type rawNode []byte
   100  
   101  func (n rawNode) cache() (hashNode, bool)   { panic("this should never end up in a live trie") }
   102  func (n rawNode) fstring(ind string) string { panic("this should never end up in a live trie") }
   103  
   104  func (n rawNode) EncodeRLP(w io.Writer) error {
   105  	_, err := w.Write(n)
   106  	return err
   107  }
   108  
   109  // rawFullNode represents only the useful data content of a full node, with the
   110  // caches and flags stripped out to minimize its data storage. This type honors
   111  // the same RLP encoding as the original parent.
   112  type rawFullNode [17]node
   113  
   114  func (n rawFullNode) cache() (hashNode, bool)   { panic("this should never end up in a live trie") }
   115  func (n rawFullNode) fstring(ind string) string { panic("this should never end up in a live trie") }
   116  
   117  func (n rawFullNode) EncodeRLP(w io.Writer) error {
   118  	var nodes [17]node
   119  
   120  	for i, child := range n {
   121  		if child != nil {
   122  			nodes[i] = child
   123  		} else {
   124  			nodes[i] = nilValueNode
   125  		}
   126  	}
   127  	return rlp.Encode(w, nodes)
   128  }
   129  
   130  // rawShortNode represents only the useful data content of a short node, with the
   131  // caches and flags stripped out to minimize its data storage. This type honors
   132  // the same RLP encoding as the original parent.
   133  type rawShortNode struct {
   134  	Key []byte
   135  	Val node
   136  }
   137  
   138  func (n rawShortNode) cache() (hashNode, bool)   { panic("this should never end up in a live trie") }
   139  func (n rawShortNode) fstring(ind string) string { panic("this should never end up in a live trie") }
   140  
   141  // cachedNode is all the information we know about a single cached trie node
   142  // in the memory database write layer.
   143  type cachedNode struct {
   144  	node node   // Cached collapsed trie node, or raw rlp data
   145  	size uint16 // Byte size of the useful cached data
   146  
   147  	parents  uint32                 // Number of live nodes referencing this one
   148  	children map[common.Hash]uint16 // External children referenced by this node
   149  
   150  	flushPrev common.Hash // Previous node in the flush-list
   151  	flushNext common.Hash // Next node in the flush-list
   152  }
   153  
   154  // cachedNodeSize is the raw size of a cachedNode data structure without any
   155  // node data included. It's an approximate size, but should be a lot better
   156  // than not counting them.
   157  var cachedNodeSize = int(reflect.TypeOf(cachedNode{}).Size())
   158  
   159  // cachedNodeChildrenSize is the raw size of an initialized but empty external
   160  // reference map.
   161  const cachedNodeChildrenSize = 48
   162  
   163  // rlp returns the raw rlp encoded blob of the cached trie node, either directly
   164  // from the cache, or by regenerating it from the collapsed node.
   165  func (n *cachedNode) rlp() []byte {
   166  	if node, ok := n.node.(rawNode); ok {
   167  		return node
   168  	}
   169  	blob, err := rlp.EncodeToBytes(n.node)
   170  	if err != nil {
   171  		panic(err)
   172  	}
   173  	return blob
   174  }
   175  
   176  // obj returns the decoded and expanded trie node, either directly from the cache,
   177  // or by regenerating it from the rlp encoded blob.
   178  func (n *cachedNode) obj(hash common.Hash) node {
   179  	if node, ok := n.node.(rawNode); ok {
   180  		return mustDecodeNode(hash[:], node)
   181  	}
   182  	return expandNode(hash[:], n.node)
   183  }
   184  
   185  // forChilds invokes the callback for all the tracked children of this node,
   186  // both the implicit ones from inside the node as well as the explicit ones
   187  // from outside the node.
   188  func (n *cachedNode) forChilds(onChild func(hash common.Hash)) {
   189  	for child := range n.children {
   190  		onChild(child)
   191  	}
   192  	if _, ok := n.node.(rawNode); !ok {
   193  		forGatherChildren(n.node, onChild)
   194  	}
   195  }
   196  
   197  // forGatherChildren traverses the node hierarchy of a collapsed storage node and
   198  // invokes the callback for all the hashnode children.
   199  func forGatherChildren(n node, onChild func(hash common.Hash)) {
   200  	switch n := n.(type) {
   201  	case *rawShortNode:
   202  		forGatherChildren(n.Val, onChild)
   203  	case rawFullNode:
   204  		for i := 0; i < 16; i++ {
   205  			forGatherChildren(n[i], onChild)
   206  		}
   207  	case hashNode:
   208  		onChild(common.BytesToHash(n))
   209  	case valueNode, nil, rawNode:
   210  	default:
   211  		panic(fmt.Sprintf("unknown node type: %T", n))
   212  	}
   213  }
   214  
   215  // simplifyNode traverses the hierarchy of an expanded memory node and discards
   216  // all the internal caches, returning a node that only contains the raw data.
   217  func simplifyNode(n node) node {
   218  	switch n := n.(type) {
   219  	case *shortNode:
   220  		// Short nodes discard the flags and cascade
   221  		return &rawShortNode{Key: n.Key, Val: simplifyNode(n.Val)}
   222  
   223  	case *fullNode:
   224  		// Full nodes discard the flags and cascade
   225  		node := rawFullNode(n.Children)
   226  		for i := 0; i < len(node); i++ {
   227  			if node[i] != nil {
   228  				node[i] = simplifyNode(node[i])
   229  			}
   230  		}
   231  		return node
   232  
   233  	case valueNode, hashNode, rawNode:
   234  		return n
   235  
   236  	default:
   237  		panic(fmt.Sprintf("unknown node type: %T", n))
   238  	}
   239  }
   240  
   241  // expandNode traverses the node hierarchy of a collapsed storage node and converts
   242  // all fields and keys into expanded memory form.
   243  func expandNode(hash hashNode, n node) node {
   244  	switch n := n.(type) {
   245  	case *rawShortNode:
   246  		// Short nodes need key and child expansion
   247  		return &shortNode{
   248  			Key: compactToHex(n.Key),
   249  			Val: expandNode(nil, n.Val),
   250  			flags: nodeFlag{
   251  				hash: hash,
   252  			},
   253  		}
   254  
   255  	case rawFullNode:
   256  		// Full nodes need child expansion
   257  		node := &fullNode{
   258  			flags: nodeFlag{
   259  				hash: hash,
   260  			},
   261  		}
   262  		for i := 0; i < len(node.Children); i++ {
   263  			if n[i] != nil {
   264  				node.Children[i] = expandNode(nil, n[i])
   265  			}
   266  		}
   267  		return node
   268  
   269  	case valueNode, hashNode:
   270  		return n
   271  
   272  	default:
   273  		panic(fmt.Sprintf("unknown node type: %T", n))
   274  	}
   275  }
   276  
   277  // Config defines all necessary options for database.
   278  type Config struct {
   279  	Cache     int    // Memory allowance (MB) to use for caching trie nodes in memory
   280  	Journal   string // Journal of clean cache to survive node restarts
   281  	Preimages bool   // Flag whether the preimage of trie key is recorded
   282  }
   283  
   284  // NewDatabase creates a new trie database to store ephemeral trie content before
   285  // its written out to disk or garbage collected. No read cache is created, so all
   286  // data retrievals will hit the underlying disk database.
   287  func NewDatabase(diskdb xcbdb.KeyValueStore) *Database {
   288  	return NewDatabaseWithConfig(diskdb, nil)
   289  }
   290  
   291  // NewDatabaseWithConfig creates a new trie database to store ephemeral trie content
   292  // before its written out to disk or garbage collected. It also acts as a read cache
   293  // for nodes loaded from disk.
   294  func NewDatabaseWithConfig(diskdb xcbdb.KeyValueStore, config *Config) *Database {
   295  	var cleans *fastcache.Cache
   296  	if config != nil && config.Cache > 0 {
   297  		if config.Journal == "" {
   298  			cleans = fastcache.New(config.Cache * 1024 * 1024)
   299  		} else {
   300  			cleans = fastcache.LoadFromFileOrNew(config.Journal, config.Cache*1024*1024)
   301  		}
   302  	}
   303  	db := &Database{
   304  		diskdb: diskdb,
   305  		cleans: cleans,
   306  		dirties: map[common.Hash]*cachedNode{{}: {
   307  			children: make(map[common.Hash]uint16),
   308  		}},
   309  	}
   310  	if config == nil || config.Preimages { // TODO(raisty): Flip to default off in the future
   311  		db.preimages = make(map[common.Hash][]byte)
   312  	}
   313  	return db
   314  }
   315  
   316  // DiskDB retrieves the persistent storage backing the trie database.
   317  func (db *Database) DiskDB() xcbdb.KeyValueStore {
   318  	return db.diskdb
   319  }
   320  
   321  // insert inserts a collapsed trie node into the memory database.
   322  // The blob size must be specified to allow proper size tracking.
   323  // All nodes inserted by this function will be reference tracked
   324  // and in theory should only used for **trie nodes** insertion.
   325  func (db *Database) insert(hash common.Hash, size int, node node) {
   326  	// If the node's already cached, skip
   327  	if _, ok := db.dirties[hash]; ok {
   328  		return
   329  	}
   330  	memcacheDirtyWriteMeter.Mark(int64(size))
   331  
   332  	// Create the cached entry for this node
   333  	entry := &cachedNode{
   334  		node:      simplifyNode(node),
   335  		size:      uint16(size),
   336  		flushPrev: db.newest,
   337  	}
   338  	entry.forChilds(func(child common.Hash) {
   339  		if c := db.dirties[child]; c != nil {
   340  			c.parents++
   341  		}
   342  	})
   343  	db.dirties[hash] = entry
   344  
   345  	// Update the flush-list endpoints
   346  	if db.oldest == (common.Hash{}) {
   347  		db.oldest, db.newest = hash, hash
   348  	} else {
   349  		db.dirties[db.newest].flushNext, db.newest = hash, hash
   350  	}
   351  	db.dirtiesSize += common.StorageSize(common.HashLength + entry.size)
   352  }
   353  
   354  // insertPreimage writes a new trie node pre-image to the memory database if it's
   355  // yet unknown. The method will NOT make a copy of the slice,
   356  // only use if the preimage will NOT be changed later on.
   357  //
   358  // Note, this method assumes that the database's lock is held!
   359  func (db *Database) insertPreimage(hash common.Hash, preimage []byte) {
   360  	// Short circuit if preimage collection is disabled
   361  	if db.preimages == nil {
   362  		return
   363  	}
   364  	// Track the preimage if a yet unknown one
   365  	if _, ok := db.preimages[hash]; ok {
   366  		return
   367  	}
   368  	db.preimages[hash] = preimage
   369  	db.preimagesSize += common.StorageSize(common.HashLength + len(preimage))
   370  }
   371  
   372  // node retrieves a cached trie node from memory, or returns nil if none can be
   373  // found in the memory cache.
   374  func (db *Database) node(hash common.Hash) node {
   375  	// Retrieve the node from the clean cache if available
   376  	if db.cleans != nil {
   377  		if enc := db.cleans.Get(nil, hash[:]); enc != nil {
   378  			memcacheCleanHitMeter.Mark(1)
   379  			memcacheCleanReadMeter.Mark(int64(len(enc)))
   380  			return mustDecodeNode(hash[:], enc)
   381  		}
   382  	}
   383  	// Retrieve the node from the dirty cache if available
   384  	db.lock.RLock()
   385  	dirty := db.dirties[hash]
   386  	db.lock.RUnlock()
   387  
   388  	if dirty != nil {
   389  		memcacheDirtyHitMeter.Mark(1)
   390  		memcacheDirtyReadMeter.Mark(int64(dirty.size))
   391  		return dirty.obj(hash)
   392  	}
   393  	memcacheDirtyMissMeter.Mark(1)
   394  
   395  	// Content unavailable in memory, attempt to retrieve from disk
   396  	enc, err := db.diskdb.Get(hash[:])
   397  	if err != nil || enc == nil {
   398  		return nil
   399  	}
   400  	if db.cleans != nil {
   401  		db.cleans.Set(hash[:], enc)
   402  		memcacheCleanMissMeter.Mark(1)
   403  		memcacheCleanWriteMeter.Mark(int64(len(enc)))
   404  	}
   405  	return mustDecodeNode(hash[:], enc)
   406  }
   407  
   408  // Node retrieves an encoded cached trie node from memory. If it cannot be found
   409  // cached, the method queries the persistent database for the content.
   410  func (db *Database) Node(hash common.Hash) ([]byte, error) {
   411  	// It doesn't make sense to retrieve the metaroot
   412  	if hash == (common.Hash{}) {
   413  		return nil, errors.New("not found")
   414  	}
   415  	// Retrieve the node from the clean cache if available
   416  	if db.cleans != nil {
   417  		if enc := db.cleans.Get(nil, hash[:]); enc != nil {
   418  			memcacheCleanHitMeter.Mark(1)
   419  			memcacheCleanReadMeter.Mark(int64(len(enc)))
   420  			return enc, nil
   421  		}
   422  	}
   423  	// Retrieve the node from the dirty cache if available
   424  	db.lock.RLock()
   425  	dirty := db.dirties[hash]
   426  	db.lock.RUnlock()
   427  
   428  	if dirty != nil {
   429  		memcacheDirtyHitMeter.Mark(1)
   430  		memcacheDirtyReadMeter.Mark(int64(dirty.size))
   431  		return dirty.rlp(), nil
   432  	}
   433  	memcacheDirtyMissMeter.Mark(1)
   434  
   435  	// Content unavailable in memory, attempt to retrieve from disk
   436  	enc := rawdb.ReadTrieNode(db.diskdb, hash)
   437  	if len(enc) != 0 {
   438  		if db.cleans != nil {
   439  			db.cleans.Set(hash[:], enc)
   440  			memcacheCleanMissMeter.Mark(1)
   441  			memcacheCleanWriteMeter.Mark(int64(len(enc)))
   442  		}
   443  		return enc, nil
   444  	}
   445  	return nil, errors.New("not found")
   446  }
   447  
   448  // preimage retrieves a cached trie node pre-image from memory. If it cannot be
   449  // found cached, the method queries the persistent database for the content.
   450  func (db *Database) preimage(hash common.Hash) []byte {
   451  	// Short circuit if preimage collection is disabled
   452  	if db.preimages == nil {
   453  		return nil
   454  	}
   455  	// Retrieve the node from cache if available
   456  	db.lock.RLock()
   457  	preimage := db.preimages[hash]
   458  	db.lock.RUnlock()
   459  
   460  	if preimage != nil {
   461  		return preimage
   462  	}
   463  	return rawdb.ReadPreimage(db.diskdb, hash)
   464  }
   465  
   466  // Nodes retrieves the hashes of all the nodes cached within the memory database.
   467  // This method is extremely expensive and should only be used to validate internal
   468  // states in test code.
   469  func (db *Database) Nodes() []common.Hash {
   470  	db.lock.RLock()
   471  	defer db.lock.RUnlock()
   472  
   473  	var hashes = make([]common.Hash, 0, len(db.dirties))
   474  	for hash := range db.dirties {
   475  		if hash != (common.Hash{}) { // Special case for "root" references/nodes
   476  			hashes = append(hashes, hash)
   477  		}
   478  	}
   479  	return hashes
   480  }
   481  
   482  // Reference adds a new reference from a parent node to a child node.
   483  // This function is used to add reference between internal trie node
   484  // and external node(e.g. storage trie root), all internal trie nodes
   485  // are referenced together by database itself.
   486  func (db *Database) Reference(child common.Hash, parent common.Hash) {
   487  	db.lock.Lock()
   488  	defer db.lock.Unlock()
   489  
   490  	db.reference(child, parent)
   491  }
   492  
   493  // reference is the private locked version of Reference.
   494  func (db *Database) reference(child common.Hash, parent common.Hash) {
   495  	// If the node does not exist, it's a node pulled from disk, skip
   496  	node, ok := db.dirties[child]
   497  	if !ok {
   498  		return
   499  	}
   500  	// If the reference already exists, only duplicate for roots
   501  	if db.dirties[parent].children == nil {
   502  		db.dirties[parent].children = make(map[common.Hash]uint16)
   503  		db.childrenSize += cachedNodeChildrenSize
   504  	} else if _, ok = db.dirties[parent].children[child]; ok && parent != (common.Hash{}) {
   505  		return
   506  	}
   507  	node.parents++
   508  	db.dirties[parent].children[child]++
   509  	if db.dirties[parent].children[child] == 1 {
   510  		db.childrenSize += common.HashLength + 2 // uint16 counter
   511  	}
   512  }
   513  
   514  // Dereference removes an existing reference from a root node.
   515  func (db *Database) Dereference(root common.Hash) {
   516  	// Sanity check to ensure that the meta-root is not removed
   517  	if root == (common.Hash{}) {
   518  		log.Error("Attempted to dereference the trie cache meta root")
   519  		return
   520  	}
   521  	db.lock.Lock()
   522  	defer db.lock.Unlock()
   523  
   524  	nodes, storage, start := len(db.dirties), db.dirtiesSize, time.Now()
   525  	db.dereference(root, common.Hash{})
   526  
   527  	db.gcnodes += uint64(nodes - len(db.dirties))
   528  	db.gcsize += storage - db.dirtiesSize
   529  	db.gctime += time.Since(start)
   530  
   531  	memcacheGCTimeTimer.Update(time.Since(start))
   532  	memcacheGCSizeMeter.Mark(int64(storage - db.dirtiesSize))
   533  	memcacheGCNodesMeter.Mark(int64(nodes - len(db.dirties)))
   534  
   535  	log.Debug("Dereferenced trie from memory database", "nodes", nodes-len(db.dirties), "size", storage-db.dirtiesSize, "time", time.Since(start),
   536  		"gcnodes", db.gcnodes, "gcsize", db.gcsize, "gctime", db.gctime, "livenodes", len(db.dirties), "livesize", db.dirtiesSize)
   537  }
   538  
   539  // dereference is the private locked version of Dereference.
   540  func (db *Database) dereference(child common.Hash, parent common.Hash) {
   541  	// Dereference the parent-child
   542  	node := db.dirties[parent]
   543  
   544  	if node.children != nil && node.children[child] > 0 {
   545  		node.children[child]--
   546  		if node.children[child] == 0 {
   547  			delete(node.children, child)
   548  			db.childrenSize -= (common.HashLength + 2) // uint16 counter
   549  		}
   550  	}
   551  	// If the child does not exist, it's a previously committed node.
   552  	node, ok := db.dirties[child]
   553  	if !ok {
   554  		return
   555  	}
   556  	// If there are no more references to the child, delete it and cascade
   557  	if node.parents > 0 {
   558  		// This is a special cornercase where a node loaded from disk (i.e. not in the
   559  		// memcache any more) gets reinjected as a new node (short node split into full,
   560  		// then reverted into short), causing a cached node to have no parents. That is
   561  		// no problem in itself, but don't make maxint parents out of it.
   562  		node.parents--
   563  	}
   564  	if node.parents == 0 {
   565  		// Remove the node from the flush-list
   566  		switch child {
   567  		case db.oldest:
   568  			db.oldest = node.flushNext
   569  			db.dirties[node.flushNext].flushPrev = common.Hash{}
   570  		case db.newest:
   571  			db.newest = node.flushPrev
   572  			db.dirties[node.flushPrev].flushNext = common.Hash{}
   573  		default:
   574  			db.dirties[node.flushPrev].flushNext = node.flushNext
   575  			db.dirties[node.flushNext].flushPrev = node.flushPrev
   576  		}
   577  		// Dereference all children and delete the node
   578  		node.forChilds(func(hash common.Hash) {
   579  			db.dereference(hash, child)
   580  		})
   581  		delete(db.dirties, child)
   582  		db.dirtiesSize -= common.StorageSize(common.HashLength + int(node.size))
   583  		if node.children != nil {
   584  			db.childrenSize -= cachedNodeChildrenSize
   585  		}
   586  	}
   587  }
   588  
   589  // Cap iteratively flushes old but still referenced trie nodes until the total
   590  // memory usage goes below the given threshold.
   591  //
   592  // Note, this method is a non-synchronized mutator. It is unsafe to call this
   593  // concurrently with other mutators.
   594  func (db *Database) Cap(limit common.StorageSize) error {
   595  	// Create a database batch to flush persistent data out. It is important that
   596  	// outside code doesn't see an inconsistent state (referenced data removed from
   597  	// memory cache during commit but not yet in persistent storage). This is ensured
   598  	// by only uncaching existing data when the database write finalizes.
   599  	nodes, storage, start := len(db.dirties), db.dirtiesSize, time.Now()
   600  	batch := db.diskdb.NewBatch()
   601  
   602  	// db.dirtiesSize only contains the useful data in the cache, but when reporting
   603  	// the total memory consumption, the maintenance metadata is also needed to be
   604  	// counted.
   605  	size := db.dirtiesSize + common.StorageSize((len(db.dirties)-1)*cachedNodeSize)
   606  	size += db.childrenSize - common.StorageSize(len(db.dirties[common.Hash{}].children)*(common.HashLength+2))
   607  
   608  	// If the preimage cache got large enough, push to disk. If it's still small
   609  	// leave for later to deduplicate writes.
   610  	flushPreimages := db.preimagesSize > 4*1024*1024
   611  	if flushPreimages {
   612  		if db.preimages == nil {
   613  			log.Error("Attempted to write preimages whilst disabled")
   614  		} else {
   615  			rawdb.WritePreimages(batch, db.preimages)
   616  			if batch.ValueSize() > xcbdb.IdealBatchSize {
   617  				if err := batch.Write(); err != nil {
   618  					return err
   619  				}
   620  				batch.Reset()
   621  			}
   622  		}
   623  	}
   624  	// Keep committing nodes from the flush-list until we're below allowance
   625  	oldest := db.oldest
   626  	for size > limit && oldest != (common.Hash{}) {
   627  		// Fetch the oldest referenced node and push into the batch
   628  		node := db.dirties[oldest]
   629  		rawdb.WriteTrieNode(batch, oldest, node.rlp())
   630  
   631  		// If we exceeded the ideal batch size, commit and reset
   632  		if batch.ValueSize() >= xcbdb.IdealBatchSize {
   633  			if err := batch.Write(); err != nil {
   634  				log.Error("Failed to write flush list to disk", "err", err)
   635  				return err
   636  			}
   637  			batch.Reset()
   638  		}
   639  		// Iterate to the next flush item, or abort if the size cap was achieved. Size
   640  		// is the total size, including the useful cached data (hash -> blob), the
   641  		// cache item metadata, as well as external children mappings.
   642  		size -= common.StorageSize(common.HashLength + int(node.size) + cachedNodeSize)
   643  		if node.children != nil {
   644  			size -= common.StorageSize(cachedNodeChildrenSize + len(node.children)*(common.HashLength+2))
   645  		}
   646  		oldest = node.flushNext
   647  	}
   648  	// Flush out any remainder data from the last batch
   649  	if err := batch.Write(); err != nil {
   650  		log.Error("Failed to write flush list to disk", "err", err)
   651  		return err
   652  	}
   653  	// Write successful, clear out the flushed data
   654  	db.lock.Lock()
   655  	defer db.lock.Unlock()
   656  
   657  	if flushPreimages {
   658  		if db.preimages == nil {
   659  			log.Error("Attempted to reset preimage cache whilst disabled")
   660  		} else {
   661  			db.preimages, db.preimagesSize = make(map[common.Hash][]byte), 0
   662  		}
   663  	}
   664  	for db.oldest != oldest {
   665  		node := db.dirties[db.oldest]
   666  		delete(db.dirties, db.oldest)
   667  		db.oldest = node.flushNext
   668  
   669  		db.dirtiesSize -= common.StorageSize(common.HashLength + int(node.size))
   670  		if node.children != nil {
   671  			db.childrenSize -= common.StorageSize(cachedNodeChildrenSize + len(node.children)*(common.HashLength+2))
   672  		}
   673  	}
   674  	if db.oldest != (common.Hash{}) {
   675  		db.dirties[db.oldest].flushPrev = common.Hash{}
   676  	}
   677  	db.flushnodes += uint64(nodes - len(db.dirties))
   678  	db.flushsize += storage - db.dirtiesSize
   679  	db.flushtime += time.Since(start)
   680  
   681  	memcacheFlushTimeTimer.Update(time.Since(start))
   682  	memcacheFlushSizeMeter.Mark(int64(storage - db.dirtiesSize))
   683  	memcacheFlushNodesMeter.Mark(int64(nodes - len(db.dirties)))
   684  
   685  	log.Debug("Persisted nodes from memory database", "nodes", nodes-len(db.dirties), "size", storage-db.dirtiesSize, "time", time.Since(start),
   686  		"flushnodes", db.flushnodes, "flushsize", db.flushsize, "flushtime", db.flushtime, "livenodes", len(db.dirties), "livesize", db.dirtiesSize)
   687  
   688  	return nil
   689  }
   690  
   691  // Commit iterates over all the children of a particular node, writes them out
   692  // to disk, forcefully tearing down all references in both directions. As a side
   693  // effect, all pre-images accumulated up to this point are also written.
   694  //
   695  // Note, this method is a non-synchronized mutator. It is unsafe to call this
   696  // concurrently with other mutators.
   697  func (db *Database) Commit(node common.Hash, report bool, callback func(common.Hash)) error {
   698  	// Create a database batch to flush persistent data out. It is important that
   699  	// outside code doesn't see an inconsistent state (referenced data removed from
   700  	// memory cache during commit but not yet in persistent storage). This is ensured
   701  	// by only uncaching existing data when the database write finalizes.
   702  	start := time.Now()
   703  	batch := db.diskdb.NewBatch()
   704  
   705  	// Move all of the accumulated preimages into a write batch
   706  	if db.preimages != nil {
   707  		rawdb.WritePreimages(batch, db.preimages)
   708  		if batch.ValueSize() > xcbdb.IdealBatchSize {
   709  			if err := batch.Write(); err != nil {
   710  				return err
   711  			}
   712  			batch.Reset()
   713  		}
   714  		// Since we're going to replay trie node writes into the clean cache, flush out
   715  		// any batched pre-images before continuing.
   716  		if err := batch.Write(); err != nil {
   717  			return err
   718  		}
   719  		batch.Reset()
   720  	}
   721  	// Move the trie itself into the batch, flushing if enough data is accumulated
   722  	nodes, storage := len(db.dirties), db.dirtiesSize
   723  
   724  	uncacher := &cleaner{db}
   725  	if err := db.commit(node, batch, uncacher, callback); err != nil {
   726  		log.Error("Failed to commit trie from trie database", "err", err)
   727  		return err
   728  	}
   729  	// Trie mostly committed to disk, flush any batch leftovers
   730  	if err := batch.Write(); err != nil {
   731  		log.Error("Failed to write trie to disk", "err", err)
   732  		return err
   733  	}
   734  	// Uncache any leftovers in the last batch
   735  	db.lock.Lock()
   736  	defer db.lock.Unlock()
   737  
   738  	batch.Replay(uncacher)
   739  	batch.Reset()
   740  
   741  	// Reset the storage counters and bumpd metrics
   742  	if db.preimages != nil {
   743  		db.preimages, db.preimagesSize = make(map[common.Hash][]byte), 0
   744  	}
   745  	memcacheCommitTimeTimer.Update(time.Since(start))
   746  	memcacheCommitSizeMeter.Mark(int64(storage - db.dirtiesSize))
   747  	memcacheCommitNodesMeter.Mark(int64(nodes - len(db.dirties)))
   748  
   749  	logger := log.Info
   750  	if !report {
   751  		logger = log.Debug
   752  	}
   753  	logger("Persisted trie from memory database", "nodes", nodes-len(db.dirties)+int(db.flushnodes), "size", storage-db.dirtiesSize+db.flushsize, "time", time.Since(start)+db.flushtime,
   754  		"gcnodes", db.gcnodes, "gcsize", db.gcsize, "gctime", db.gctime, "livenodes", len(db.dirties), "livesize", db.dirtiesSize)
   755  
   756  	// Reset the garbage collection statistics
   757  	db.gcnodes, db.gcsize, db.gctime = 0, 0, 0
   758  	db.flushnodes, db.flushsize, db.flushtime = 0, 0, 0
   759  
   760  	return nil
   761  }
   762  
   763  // commit is the private locked version of Commit.
   764  func (db *Database) commit(hash common.Hash, batch xcbdb.Batch, uncacher *cleaner, callback func(common.Hash)) error {
   765  	// If the node does not exist, it's a previously committed node
   766  	node, ok := db.dirties[hash]
   767  	if !ok {
   768  		return nil
   769  	}
   770  	var err error
   771  	node.forChilds(func(child common.Hash) {
   772  		if err == nil {
   773  			err = db.commit(child, batch, uncacher, callback)
   774  		}
   775  	})
   776  	if err != nil {
   777  		return err
   778  	}
   779  	// If we've reached an optimal batch size, commit and start over
   780  	rawdb.WriteTrieNode(batch, hash, node.rlp())
   781  	if callback != nil {
   782  		callback(hash)
   783  	}
   784  	if batch.ValueSize() >= xcbdb.IdealBatchSize {
   785  		if err := batch.Write(); err != nil {
   786  			return err
   787  		}
   788  		db.lock.Lock()
   789  		batch.Replay(uncacher)
   790  		batch.Reset()
   791  		db.lock.Unlock()
   792  	}
   793  	return nil
   794  }
   795  
   796  // cleaner is a database batch replayer that takes a batch of write operations
   797  // and cleans up the trie database from anything written to disk.
   798  type cleaner struct {
   799  	db *Database
   800  }
   801  
   802  // Put reacts to database writes and implements dirty data uncaching. This is the
   803  // post-processing step of a commit operation where the already persisted trie is
   804  // removed from the dirty cache and moved into the clean cache. The reason behind
   805  // the two-phase commit is to ensure ensure data availability while moving from
   806  // memory to disk.
   807  func (c *cleaner) Put(key []byte, rlp []byte) error {
   808  	hash := common.BytesToHash(key)
   809  
   810  	// If the node does not exist, we're done on this path
   811  	node, ok := c.db.dirties[hash]
   812  	if !ok {
   813  		return nil
   814  	}
   815  	// Node still exists, remove it from the flush-list
   816  	switch hash {
   817  	case c.db.oldest:
   818  		c.db.oldest = node.flushNext
   819  		c.db.dirties[node.flushNext].flushPrev = common.Hash{}
   820  	case c.db.newest:
   821  		c.db.newest = node.flushPrev
   822  		c.db.dirties[node.flushPrev].flushNext = common.Hash{}
   823  	default:
   824  		c.db.dirties[node.flushPrev].flushNext = node.flushNext
   825  		c.db.dirties[node.flushNext].flushPrev = node.flushPrev
   826  	}
   827  	// Remove the node from the dirty cache
   828  	delete(c.db.dirties, hash)
   829  	c.db.dirtiesSize -= common.StorageSize(common.HashLength + int(node.size))
   830  	if node.children != nil {
   831  		c.db.dirtiesSize -= common.StorageSize(cachedNodeChildrenSize + len(node.children)*(common.HashLength+2))
   832  	}
   833  	// Move the flushed node into the clean cache to prevent insta-reloads
   834  	if c.db.cleans != nil {
   835  		c.db.cleans.Set(hash[:], rlp)
   836  		memcacheCleanWriteMeter.Mark(int64(len(rlp)))
   837  	}
   838  	return nil
   839  }
   840  
   841  func (c *cleaner) Delete(key []byte) error {
   842  	panic("not implemented")
   843  }
   844  
   845  // Size returns the current storage size of the memory cache in front of the
   846  // persistent database layer.
   847  func (db *Database) Size() (common.StorageSize, common.StorageSize) {
   848  	db.lock.RLock()
   849  	defer db.lock.RUnlock()
   850  
   851  	// db.dirtiesSize only contains the useful data in the cache, but when reporting
   852  	// the total memory consumption, the maintenance metadata is also needed to be
   853  	// counted.
   854  	var metadataSize = common.StorageSize((len(db.dirties) - 1) * cachedNodeSize)
   855  	var metarootRefs = common.StorageSize(len(db.dirties[common.Hash{}].children) * (common.HashLength + 2))
   856  	return db.dirtiesSize + db.childrenSize + metadataSize - metarootRefs, db.preimagesSize
   857  }
   858  
   859  // saveCache saves clean state cache to given directory path
   860  // using specified CPU cores.
   861  func (db *Database) saveCache(dir string, threads int) error {
   862  	if db.cleans == nil {
   863  		return nil
   864  	}
   865  	log.Info("Writing clean trie cache to disk", "path", dir, "threads", threads)
   866  
   867  	start := time.Now()
   868  	err := db.cleans.SaveToFileConcurrent(dir, threads)
   869  	if err != nil {
   870  		log.Error("Failed to persist clean trie cache", "error", err)
   871  		return err
   872  	}
   873  	log.Info("Persisted the clean trie cache", "path", dir, "elapsed", common.PrettyDuration(time.Since(start)))
   874  	return nil
   875  }
   876  
   877  // SaveCache atomically saves fast cache data to the given dir using all
   878  // available CPU cores.
   879  func (db *Database) SaveCache(dir string) error {
   880  	return db.saveCache(dir, runtime.GOMAXPROCS(0))
   881  }
   882  
   883  // SaveCachePeriodically atomically saves fast cache data to the given dir with
   884  // the specified interval. All dump operation will only use a single CPU core.
   885  func (db *Database) SaveCachePeriodically(dir string, interval time.Duration, stopCh <-chan struct{}) {
   886  	ticker := time.NewTicker(interval)
   887  	defer ticker.Stop()
   888  
   889  	for {
   890  		select {
   891  		case <-ticker.C:
   892  			db.saveCache(dir, 1)
   893  		case <-stopCh:
   894  			return
   895  		}
   896  	}
   897  }