github.com/core-coin/go-core/v2@v2.1.9/trie/proof.go (about)

     1  // Copyright 2015 by the Authors
     2  // This file is part of the go-core library.
     3  //
     4  // The go-core library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-core library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-core library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package trie
    18  
    19  import (
    20  	"bytes"
    21  	"errors"
    22  	"fmt"
    23  
    24  	"github.com/core-coin/go-core/v2/xcbdb"
    25  	"github.com/core-coin/go-core/v2/xcbdb/memorydb"
    26  
    27  	"github.com/core-coin/go-core/v2/common"
    28  	"github.com/core-coin/go-core/v2/log"
    29  	"github.com/core-coin/go-core/v2/rlp"
    30  )
    31  
    32  // Prove constructs a merkle proof for key. The result contains all encoded nodes
    33  // on the path to the value at key. The value itself is also included in the last
    34  // node and can be retrieved by verifying the proof.
    35  //
    36  // If the trie does not contain a value for key, the returned proof contains all
    37  // nodes of the longest existing prefix of the key (at least the root node), ending
    38  // with the node that proves the absence of the key.
    39  func (t *Trie) Prove(key []byte, fromLevel uint, proofDb xcbdb.KeyValueWriter) error {
    40  	// Collect all nodes on the path to key.
    41  	key = keybytesToHex(key)
    42  	var nodes []node
    43  	tn := t.root
    44  	for len(key) > 0 && tn != nil {
    45  		switch n := tn.(type) {
    46  		case *shortNode:
    47  			if len(key) < len(n.Key) || !bytes.Equal(n.Key, key[:len(n.Key)]) {
    48  				// The trie doesn't contain the key.
    49  				tn = nil
    50  			} else {
    51  				tn = n.Val
    52  				key = key[len(n.Key):]
    53  			}
    54  			nodes = append(nodes, n)
    55  		case *fullNode:
    56  			tn = n.Children[key[0]]
    57  			key = key[1:]
    58  			nodes = append(nodes, n)
    59  		case hashNode:
    60  			var err error
    61  			tn, err = t.resolveHash(n, nil)
    62  			if err != nil {
    63  				log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
    64  				return err
    65  			}
    66  		default:
    67  			panic(fmt.Sprintf("%T: invalid node: %v", tn, tn))
    68  		}
    69  	}
    70  	hasher := newHasher(false)
    71  	defer returnHasherToPool(hasher)
    72  
    73  	for i, n := range nodes {
    74  		if fromLevel > 0 {
    75  			fromLevel--
    76  			continue
    77  		}
    78  		var hn node
    79  		n, hn = hasher.proofHash(n)
    80  		if hash, ok := hn.(hashNode); ok || i == 0 {
    81  			// If the node's database encoding is a hash (or is the
    82  			// root node), it becomes a proof element.
    83  			enc, _ := rlp.EncodeToBytes(n)
    84  			if !ok {
    85  				hash = hasher.hashData(enc)
    86  			}
    87  			proofDb.Put(hash, enc)
    88  		}
    89  	}
    90  	return nil
    91  }
    92  
    93  // Prove constructs a merkle proof for key. The result contains all encoded nodes
    94  // on the path to the value at key. The value itself is also included in the last
    95  // node and can be retrieved by verifying the proof.
    96  //
    97  // If the trie does not contain a value for key, the returned proof contains all
    98  // nodes of the longest existing prefix of the key (at least the root node), ending
    99  // with the node that proves the absence of the key.
   100  func (t *SecureTrie) Prove(key []byte, fromLevel uint, proofDb xcbdb.KeyValueWriter) error {
   101  	return t.trie.Prove(key, fromLevel, proofDb)
   102  }
   103  
   104  // VerifyProof checks merkle proofs. The given proof must contain the value for
   105  // key in a trie with the given root hash. VerifyProof returns an error if the
   106  // proof contains invalid trie nodes or the wrong value.
   107  func VerifyProof(rootHash common.Hash, key []byte, proofDb xcbdb.KeyValueReader) (value []byte, err error) {
   108  	key = keybytesToHex(key)
   109  	wantHash := rootHash
   110  	for i := 0; ; i++ {
   111  		buf, _ := proofDb.Get(wantHash[:])
   112  		if buf == nil {
   113  			return nil, fmt.Errorf("proof node %d (hash %064x) missing", i, wantHash)
   114  		}
   115  		n, err := decodeNode(wantHash[:], buf)
   116  		if err != nil {
   117  			return nil, fmt.Errorf("bad proof node %d: %v", i, err)
   118  		}
   119  		keyrest, cld := get(n, key, true)
   120  		switch cld := cld.(type) {
   121  		case nil:
   122  			// The trie doesn't contain the key.
   123  			return nil, nil
   124  		case hashNode:
   125  			key = keyrest
   126  			copy(wantHash[:], cld)
   127  		case valueNode:
   128  			return cld, nil
   129  		}
   130  	}
   131  }
   132  
   133  // proofToPath converts a merkle proof to trie node path. The main purpose of
   134  // this function is recovering a node path from the merkle proof stream. All
   135  // necessary nodes will be resolved and leave the remaining as hashnode.
   136  //
   137  // The given edge proof is allowed to be an existent or non-existent proof.
   138  func proofToPath(rootHash common.Hash, root node, key []byte, proofDb xcbdb.KeyValueReader, allowNonExistent bool) (node, []byte, error) {
   139  	// resolveNode retrieves and resolves trie node from merkle proof stream
   140  	resolveNode := func(hash common.Hash) (node, error) {
   141  		buf, _ := proofDb.Get(hash[:])
   142  		if buf == nil {
   143  			return nil, fmt.Errorf("proof node (hash %064x) missing", hash)
   144  		}
   145  		n, err := decodeNode(hash[:], buf)
   146  		if err != nil {
   147  			return nil, fmt.Errorf("bad proof node %v", err)
   148  		}
   149  		return n, err
   150  	}
   151  	// If the root node is empty, resolve it first.
   152  	// Root node must be included in the proof.
   153  	if root == nil {
   154  		n, err := resolveNode(rootHash)
   155  		if err != nil {
   156  			return nil, nil, err
   157  		}
   158  		root = n
   159  	}
   160  	var (
   161  		err           error
   162  		child, parent node
   163  		keyrest       []byte
   164  		valnode       []byte
   165  	)
   166  	key, parent = keybytesToHex(key), root
   167  	for {
   168  		keyrest, child = get(parent, key, false)
   169  		switch cld := child.(type) {
   170  		case nil:
   171  			// The trie doesn't contain the key. It's possible
   172  			// the proof is a non-existing proof, but at least
   173  			// we can prove all resolved nodes are correct, it's
   174  			// enough for us to prove range.
   175  			if allowNonExistent {
   176  				return root, nil, nil
   177  			}
   178  			return nil, nil, errors.New("the node is not contained in trie")
   179  		case *shortNode:
   180  			key, parent = keyrest, child // Already resolved
   181  			continue
   182  		case *fullNode:
   183  			key, parent = keyrest, child // Already resolved
   184  			continue
   185  		case hashNode:
   186  			child, err = resolveNode(common.BytesToHash(cld))
   187  			if err != nil {
   188  				return nil, nil, err
   189  			}
   190  		case valueNode:
   191  			valnode = cld
   192  		}
   193  		// Link the parent and child.
   194  		switch pnode := parent.(type) {
   195  		case *shortNode:
   196  			pnode.Val = child
   197  		case *fullNode:
   198  			pnode.Children[key[0]] = child
   199  		default:
   200  			panic(fmt.Sprintf("%T: invalid node: %v", pnode, pnode))
   201  		}
   202  		if len(valnode) > 0 {
   203  			return root, valnode, nil // The whole path is resolved
   204  		}
   205  		key, parent = keyrest, child
   206  	}
   207  }
   208  
   209  // unsetInternal removes all internal node references(hashnode, embedded node).
   210  // It should be called after a trie is constructed with two edge paths. Also
   211  // the given boundary keys must be the one used to construct the edge paths.
   212  //
   213  // It's the key step for range proof. All visited nodes should be marked dirty
   214  // since the node content might be modified. Besides it can happen that some
   215  // fullnodes only have one child which is disallowed. But if the proof is valid,
   216  // the missing children will be filled, otherwise it will be thrown anyway.
   217  //
   218  // Note we have the assumption here the given boundary keys are different
   219  // and right is larger than left.
   220  func unsetInternal(n node, left []byte, right []byte) error {
   221  	left, right = keybytesToHex(left), keybytesToHex(right)
   222  
   223  	// Step down to the fork point. There are two scenarios can happen:
   224  	// - the fork point is a shortnode: either the key of left proof or
   225  	//   right proof doesn't match with shortnode's key.
   226  	// - the fork point is a fullnode: both two edge proofs are allowed
   227  	//   to point to a non-existent key.
   228  	var (
   229  		pos    = 0
   230  		parent node
   231  
   232  		// fork indicator, 0 means no fork, -1 means proof is less, 1 means proof is greater
   233  		shortForkLeft, shortForkRight int
   234  	)
   235  findFork:
   236  	for {
   237  		switch rn := (n).(type) {
   238  		case *shortNode:
   239  			rn.flags = nodeFlag{dirty: true}
   240  
   241  			// If either the key of left proof or right proof doesn't match with
   242  			// shortnode, stop here and the forkpoint is the shortnode.
   243  			if len(left)-pos < len(rn.Key) {
   244  				shortForkLeft = bytes.Compare(left[pos:], rn.Key)
   245  			} else {
   246  				shortForkLeft = bytes.Compare(left[pos:pos+len(rn.Key)], rn.Key)
   247  			}
   248  			if len(right)-pos < len(rn.Key) {
   249  				shortForkRight = bytes.Compare(right[pos:], rn.Key)
   250  			} else {
   251  				shortForkRight = bytes.Compare(right[pos:pos+len(rn.Key)], rn.Key)
   252  			}
   253  			if shortForkLeft != 0 || shortForkRight != 0 {
   254  				break findFork
   255  			}
   256  			parent = n
   257  			n, pos = rn.Val, pos+len(rn.Key)
   258  		case *fullNode:
   259  			rn.flags = nodeFlag{dirty: true}
   260  
   261  			// If either the node pointed by left proof or right proof is nil,
   262  			// stop here and the forkpoint is the fullnode.
   263  			leftnode, rightnode := rn.Children[left[pos]], rn.Children[right[pos]]
   264  			if leftnode == nil || rightnode == nil || leftnode != rightnode {
   265  				break findFork
   266  			}
   267  			parent = n
   268  			n, pos = rn.Children[left[pos]], pos+1
   269  		default:
   270  			panic(fmt.Sprintf("%T: invalid node: %v", n, n))
   271  		}
   272  	}
   273  	switch rn := n.(type) {
   274  	case *shortNode:
   275  		// There can have these five scenarios:
   276  		// - both proofs are less than the trie path => no valid range
   277  		// - both proofs are greater than the trie path => no valid range
   278  		// - left proof is less and right proof is greater => valid range, unset the shortnode entirely
   279  		// - left proof points to the shortnode, but right proof is greater
   280  		// - right proof points to the shortnode, but left proof is less
   281  		if shortForkLeft == -1 && shortForkRight == -1 {
   282  			return errors.New("empty range")
   283  		}
   284  		if shortForkLeft == 1 && shortForkRight == 1 {
   285  			return errors.New("empty range")
   286  		}
   287  		if shortForkLeft != 0 && shortForkRight != 0 {
   288  			parent.(*fullNode).Children[left[pos-1]] = nil
   289  			return nil
   290  		}
   291  		// Only one proof points to non-existent key.
   292  		if shortForkRight != 0 {
   293  			// Unset left proof's path
   294  			if _, ok := rn.Val.(valueNode); ok {
   295  				parent.(*fullNode).Children[left[pos-1]] = nil
   296  				return nil
   297  			}
   298  			return unset(rn, rn.Val, left[pos:], len(rn.Key), false)
   299  		}
   300  		if shortForkLeft != 0 {
   301  			// Unset right proof's path.
   302  			if _, ok := rn.Val.(valueNode); ok {
   303  				parent.(*fullNode).Children[right[pos-1]] = nil
   304  				return nil
   305  			}
   306  			return unset(rn, rn.Val, right[pos:], len(rn.Key), true)
   307  		}
   308  		return nil
   309  	case *fullNode:
   310  		// unset all internal nodes in the forkpoint
   311  		for i := left[pos] + 1; i < right[pos]; i++ {
   312  			rn.Children[i] = nil
   313  		}
   314  		if err := unset(rn, rn.Children[left[pos]], left[pos:], 1, false); err != nil {
   315  			return err
   316  		}
   317  		if err := unset(rn, rn.Children[right[pos]], right[pos:], 1, true); err != nil {
   318  			return err
   319  		}
   320  		return nil
   321  	default:
   322  		panic(fmt.Sprintf("%T: invalid node: %v", n, n))
   323  	}
   324  }
   325  
   326  // unset removes all internal node references either the left most or right most.
   327  // It can meet these scenarios:
   328  //
   329  //   - The given path is existent in the trie, unset the associated nodes with the
   330  //     specific direction
   331  //   - The given path is non-existent in the trie
   332  //   - the fork point is a fullnode, the corresponding child pointed by path
   333  //     is nil, return
   334  //   - the fork point is a shortnode, the shortnode is included in the range,
   335  //     keep the entire branch and return.
   336  //   - the fork point is a shortnode, the shortnode is excluded in the range,
   337  //     unset the entire branch.
   338  func unset(parent node, child node, key []byte, pos int, removeLeft bool) error {
   339  	switch cld := child.(type) {
   340  	case *fullNode:
   341  		if removeLeft {
   342  			for i := 0; i < int(key[pos]); i++ {
   343  				cld.Children[i] = nil
   344  			}
   345  			cld.flags = nodeFlag{dirty: true}
   346  		} else {
   347  			for i := key[pos] + 1; i < 16; i++ {
   348  				cld.Children[i] = nil
   349  			}
   350  			cld.flags = nodeFlag{dirty: true}
   351  		}
   352  		return unset(cld, cld.Children[key[pos]], key, pos+1, removeLeft)
   353  	case *shortNode:
   354  		if len(key[pos:]) < len(cld.Key) || !bytes.Equal(cld.Key, key[pos:pos+len(cld.Key)]) {
   355  			// Find the fork point, it's an non-existent branch.
   356  			if removeLeft {
   357  				if bytes.Compare(cld.Key, key[pos:]) < 0 {
   358  					// The key of fork shortnode is less than the path
   359  					// (it belongs to the range), unset the entrie
   360  					// branch. The parent must be a fullnode.
   361  					fn := parent.(*fullNode)
   362  					fn.Children[key[pos-1]] = nil
   363  				} else {
   364  					// The key of fork shortnode is greater than the
   365  					// path(it doesn't belong to the range), keep
   366  					// it with the cached hash available.
   367  				}
   368  			} else {
   369  				if bytes.Compare(cld.Key, key[pos:]) > 0 {
   370  					// The key of fork shortnode is greater than the
   371  					// path(it belongs to the range), unset the entrie
   372  					// branch. The parent must be a fullnode.
   373  					fn := parent.(*fullNode)
   374  					fn.Children[key[pos-1]] = nil
   375  				} else {
   376  					// The key of fork shortnode is less than the
   377  					// path(it doesn't belong to the range), keep
   378  					// it with the cached hash available.
   379  				}
   380  			}
   381  			return nil
   382  		}
   383  		if _, ok := cld.Val.(valueNode); ok {
   384  			fn := parent.(*fullNode)
   385  			fn.Children[key[pos-1]] = nil
   386  			return nil
   387  		}
   388  		cld.flags = nodeFlag{dirty: true}
   389  		return unset(cld, cld.Val, key, pos+len(cld.Key), removeLeft)
   390  	case nil:
   391  		// If the node is nil, then it's a child of the fork point
   392  		// fullnode(it's a non-existent branch).
   393  		return nil
   394  	default:
   395  		panic("it shouldn't happen") // hashNode, valueNode
   396  	}
   397  }
   398  
   399  // hasRightElement returns the indicator whether there exists more elements
   400  // in the right side of the given path. The given path can point to an existent
   401  // key or a non-existent one. This function has the assumption that the whole
   402  // path should already be resolved.
   403  func hasRightElement(node node, key []byte) bool {
   404  	pos, key := 0, keybytesToHex(key)
   405  	for node != nil {
   406  		switch rn := node.(type) {
   407  		case *fullNode:
   408  			for i := key[pos] + 1; i < 16; i++ {
   409  				if rn.Children[i] != nil {
   410  					return true
   411  				}
   412  			}
   413  			node, pos = rn.Children[key[pos]], pos+1
   414  		case *shortNode:
   415  			if len(key)-pos < len(rn.Key) || !bytes.Equal(rn.Key, key[pos:pos+len(rn.Key)]) {
   416  				return bytes.Compare(rn.Key, key[pos:]) > 0
   417  			}
   418  			node, pos = rn.Val, pos+len(rn.Key)
   419  		case valueNode:
   420  			return false // We have resolved the whole path
   421  		default:
   422  			panic(fmt.Sprintf("%T: invalid node: %v", node, node)) // hashnode
   423  		}
   424  	}
   425  	return false
   426  }
   427  
   428  // VerifyRangeProof checks whether the given leaf nodes and edge proof
   429  // can prove the given trie leaves range is matched with the specific root.
   430  // Besides, the range should be consecutive(no gap inside) and monotonic
   431  // increasing.
   432  //
   433  // Note the given proof actually contains two edge proofs. Both of them can
   434  // be non-existent proofs. For example the first proof is for a non-existent
   435  // key 0x03, the last proof is for a non-existent key 0x10. The given batch
   436  // leaves are [0x04, 0x05, .. 0x09]. It's still feasible to prove the given
   437  // batch is valid.
   438  //
   439  // The firstKey is paired with firstProof, not necessarily the same as keys[0]
   440  // (unless firstProof is an existent proof). Similarly, lastKey and lastProof
   441  // are paired.
   442  //
   443  // Expect the normal case, this function can also be used to verify the following
   444  // range proofs:
   445  //
   446  //   - All elements proof. In this case the proof can be nil, but the range should
   447  //     be all the leaves in the trie.
   448  //
   449  //   - One element proof. In this case no matter the edge proof is a non-existent
   450  //     proof or not, we can always verify the correctness of the proof.
   451  //
   452  //   - Zero element proof. In this case a single non-existent proof is enough to prove.
   453  //     Besides, if there are still some other leaves available on the right side, then
   454  //     an error will be returned.
   455  //
   456  // Except returning the error to indicate the proof is valid or not, the function will
   457  // also return a flag to indicate whether there exists more accounts/slots in the trie.
   458  func VerifyRangeProof(rootHash common.Hash, firstKey []byte, lastKey []byte, keys [][]byte, values [][]byte, proof xcbdb.KeyValueReader) (error, bool) {
   459  	if len(keys) != len(values) {
   460  		return fmt.Errorf("inconsistent proof data, keys: %d, values: %d", len(keys), len(values)), false
   461  	}
   462  	// Ensure the received batch is monotonic increasing.
   463  	for i := 0; i < len(keys)-1; i++ {
   464  		if bytes.Compare(keys[i], keys[i+1]) >= 0 {
   465  			return errors.New("range is not monotonically increasing"), false
   466  		}
   467  	}
   468  	// Special case, there is no edge proof at all. The given range is expected
   469  	// to be the whole leaf-set in the trie.
   470  	if proof == nil {
   471  		emptytrie, err := New(common.Hash{}, NewDatabase(memorydb.New()))
   472  		if err != nil {
   473  			return err, false
   474  		}
   475  		for index, key := range keys {
   476  			emptytrie.TryUpdate(key, values[index])
   477  		}
   478  		if emptytrie.Hash() != rootHash {
   479  			return fmt.Errorf("invalid proof, want hash %x, got %x", rootHash, emptytrie.Hash()), false
   480  		}
   481  		return nil, false // no more element.
   482  	}
   483  	// Special case, there is a provided edge proof but zero key/value
   484  	// pairs, ensure there are no more accounts / slots in the trie.
   485  	if len(keys) == 0 {
   486  		root, val, err := proofToPath(rootHash, nil, firstKey, proof, true)
   487  		if err != nil {
   488  			return err, false
   489  		}
   490  		if val != nil || hasRightElement(root, firstKey) {
   491  			return errors.New("more entries available"), false
   492  		}
   493  		return nil, false
   494  	}
   495  	// Special case, there is only one element and two edge keys are same.
   496  	// In this case, we can't construct two edge paths. So handle it here.
   497  	if len(keys) == 1 && bytes.Equal(firstKey, lastKey) {
   498  		root, val, err := proofToPath(rootHash, nil, firstKey, proof, false)
   499  		if err != nil {
   500  			return err, false
   501  		}
   502  		if !bytes.Equal(firstKey, keys[0]) {
   503  			return errors.New("correct proof but invalid key"), false
   504  		}
   505  		if !bytes.Equal(val, values[0]) {
   506  			return errors.New("correct proof but invalid data"), false
   507  		}
   508  		return nil, hasRightElement(root, firstKey)
   509  	}
   510  	// Ok, in all other cases, we require two edge paths available.
   511  	// First check the validity of edge keys.
   512  	if bytes.Compare(firstKey, lastKey) >= 0 {
   513  		return errors.New("invalid edge keys"), false
   514  	}
   515  	// todo(raisty) different length edge keys should be supported
   516  	if len(firstKey) != len(lastKey) {
   517  		return errors.New("inconsistent edge keys"), false
   518  	}
   519  	// Convert the edge proofs to edge trie paths. Then we can
   520  	// have the same tree architecture with the original one.
   521  	// For the first edge proof, non-existent proof is allowed.
   522  	root, _, err := proofToPath(rootHash, nil, firstKey, proof, true)
   523  	if err != nil {
   524  		return err, false
   525  	}
   526  	// Pass the root node here, the second path will be merged
   527  	// with the first one. For the last edge proof, non-existent
   528  	// proof is also allowed.
   529  	root, _, err = proofToPath(rootHash, root, lastKey, proof, true)
   530  	if err != nil {
   531  		return err, false
   532  	}
   533  	// Remove all internal references. All the removed parts should
   534  	// be re-filled(or re-constructed) by the given leaves range.
   535  	if err := unsetInternal(root, firstKey, lastKey); err != nil {
   536  		return err, false
   537  	}
   538  	// Rebuild the trie with the leave stream, the shape of trie
   539  	// should be same with the original one.
   540  	newtrie := &Trie{root: root, db: NewDatabase(memorydb.New())}
   541  	for index, key := range keys {
   542  		newtrie.TryUpdate(key, values[index])
   543  	}
   544  	if newtrie.Hash() != rootHash {
   545  		return fmt.Errorf("invalid proof, want hash %x, got %x", rootHash, newtrie.Hash()), false
   546  	}
   547  	return nil, hasRightElement(root, keys[len(keys)-1])
   548  }
   549  
   550  // get returns the child of the given node. Return nil if the
   551  // node with specified key doesn't exist at all.
   552  //
   553  // There is an additional flag `skipResolved`. If it's set then
   554  // all resolved nodes won't be returned.
   555  func get(tn node, key []byte, skipResolved bool) ([]byte, node) {
   556  	for {
   557  		switch n := tn.(type) {
   558  		case *shortNode:
   559  			if len(key) < len(n.Key) || !bytes.Equal(n.Key, key[:len(n.Key)]) {
   560  				return nil, nil
   561  			}
   562  			tn = n.Val
   563  			key = key[len(n.Key):]
   564  			if !skipResolved {
   565  				return key, tn
   566  			}
   567  		case *fullNode:
   568  			tn = n.Children[key[0]]
   569  			key = key[1:]
   570  			if !skipResolved {
   571  				return key, tn
   572  			}
   573  		case hashNode:
   574  			return key, n
   575  		case nil:
   576  			return key, nil
   577  		case valueNode:
   578  			return nil, n
   579  		default:
   580  			panic(fmt.Sprintf("%T: invalid node: %v", tn, tn))
   581  		}
   582  	}
   583  }