github.com/core-coin/go-core/v2@v2.1.9/trie/stacktrie.go (about)

     1  // Copyright 2020 by the Authors
     2  // This file is part of the go-core library.
     3  //
     4  // The go-core library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-core library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-core library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package trie
    18  
    19  import (
    20  	"errors"
    21  	"fmt"
    22  	"sync"
    23  
    24  	"github.com/core-coin/go-core/v2/xcbdb"
    25  
    26  	"github.com/core-coin/go-core/v2/common"
    27  	"github.com/core-coin/go-core/v2/log"
    28  	"github.com/core-coin/go-core/v2/rlp"
    29  )
    30  
    31  var ErrCommitDisabled = errors.New("no database for committing")
    32  
    33  var stPool = sync.Pool{
    34  	New: func() interface{} {
    35  		return NewStackTrie(nil)
    36  	},
    37  }
    38  
    39  func stackTrieFromPool(db xcbdb.KeyValueStore) *StackTrie {
    40  	st := stPool.Get().(*StackTrie)
    41  	st.db = db
    42  	return st
    43  }
    44  
    45  func returnToPool(st *StackTrie) {
    46  	st.Reset()
    47  	stPool.Put(st)
    48  }
    49  
    50  // StackTrie is a trie implementation that expects keys to be inserted
    51  // in order. Once it determines that a subtree will no longer be inserted
    52  // into, it will hash it and free up the memory it uses.
    53  type StackTrie struct {
    54  	nodeType  uint8          // node type (as in branch, ext, leaf)
    55  	val       []byte         // value contained by this node if it's a leaf
    56  	key       []byte         // key chunk covered by this (full|ext) node
    57  	keyOffset int            // offset of the key chunk inside a full key
    58  	children  [16]*StackTrie // list of children (for fullnodes and exts)
    59  
    60  	db xcbdb.KeyValueStore // Pointer to the commit db, can be nil
    61  }
    62  
    63  // NewStackTrie allocates and initializes an empty trie.
    64  func NewStackTrie(db xcbdb.KeyValueStore) *StackTrie {
    65  	return &StackTrie{
    66  		nodeType: emptyNode,
    67  		db:       db,
    68  	}
    69  }
    70  
    71  func newLeaf(ko int, key, val []byte, db xcbdb.KeyValueStore) *StackTrie {
    72  	st := stackTrieFromPool(db)
    73  	st.nodeType = leafNode
    74  	st.keyOffset = ko
    75  	st.key = append(st.key, key[ko:]...)
    76  	st.val = val
    77  	return st
    78  }
    79  
    80  func newExt(ko int, key []byte, child *StackTrie, db xcbdb.KeyValueStore) *StackTrie {
    81  	st := stackTrieFromPool(db)
    82  	st.nodeType = extNode
    83  	st.keyOffset = ko
    84  	st.key = append(st.key, key[ko:]...)
    85  	st.children[0] = child
    86  	return st
    87  }
    88  
    89  // List all values that StackTrie#nodeType can hold
    90  const (
    91  	emptyNode = iota
    92  	branchNode
    93  	extNode
    94  	leafNode
    95  	hashedNode
    96  )
    97  
    98  // TryUpdate inserts a (key, value) pair into the stack trie
    99  func (st *StackTrie) TryUpdate(key, value []byte) error {
   100  	k := keybytesToHex(key)
   101  	if len(value) == 0 {
   102  		panic("deletion not supported")
   103  	}
   104  	st.insert(k[:len(k)-1], value)
   105  	return nil
   106  }
   107  
   108  func (st *StackTrie) Update(key, value []byte) {
   109  	if err := st.TryUpdate(key, value); err != nil {
   110  		log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
   111  	}
   112  }
   113  
   114  func (st *StackTrie) Reset() {
   115  	st.db = nil
   116  	st.key = st.key[:0]
   117  	st.val = nil
   118  	for i := range st.children {
   119  		st.children[i] = nil
   120  	}
   121  	st.nodeType = emptyNode
   122  	st.keyOffset = 0
   123  }
   124  
   125  // Helper function that, given a full key, determines the index
   126  // at which the chunk pointed by st.keyOffset is different from
   127  // the same chunk in the full key.
   128  func (st *StackTrie) getDiffIndex(key []byte) int {
   129  	diffindex := 0
   130  	for ; diffindex < len(st.key) && st.key[diffindex] == key[st.keyOffset+diffindex]; diffindex++ {
   131  	}
   132  	return diffindex
   133  }
   134  
   135  // Helper function to that inserts a (key, value) pair into
   136  // the trie.
   137  func (st *StackTrie) insert(key, value []byte) {
   138  	switch st.nodeType {
   139  	case branchNode: /* Branch */
   140  		idx := int(key[st.keyOffset])
   141  		// Unresolve elder siblings
   142  		for i := idx - 1; i >= 0; i-- {
   143  			if st.children[i] != nil {
   144  				if st.children[i].nodeType != hashedNode {
   145  					st.children[i].hash()
   146  				}
   147  				break
   148  			}
   149  		}
   150  		// Add new child
   151  		if st.children[idx] == nil {
   152  			st.children[idx] = stackTrieFromPool(st.db)
   153  			st.children[idx].keyOffset = st.keyOffset + 1
   154  		}
   155  		st.children[idx].insert(key, value)
   156  	case extNode: /* Ext */
   157  		// Compare both key chunks and see where they differ
   158  		diffidx := st.getDiffIndex(key)
   159  
   160  		// Check if chunks are identical. If so, recurse into
   161  		// the child node. Otherwise, the key has to be split
   162  		// into 1) an optional common prefix, 2) the fullnode
   163  		// representing the two differing path, and 3) a leaf
   164  		// for each of the differentiated subtrees.
   165  		if diffidx == len(st.key) {
   166  			// Ext key and key segment are identical, recurse into
   167  			// the child node.
   168  			st.children[0].insert(key, value)
   169  			return
   170  		}
   171  		// Save the original part. Depending if the break is
   172  		// at the extension's last byte or not, create an
   173  		// intermediate extension or use the extension's child
   174  		// node directly.
   175  		var n *StackTrie
   176  		if diffidx < len(st.key)-1 {
   177  			n = newExt(diffidx+1, st.key, st.children[0], st.db)
   178  		} else {
   179  			// Break on the last byte, no need to insert
   180  			// an extension node: reuse the current node
   181  			n = st.children[0]
   182  		}
   183  		// Convert to hash
   184  		n.hash()
   185  		var p *StackTrie
   186  		if diffidx == 0 {
   187  			// the break is on the first byte, so
   188  			// the current node is converted into
   189  			// a branch node.
   190  			st.children[0] = nil
   191  			p = st
   192  			st.nodeType = branchNode
   193  		} else {
   194  			// the common prefix is at least one byte
   195  			// long, insert a new intermediate branch
   196  			// node.
   197  			st.children[0] = stackTrieFromPool(st.db)
   198  			st.children[0].nodeType = branchNode
   199  			st.children[0].keyOffset = st.keyOffset + diffidx
   200  			p = st.children[0]
   201  		}
   202  		// Create a leaf for the inserted part
   203  		o := newLeaf(st.keyOffset+diffidx+1, key, value, st.db)
   204  
   205  		// Insert both child leaves where they belong:
   206  		origIdx := st.key[diffidx]
   207  		newIdx := key[diffidx+st.keyOffset]
   208  		p.children[origIdx] = n
   209  		p.children[newIdx] = o
   210  		st.key = st.key[:diffidx]
   211  
   212  	case leafNode: /* Leaf */
   213  		// Compare both key chunks and see where they differ
   214  		diffidx := st.getDiffIndex(key)
   215  
   216  		// Overwriting a key isn't supported, which means that
   217  		// the current leaf is expected to be split into 1) an
   218  		// optional extension for the common prefix of these 2
   219  		// keys, 2) a fullnode selecting the path on which the
   220  		// keys differ, and 3) one leaf for the differentiated
   221  		// component of each key.
   222  		if diffidx >= len(st.key) {
   223  			panic("Trying to insert into existing key")
   224  		}
   225  
   226  		// Check if the split occurs at the first nibble of the
   227  		// chunk. In that case, no prefix extnode is necessary.
   228  		// Otherwise, create that
   229  		var p *StackTrie
   230  		if diffidx == 0 {
   231  			// Convert current leaf into a branch
   232  			st.nodeType = branchNode
   233  			p = st
   234  			st.children[0] = nil
   235  		} else {
   236  			// Convert current node into an ext,
   237  			// and insert a child branch node.
   238  			st.nodeType = extNode
   239  			st.children[0] = NewStackTrie(st.db)
   240  			st.children[0].nodeType = branchNode
   241  			st.children[0].keyOffset = st.keyOffset + diffidx
   242  			p = st.children[0]
   243  		}
   244  
   245  		// Create the two child leaves: the one containing the
   246  		// original value and the one containing the new value
   247  		// The child leave will be hashed directly in order to
   248  		// free up some memory.
   249  		origIdx := st.key[diffidx]
   250  		p.children[origIdx] = newLeaf(diffidx+1, st.key, st.val, st.db)
   251  		p.children[origIdx].hash()
   252  
   253  		newIdx := key[diffidx+st.keyOffset]
   254  		p.children[newIdx] = newLeaf(p.keyOffset+1, key, value, st.db)
   255  
   256  		// Finally, cut off the key part that has been passed
   257  		// over to the children.
   258  		st.key = st.key[:diffidx]
   259  		st.val = nil
   260  	case emptyNode: /* Empty */
   261  		st.nodeType = leafNode
   262  		st.key = key[st.keyOffset:]
   263  		st.val = value
   264  	case hashedNode:
   265  		panic("trying to insert into hash")
   266  	default:
   267  		panic("invalid type")
   268  	}
   269  }
   270  
   271  // hash() hashes the node 'st' and converts it into 'hashedNode', if possible.
   272  // Possible outcomes:
   273  // 1. The rlp-encoded value was >= 32 bytes:
   274  //   - Then the 32-byte `hash` will be accessible in `st.val`.
   275  //   - And the 'st.type' will be 'hashedNode'
   276  //
   277  // 2. The rlp-encoded value was < 32 bytes
   278  //   - Then the <32 byte rlp-encoded value will be accessible in 'st.val'.
   279  //   - And the 'st.type' will be 'hashedNode' AGAIN
   280  //
   281  // This method will also:
   282  // set 'st.type' to hashedNode
   283  // clear 'st.key'
   284  func (st *StackTrie) hash() {
   285  	/* Shortcut if node is already hashed */
   286  	if st.nodeType == hashedNode {
   287  		return
   288  	}
   289  	// The 'hasher' is taken from a pool, but we don't actually
   290  	// claim an instance until all children are done with their hashing,
   291  	// and we actually need one
   292  	var h *hasher
   293  
   294  	switch st.nodeType {
   295  	case branchNode:
   296  		var nodes [17]node
   297  		for i, child := range st.children {
   298  			if child == nil {
   299  				nodes[i] = nilValueNode
   300  				continue
   301  			}
   302  			child.hash()
   303  			if len(child.val) < 32 {
   304  				nodes[i] = rawNode(child.val)
   305  			} else {
   306  				nodes[i] = hashNode(child.val)
   307  			}
   308  			st.children[i] = nil // Reclaim mem from subtree
   309  			returnToPool(child)
   310  		}
   311  		nodes[16] = nilValueNode
   312  		h = newHasher(false)
   313  		defer returnHasherToPool(h)
   314  		h.tmp.Reset()
   315  		if err := rlp.Encode(&h.tmp, nodes); err != nil {
   316  			panic(err)
   317  		}
   318  	case extNode:
   319  		st.children[0].hash()
   320  		h = newHasher(false)
   321  		defer returnHasherToPool(h)
   322  		h.tmp.Reset()
   323  		var valuenode node
   324  		if len(st.children[0].val) < 32 {
   325  			valuenode = rawNode(st.children[0].val)
   326  		} else {
   327  			valuenode = hashNode(st.children[0].val)
   328  		}
   329  		n := struct {
   330  			Key []byte
   331  			Val node
   332  		}{
   333  			Key: hexToCompact(st.key),
   334  			Val: valuenode,
   335  		}
   336  		if err := rlp.Encode(&h.tmp, n); err != nil {
   337  			panic(err)
   338  		}
   339  		returnToPool(st.children[0])
   340  		st.children[0] = nil // Reclaim mem from subtree
   341  	case leafNode:
   342  		h = newHasher(false)
   343  		defer returnHasherToPool(h)
   344  		h.tmp.Reset()
   345  		st.key = append(st.key, byte(16))
   346  		sz := hexToCompactInPlace(st.key)
   347  		n := [][]byte{st.key[:sz], st.val}
   348  		if err := rlp.Encode(&h.tmp, n); err != nil {
   349  			panic(err)
   350  		}
   351  	case emptyNode:
   352  		st.val = st.val[:0]
   353  		st.val = append(st.val, emptyRoot[:]...)
   354  		st.key = st.key[:0]
   355  		st.nodeType = hashedNode
   356  		return
   357  	default:
   358  		panic("Invalid node type")
   359  	}
   360  	st.key = st.key[:0]
   361  	st.nodeType = hashedNode
   362  	if len(h.tmp) < 32 {
   363  		st.val = st.val[:0]
   364  		st.val = append(st.val, h.tmp...)
   365  		return
   366  	}
   367  	// Going to write the hash to the 'val'. Need to ensure it's properly sized first
   368  	// Typically, 'branchNode's will have no 'val', and require this allocation
   369  	if required := 32 - len(st.val); required > 0 {
   370  		buf := make([]byte, required)
   371  		st.val = append(st.val, buf...)
   372  	}
   373  	st.val = st.val[:32]
   374  	h.sha.Reset()
   375  	h.sha.Write(h.tmp)
   376  	h.sha.Read(st.val)
   377  	if st.db != nil {
   378  		// TODO! Is it safe to Put the slice here?
   379  		// Do all db implementations copy the value provided?
   380  		st.db.Put(st.val, h.tmp)
   381  	}
   382  }
   383  
   384  // Hash returns the hash of the current node
   385  func (st *StackTrie) Hash() (h common.Hash) {
   386  	st.hash()
   387  	if len(st.val) != 32 {
   388  		// If the node's RLP isn't 32 bytes long, the node will not
   389  		// be hashed, and instead contain the  rlp-encoding of the
   390  		// node. For the top level node, we need to force the hashing.
   391  		ret := make([]byte, 32)
   392  		h := newHasher(false)
   393  		defer returnHasherToPool(h)
   394  		h.sha.Reset()
   395  		h.sha.Write(st.val)
   396  		h.sha.Read(ret)
   397  		return common.BytesToHash(ret)
   398  	}
   399  	return common.BytesToHash(st.val)
   400  }
   401  
   402  // Commit will firstly hash the entrie trie if it's still not hashed
   403  // and then commit all nodes to the associated database. Actually most
   404  // of the trie nodes MAY have been committed already. The main purpose
   405  // here is to commit the root node.
   406  //
   407  // The associated database is expected, otherwise the whole commit
   408  // functionality should be disabled.
   409  func (st *StackTrie) Commit() (common.Hash, error) {
   410  	if st.db == nil {
   411  		return common.Hash{}, ErrCommitDisabled
   412  	}
   413  	st.hash()
   414  	if len(st.val) != 32 {
   415  		// If the node's RLP isn't 32 bytes long, the node will not
   416  		// be hashed (and committed), and instead contain the  rlp-encoding of the
   417  		// node. For the top level node, we need to force the hashing+commit.
   418  		ret := make([]byte, 32)
   419  		h := newHasher(false)
   420  		defer returnHasherToPool(h)
   421  		h.sha.Reset()
   422  		h.sha.Write(st.val)
   423  		h.sha.Read(ret)
   424  		st.db.Put(ret, st.val)
   425  		return common.BytesToHash(ret), nil
   426  	}
   427  	return common.BytesToHash(st.val), nil
   428  }