github.com/core-coin/go-core/v2@v2.1.9/trie/sync.go (about) 1 // Copyright 2015 by the Authors 2 // This file is part of the go-core library. 3 // 4 // The go-core library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-core library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-core library. If not, see <http://www.gnu.org/licenses/>. 16 17 package trie 18 19 import ( 20 "errors" 21 "fmt" 22 23 "github.com/core-coin/go-core/v2/xcbdb" 24 25 "github.com/core-coin/go-core/v2/common" 26 "github.com/core-coin/go-core/v2/common/prque" 27 "github.com/core-coin/go-core/v2/core/rawdb" 28 ) 29 30 // ErrNotRequested is returned by the trie sync when it's requested to process a 31 // node it did not request. 32 var ErrNotRequested = errors.New("not requested") 33 34 // ErrAlreadyProcessed is returned by the trie sync when it's requested to process a 35 // node it already processed previously. 36 var ErrAlreadyProcessed = errors.New("already processed") 37 38 // maxFetchesPerDepth is the maximum number of pending trie nodes per depth. The 39 // role of this value is to limit the number of trie nodes that get expanded in 40 // memory if the node was configured with a significant number of peers. 41 const maxFetchesPerDepth = 16384 42 43 // request represents a scheduled or already in-flight state retrieval request. 44 type request struct { 45 path []byte // Merkle path leading to this node for prioritization 46 hash common.Hash // Hash of the node data content to retrieve 47 data []byte // Data content of the node, cached until all subtrees complete 48 code bool // Whether this is a code entry 49 50 parents []*request // Parent state nodes referencing this entry (notify all upon completion) 51 deps int // Number of dependencies before allowed to commit this node 52 53 callback LeafCallback // Callback to invoke if a leaf node it reached on this branch 54 } 55 56 // SyncPath is a path tuple identifying a particular trie node either in a single 57 // trie (account) or a layered trie (account -> storage). 58 // 59 // Content wise the tuple either has 1 element if it addresses a node in a single 60 // trie or 2 elements if it addresses a node in a stacked trie. 61 // 62 // To support aiming arbitrary trie nodes, the path needs to support odd nibble 63 // lengths. To avoid transferring expanded hex form over the network, the last 64 // part of the tuple (which needs to index into the middle of a trie) is compact 65 // encoded. In case of a 2-tuple, the first item is always 32 bytes so that is 66 // simple binary encoded. 67 // 68 // Examples: 69 // - Path 0x9 -> {0x19} 70 // - Path 0x99 -> {0x0099} 71 // - Path 0x01234567890123456789012345678901012345678901234567890123456789019 -> {0x0123456789012345678901234567890101234567890123456789012345678901, 0x19} 72 // - Path 0x012345678901234567890123456789010123456789012345678901234567890199 -> {0x0123456789012345678901234567890101234567890123456789012345678901, 0x0099} 73 type SyncPath [][]byte 74 75 // newSyncPath converts an expanded trie path from nibble form into a compact 76 // version that can be sent over the network. 77 func newSyncPath(path []byte) SyncPath { 78 // If the hash is from the account trie, append a single item, if it 79 // is from the a storage trie, append a tuple. Note, the length 64 is 80 // clashing between account leaf and storage root. It's fine though 81 // because having a trie node at 64 depth means a hash collision was 82 // found and we're long dead. 83 if len(path) < 64 { 84 return SyncPath{hexToCompact(path)} 85 } 86 return SyncPath{hexToKeybytes(path[:64]), hexToCompact(path[64:])} 87 } 88 89 // SyncResult is a response with requested data along with it's hash. 90 type SyncResult struct { 91 Hash common.Hash // Hash of the originally unknown trie node 92 Data []byte // Data content of the retrieved node 93 } 94 95 // syncMemBatch is an in-memory buffer of successfully downloaded but not yet 96 // persisted data items. 97 type syncMemBatch struct { 98 nodes map[common.Hash][]byte // In-memory membatch of recently completed nodes 99 codes map[common.Hash][]byte // In-memory membatch of recently completed codes 100 } 101 102 // newSyncMemBatch allocates a new memory-buffer for not-yet persisted trie nodes. 103 func newSyncMemBatch() *syncMemBatch { 104 return &syncMemBatch{ 105 nodes: make(map[common.Hash][]byte), 106 codes: make(map[common.Hash][]byte), 107 } 108 } 109 110 // hasNode reports the trie node with specific hash is already cached. 111 func (batch *syncMemBatch) hasNode(hash common.Hash) bool { 112 _, ok := batch.nodes[hash] 113 return ok 114 } 115 116 // hasCode reports the contract code with specific hash is already cached. 117 func (batch *syncMemBatch) hasCode(hash common.Hash) bool { 118 _, ok := batch.codes[hash] 119 return ok 120 } 121 122 // Sync is the main state trie synchronisation scheduler, which provides yet 123 // unknown trie hashes to retrieve, accepts node data associated with said hashes 124 // and reconstructs the trie step by step until all is done. 125 type Sync struct { 126 database xcbdb.KeyValueReader // Persistent database to check for existing entries 127 membatch *syncMemBatch // Memory buffer to avoid frequent database writes 128 nodeReqs map[common.Hash]*request // Pending requests pertaining to a trie node hash 129 codeReqs map[common.Hash]*request // Pending requests pertaining to a code hash 130 queue *prque.Prque // Priority queue with the pending requests 131 fetches map[int]int // Number of active fetches per trie node depth 132 bloom *SyncBloom // Bloom filter for fast state existence checks 133 } 134 135 // NewSync creates a new trie data download scheduler. 136 func NewSync(root common.Hash, database xcbdb.KeyValueReader, callback LeafCallback, bloom *SyncBloom) *Sync { 137 ts := &Sync{ 138 database: database, 139 membatch: newSyncMemBatch(), 140 nodeReqs: make(map[common.Hash]*request), 141 codeReqs: make(map[common.Hash]*request), 142 queue: prque.New(nil), 143 fetches: make(map[int]int), 144 bloom: bloom, 145 } 146 ts.AddSubTrie(root, nil, common.Hash{}, callback) 147 return ts 148 } 149 150 // AddSubTrie registers a new trie to the sync code, rooted at the designated parent. 151 func (s *Sync) AddSubTrie(root common.Hash, path []byte, parent common.Hash, callback LeafCallback) { 152 // Short circuit if the trie is empty or already known 153 if root == emptyRoot { 154 return 155 } 156 if s.membatch.hasNode(root) { 157 return 158 } 159 if s.bloom == nil || s.bloom.Contains(root[:]) { 160 // Bloom filter says this might be a duplicate, double check. 161 // If database says yes, then at least the trie node is present 162 // and we hold the assumption that it's NOT legacy contract code. 163 blob := rawdb.ReadTrieNode(s.database, root) 164 if len(blob) > 0 { 165 return 166 } 167 // False positive, bump fault meter 168 bloomFaultMeter.Mark(1) 169 } 170 // Assemble the new sub-trie sync request 171 req := &request{ 172 path: path, 173 hash: root, 174 callback: callback, 175 } 176 // If this sub-trie has a designated parent, link them together 177 if parent != (common.Hash{}) { 178 ancestor := s.nodeReqs[parent] 179 if ancestor == nil { 180 panic(fmt.Sprintf("sub-trie ancestor not found: %x", parent)) 181 } 182 ancestor.deps++ 183 req.parents = append(req.parents, ancestor) 184 } 185 s.schedule(req) 186 } 187 188 // AddCodeEntry schedules the direct retrieval of a contract code that should not 189 // be interpreted as a trie node, but rather accepted and stored into the database 190 // as is. 191 func (s *Sync) AddCodeEntry(hash common.Hash, path []byte, parent common.Hash) { 192 // Short circuit if the entry is empty or already known 193 if hash == emptyState { 194 return 195 } 196 if s.membatch.hasCode(hash) { 197 return 198 } 199 if s.bloom == nil || s.bloom.Contains(hash[:]) { 200 // Bloom filter says this might be a duplicate, double check. 201 // If database says yes, the blob is present for sure. 202 // Note we only check the existence with new code scheme, fast 203 // sync is expected to run with a fresh new node. Even there 204 // exists the code with legacy format, fetch and store with 205 // new scheme anyway. 206 if blob := rawdb.ReadCodeWithPrefix(s.database, hash); len(blob) > 0 { 207 return 208 } 209 // False positive, bump fault meter 210 bloomFaultMeter.Mark(1) 211 } 212 // Assemble the new sub-trie sync request 213 req := &request{ 214 path: path, 215 hash: hash, 216 code: true, 217 } 218 // If this sub-trie has a designated parent, link them together 219 if parent != (common.Hash{}) { 220 ancestor := s.nodeReqs[parent] // the parent of codereq can ONLY be nodereq 221 if ancestor == nil { 222 panic(fmt.Sprintf("raw-entry ancestor not found: %x", parent)) 223 } 224 ancestor.deps++ 225 req.parents = append(req.parents, ancestor) 226 } 227 s.schedule(req) 228 } 229 230 // Missing retrieves the known missing nodes from the trie for retrieval. To aid 231 // both xcb/6x style fast sync and snap/1x style state sync, the paths of trie 232 // nodes are returned too, as well as separate hash list for codes. 233 func (s *Sync) Missing(max int) (nodes []common.Hash, paths []SyncPath, codes []common.Hash) { 234 var ( 235 nodeHashes []common.Hash 236 nodePaths []SyncPath 237 codeHashes []common.Hash 238 ) 239 for !s.queue.Empty() && (max == 0 || len(nodeHashes)+len(codeHashes) < max) { 240 // Retrieve th enext item in line 241 item, prio := s.queue.Peek() 242 243 // If we have too many already-pending tasks for this depth, throttle 244 depth := int(prio >> 56) 245 if s.fetches[depth] > maxFetchesPerDepth { 246 break 247 } 248 // Item is allowed to be scheduled, add it to the task list 249 s.queue.Pop() 250 s.fetches[depth]++ 251 252 hash := item.(common.Hash) 253 if req, ok := s.nodeReqs[hash]; ok { 254 nodeHashes = append(nodeHashes, hash) 255 nodePaths = append(nodePaths, newSyncPath(req.path)) 256 } else { 257 codeHashes = append(codeHashes, hash) 258 } 259 } 260 return nodeHashes, nodePaths, codeHashes 261 } 262 263 // Process injects the received data for requested item. Note it can 264 // happpen that the single response commits two pending requests(e.g. 265 // there are two requests one for code and one for node but the hash 266 // is same). In this case the second response for the same hash will 267 // be treated as "non-requested" item or "already-processed" item but 268 // there is no downside. 269 func (s *Sync) Process(result SyncResult) error { 270 // If the item was not requested either for code or node, bail out 271 if s.nodeReqs[result.Hash] == nil && s.codeReqs[result.Hash] == nil { 272 return ErrNotRequested 273 } 274 // There is an pending code request for this data, commit directly 275 var filled bool 276 if req := s.codeReqs[result.Hash]; req != nil && req.data == nil { 277 filled = true 278 req.data = result.Data 279 s.commit(req) 280 } 281 // There is an pending node request for this data, fill it. 282 if req := s.nodeReqs[result.Hash]; req != nil && req.data == nil { 283 filled = true 284 // Decode the node data content and update the request 285 node, err := decodeNode(result.Hash[:], result.Data) 286 if err != nil { 287 return err 288 } 289 req.data = result.Data 290 291 // Create and schedule a request for all the children nodes 292 requests, err := s.children(req, node) 293 if err != nil { 294 return err 295 } 296 if len(requests) == 0 && req.deps == 0 { 297 s.commit(req) 298 } else { 299 req.deps += len(requests) 300 for _, child := range requests { 301 s.schedule(child) 302 } 303 } 304 } 305 if !filled { 306 return ErrAlreadyProcessed 307 } 308 return nil 309 } 310 311 // Commit flushes the data stored in the internal membatch out to persistent 312 // storage, returning any occurred error. 313 func (s *Sync) Commit(dbw xcbdb.Batch) error { 314 // Dump the membatch into a database dbw 315 for key, value := range s.membatch.nodes { 316 rawdb.WriteTrieNode(dbw, key, value) 317 s.bloom.Add(key[:]) 318 } 319 for key, value := range s.membatch.codes { 320 rawdb.WriteCode(dbw, key, value) 321 s.bloom.Add(key[:]) 322 } 323 // Drop the membatch data and return 324 s.membatch = newSyncMemBatch() 325 return nil 326 } 327 328 // Pending returns the number of state entries currently pending for download. 329 func (s *Sync) Pending() int { 330 return len(s.nodeReqs) + len(s.codeReqs) 331 } 332 333 // schedule inserts a new state retrieval request into the fetch queue. If there 334 // is already a pending request for this node, the new request will be discarded 335 // and only a parent reference added to the old one. 336 func (s *Sync) schedule(req *request) { 337 var reqset = s.nodeReqs 338 if req.code { 339 reqset = s.codeReqs 340 } 341 // If we're already requesting this node, add a new reference and stop 342 if old, ok := reqset[req.hash]; ok { 343 old.parents = append(old.parents, req.parents...) 344 return 345 } 346 reqset[req.hash] = req 347 348 // Schedule the request for future retrieval. This queue is shared 349 // by both node requests and code requests. It can happen that there 350 // is a trie node and code has same hash. In this case two elements 351 // with same hash and same or different depth will be pushed. But it's 352 // ok the worst case is the second response will be treated as duplicated. 353 prio := int64(len(req.path)) << 56 // depth >= 128 will never happen, storage leaves will be included in their parents 354 for i := 0; i < 14 && i < len(req.path); i++ { 355 prio |= int64(15-req.path[i]) << (52 - i*4) // 15-nibble => lexicographic order 356 } 357 s.queue.Push(req.hash, prio) 358 } 359 360 // children retrieves all the missing children of a state trie entry for future 361 // retrieval scheduling. 362 func (s *Sync) children(req *request, object node) ([]*request, error) { 363 // Gather all the children of the node, irrelevant whether known or not 364 type child struct { 365 path []byte 366 node node 367 } 368 var children []child 369 370 switch node := (object).(type) { 371 case *shortNode: 372 key := node.Key 373 if hasTerm(key) { 374 key = key[:len(key)-1] 375 } 376 children = []child{{ 377 node: node.Val, 378 path: append(append([]byte(nil), req.path...), key...), 379 }} 380 case *fullNode: 381 for i := 0; i < 17; i++ { 382 if node.Children[i] != nil { 383 children = append(children, child{ 384 node: node.Children[i], 385 path: append(append([]byte(nil), req.path...), byte(i)), 386 }) 387 } 388 } 389 default: 390 panic(fmt.Sprintf("unknown node: %+v", node)) 391 } 392 // Iterate over the children, and request all unknown ones 393 requests := make([]*request, 0, len(children)) 394 for _, child := range children { 395 // Notify any external watcher of a new key/value node 396 if req.callback != nil { 397 if node, ok := (child.node).(valueNode); ok { 398 if err := req.callback(child.path, node, req.hash); err != nil { 399 return nil, err 400 } 401 } 402 } 403 // If the child references another node, resolve or schedule 404 if node, ok := (child.node).(hashNode); ok { 405 // Try to resolve the node from the local database 406 hash := common.BytesToHash(node) 407 if s.membatch.hasNode(hash) { 408 continue 409 } 410 if s.bloom == nil || s.bloom.Contains(node) { 411 // Bloom filter says this might be a duplicate, double check. 412 // If database says yes, then at least the trie node is present 413 // and we hold the assumption that it's NOT legacy contract code. 414 if blob := rawdb.ReadTrieNode(s.database, common.BytesToHash(node)); len(blob) > 0 { 415 continue 416 } 417 // False positive, bump fault meter 418 bloomFaultMeter.Mark(1) 419 } 420 // Locally unknown node, schedule for retrieval 421 requests = append(requests, &request{ 422 path: child.path, 423 hash: hash, 424 parents: []*request{req}, 425 callback: req.callback, 426 }) 427 } 428 } 429 return requests, nil 430 } 431 432 // commit finalizes a retrieval request and stores it into the membatch. If any 433 // of the referencing parent requests complete due to this commit, they are also 434 // committed themselves. 435 func (s *Sync) commit(req *request) (err error) { 436 // Write the node content to the membatch 437 if req.code { 438 s.membatch.codes[req.hash] = req.data 439 delete(s.codeReqs, req.hash) 440 s.fetches[len(req.path)]-- 441 } else { 442 s.membatch.nodes[req.hash] = req.data 443 delete(s.nodeReqs, req.hash) 444 s.fetches[len(req.path)]-- 445 } 446 // Check all parents for completion 447 for _, parent := range req.parents { 448 parent.deps-- 449 if parent.deps == 0 { 450 if err := s.commit(parent); err != nil { 451 return err 452 } 453 } 454 } 455 return nil 456 }