github.com/core-coin/go-core/v2@v2.1.9/xcb/fetcher/tx_fetcher.go (about) 1 // Copyright 2019 by the Authors 2 // This file is part of the go-core library. 3 // 4 // The go-core library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-core library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-core library. If not, see <http://www.gnu.org/licenses/>. 16 17 package fetcher 18 19 import ( 20 "bytes" 21 "fmt" 22 mrand "math/rand" 23 "sort" 24 "time" 25 26 mapset "github.com/deckarep/golang-set" 27 28 "github.com/core-coin/go-core/v2/common" 29 "github.com/core-coin/go-core/v2/common/mclock" 30 "github.com/core-coin/go-core/v2/core" 31 "github.com/core-coin/go-core/v2/core/types" 32 "github.com/core-coin/go-core/v2/log" 33 "github.com/core-coin/go-core/v2/metrics" 34 ) 35 36 const ( 37 // maxTxAnnounces is the maximum number of unique transaction a peer 38 // can announce in a short time. 39 maxTxAnnounces = 4096 40 41 // maxTxRetrievals is the maximum transaction number can be fetched in one 42 // request. The rationale to pick 256 is: 43 // - In xcb protocol, the softResponseLimit is 2MB. Nowadays according to 44 // Corescan the average transaction size is around 200B, so in theory 45 // we can include lots of transaction in a single protocol packet. 46 // - However the maximum size of a single transaction is raised to 128KB, 47 // so pick a middle value here to ensure we can maximize the efficiency 48 // of the retrieval and response size overflow won't happen in most cases. 49 maxTxRetrievals = 256 50 51 // maxTxUnderpricedSetSize is the size of the underpriced transaction set that 52 // is used to track recent transactions that have been dropped so we don't 53 // re-request them. 54 maxTxUnderpricedSetSize = 32768 55 56 // txArriveTimeout is the time allowance before an announced transaction is 57 // explicitly requested. 58 txArriveTimeout = 500 * time.Millisecond 59 60 // txGatherSlack is the interval used to collate almost-expired announces 61 // with network fetches. 62 txGatherSlack = 100 * time.Millisecond 63 ) 64 65 var ( 66 // txFetchTimeout is the maximum allotted time to return an explicitly 67 // requested transaction. 68 txFetchTimeout = 5 * time.Second 69 ) 70 71 var ( 72 txAnnounceInMeter = metrics.NewRegisteredMeter("xcb/fetcher/transaction/announces/in", nil) 73 txAnnounceKnownMeter = metrics.NewRegisteredMeter("xcb/fetcher/transaction/announces/known", nil) 74 txAnnounceUnderpricedMeter = metrics.NewRegisteredMeter("xcb/fetcher/transaction/announces/underpriced", nil) 75 txAnnounceDOSMeter = metrics.NewRegisteredMeter("xcb/fetcher/transaction/announces/dos", nil) 76 77 txBroadcastInMeter = metrics.NewRegisteredMeter("xcb/fetcher/transaction/broadcasts/in", nil) 78 txBroadcastKnownMeter = metrics.NewRegisteredMeter("xcb/fetcher/transaction/broadcasts/known", nil) 79 txBroadcastUnderpricedMeter = metrics.NewRegisteredMeter("xcb/fetcher/transaction/broadcasts/underpriced", nil) 80 txBroadcastOtherRejectMeter = metrics.NewRegisteredMeter("xcb/fetcher/transaction/broadcasts/otherreject", nil) 81 82 txRequestOutMeter = metrics.NewRegisteredMeter("xcb/fetcher/transaction/request/out", nil) 83 txRequestFailMeter = metrics.NewRegisteredMeter("xcb/fetcher/transaction/request/fail", nil) 84 txRequestDoneMeter = metrics.NewRegisteredMeter("xcb/fetcher/transaction/request/done", nil) 85 txRequestTimeoutMeter = metrics.NewRegisteredMeter("xcb/fetcher/transaction/request/timeout", nil) 86 87 txReplyInMeter = metrics.NewRegisteredMeter("xcb/fetcher/transaction/replies/in", nil) 88 txReplyKnownMeter = metrics.NewRegisteredMeter("xcb/fetcher/transaction/replies/known", nil) 89 txReplyUnderpricedMeter = metrics.NewRegisteredMeter("xcb/fetcher/transaction/replies/underpriced", nil) 90 txReplyOtherRejectMeter = metrics.NewRegisteredMeter("xcb/fetcher/transaction/replies/otherreject", nil) 91 92 txFetcherWaitingPeers = metrics.NewRegisteredGauge("xcb/fetcher/transaction/waiting/peers", nil) 93 txFetcherWaitingHashes = metrics.NewRegisteredGauge("xcb/fetcher/transaction/waiting/hashes", nil) 94 txFetcherQueueingPeers = metrics.NewRegisteredGauge("xcb/fetcher/transaction/queueing/peers", nil) 95 txFetcherQueueingHashes = metrics.NewRegisteredGauge("xcb/fetcher/transaction/queueing/hashes", nil) 96 txFetcherFetchingPeers = metrics.NewRegisteredGauge("xcb/fetcher/transaction/fetching/peers", nil) 97 txFetcherFetchingHashes = metrics.NewRegisteredGauge("xcb/fetcher/transaction/fetching/hashes", nil) 98 ) 99 100 // txAnnounce is the notification of the availability of a batch 101 // of new transactions in the network. 102 type txAnnounce struct { 103 origin string // Identifier of the peer originating the notification 104 hashes []common.Hash // Batch of transaction hashes being announced 105 } 106 107 // txRequest represents an in-flight transaction retrieval request destined to 108 // a specific peers. 109 type txRequest struct { 110 hashes []common.Hash // Transactions having been requested 111 stolen map[common.Hash]struct{} // Deliveries by someone else (don't re-request) 112 time mclock.AbsTime // Timestamp of the request 113 } 114 115 // txDelivery is the notification that a batch of transactions have been added 116 // to the pool and should be untracked. 117 type txDelivery struct { 118 origin string // Identifier of the peer originating the notification 119 hashes []common.Hash // Batch of transaction hashes having been delivered 120 direct bool // Whether this is a direct reply or a broadcast 121 } 122 123 // txDrop is the notiication that a peer has disconnected. 124 type txDrop struct { 125 peer string 126 } 127 128 // TxFetcher is responsible for retrieving new transaction based on announcements. 129 // 130 // The fetcher operates in 3 stages: 131 // - Transactions that are newly discovered are moved into a wait list. 132 // - After ~500ms passes, transactions from the wait list that have not been 133 // broadcast to us in whole are moved into a queueing area. 134 // - When a connected peer doesn't have in-flight retrieval requests, any 135 // transaction queued up (and announced by the peer) are allocated to the 136 // peer and moved into a fetching status until it's fulfilled or fails. 137 // 138 // The invariants of the fetcher are: 139 // - Each tracked transaction (hash) must only be present in one of the 140 // three stages. This ensures that the fetcher operates akin to a finite 141 // state automata and there's do data leak. 142 // - Each peer that announced transactions may be scheduled retrievals, but 143 // only ever one concurrently. This ensures we can immediately know what is 144 // missing from a reply and reschedule it. 145 type TxFetcher struct { 146 notify chan *txAnnounce 147 cleanup chan *txDelivery 148 drop chan *txDrop 149 quit chan struct{} 150 151 underpriced mapset.Set // Transactions discarded as too cheap (don't re-fetch) 152 153 // Stage 1: Waiting lists for newly discovered transactions that might be 154 // broadcast without needing explicit request/reply round trips. 155 waitlist map[common.Hash]map[string]struct{} // Transactions waiting for an potential broadcast 156 waittime map[common.Hash]mclock.AbsTime // Timestamps when transactions were added to the waitlist 157 waitslots map[string]map[common.Hash]struct{} // Waiting announcement sgroupped by peer (DoS protection) 158 159 // Stage 2: Queue of transactions that waiting to be allocated to some peer 160 // to be retrieved directly. 161 announces map[string]map[common.Hash]struct{} // Set of announced transactions, grouped by origin peer 162 announced map[common.Hash]map[string]struct{} // Set of download locations, grouped by transaction hash 163 164 // Stage 3: Set of transactions currently being retrieved, some which may be 165 // fulfilled and some rescheduled. Note, this step shares 'announces' from the 166 // previous stage to avoid having to duplicate (need it for DoS checks). 167 fetching map[common.Hash]string // Transaction set currently being retrieved 168 requests map[string]*txRequest // In-flight transaction retrievals 169 alternates map[common.Hash]map[string]struct{} // In-flight transaction alternate origins if retrieval fails 170 171 // Callbacks 172 hasTx func(common.Hash) bool // Retrieves a tx from the local txpool 173 addTxs func([]*types.Transaction) []error // Insert a batch of transactions into local txpool 174 fetchTxs func(string, []common.Hash) error // Retrieves a set of txs from a remote peer 175 176 step chan struct{} // Notification channel when the fetcher loop iterates 177 clock mclock.Clock // Time wrapper to simulate in tests 178 rand *mrand.Rand // Randomizer to use in tests instead of map range loops (soft-random) 179 } 180 181 // NewTxFetcher creates a transaction fetcher to retrieve transaction 182 // based on hash announcements. 183 func NewTxFetcher(hasTx func(common.Hash) bool, addTxs func([]*types.Transaction) []error, fetchTxs func(string, []common.Hash) error) *TxFetcher { 184 return NewTxFetcherForTests(hasTx, addTxs, fetchTxs, mclock.System{}, nil) 185 } 186 187 // NewTxFetcherForTests is a testing method to mock out the realtime clock with 188 // a simulated version and the internal randomness with a deterministic one. 189 func NewTxFetcherForTests( 190 hasTx func(common.Hash) bool, addTxs func([]*types.Transaction) []error, fetchTxs func(string, []common.Hash) error, 191 clock mclock.Clock, rand *mrand.Rand) *TxFetcher { 192 return &TxFetcher{ 193 notify: make(chan *txAnnounce), 194 cleanup: make(chan *txDelivery), 195 drop: make(chan *txDrop), 196 quit: make(chan struct{}), 197 waitlist: make(map[common.Hash]map[string]struct{}), 198 waittime: make(map[common.Hash]mclock.AbsTime), 199 waitslots: make(map[string]map[common.Hash]struct{}), 200 announces: make(map[string]map[common.Hash]struct{}), 201 announced: make(map[common.Hash]map[string]struct{}), 202 fetching: make(map[common.Hash]string), 203 requests: make(map[string]*txRequest), 204 alternates: make(map[common.Hash]map[string]struct{}), 205 underpriced: mapset.NewSet(), 206 hasTx: hasTx, 207 addTxs: addTxs, 208 fetchTxs: fetchTxs, 209 clock: clock, 210 rand: rand, 211 } 212 } 213 214 // Notify announces the fetcher of the potential availability of a new batch of 215 // transactions in the network. 216 func (f *TxFetcher) Notify(peer string, hashes []common.Hash) error { 217 // Keep track of all the announced transactions 218 txAnnounceInMeter.Mark(int64(len(hashes))) 219 220 // Skip any transaction announcements that we already know of, or that we've 221 // previously marked as cheap and discarded. This check is of course racey, 222 // because multiple concurrent notifies will still manage to pass it, but it's 223 // still valuable to check here because it runs concurrent to the internal 224 // loop, so anything caught here is time saved internally. 225 var ( 226 unknowns = make([]common.Hash, 0, len(hashes)) 227 duplicate, underpriced int64 228 ) 229 for _, hash := range hashes { 230 switch { 231 case f.hasTx(hash): 232 duplicate++ 233 234 case f.underpriced.Contains(hash): 235 underpriced++ 236 237 default: 238 unknowns = append(unknowns, hash) 239 } 240 } 241 txAnnounceKnownMeter.Mark(duplicate) 242 txAnnounceUnderpricedMeter.Mark(underpriced) 243 244 // If anything's left to announce, push it into the internal loop 245 if len(unknowns) == 0 { 246 return nil 247 } 248 announce := &txAnnounce{ 249 origin: peer, 250 hashes: unknowns, 251 } 252 select { 253 case f.notify <- announce: 254 return nil 255 case <-f.quit: 256 return errTerminated 257 } 258 } 259 260 // Enqueue imports a batch of received transaction into the transaction pool 261 // and the fetcher. This method may be called by both transaction broadcasts and 262 // direct request replies. The differentiation is important so the fetcher can 263 // re-shedule missing transactions as soon as possible. 264 func (f *TxFetcher) Enqueue(peer string, txs []*types.Transaction, direct bool) error { 265 // Keep track of all the propagated transactions 266 if direct { 267 txReplyInMeter.Mark(int64(len(txs))) 268 } else { 269 txBroadcastInMeter.Mark(int64(len(txs))) 270 } 271 // Push all the transactions into the pool, tracking underpriced ones to avoid 272 // re-requesting them and dropping the peer in case of malicious transfers. 273 var ( 274 added = make([]common.Hash, 0, len(txs)) 275 duplicate int64 276 underpriced int64 277 otherreject int64 278 ) 279 errs := f.addTxs(txs) 280 for i, err := range errs { 281 if err != nil { 282 // Track the transaction hash if the price is too low for us. 283 // Avoid re-request this transaction when we receive another 284 // announcement. 285 if err == core.ErrUnderpriced || err == core.ErrReplaceUnderpriced { 286 for f.underpriced.Cardinality() >= maxTxUnderpricedSetSize { 287 f.underpriced.Pop() 288 } 289 f.underpriced.Add(txs[i].Hash()) 290 } 291 // Track a few interesting failure types 292 switch err { 293 case nil: // Noop, but need to handle to not count these 294 295 case core.ErrAlreadyKnown: 296 duplicate++ 297 298 case core.ErrUnderpriced, core.ErrReplaceUnderpriced: 299 underpriced++ 300 301 default: 302 otherreject++ 303 } 304 } 305 added = append(added, txs[i].Hash()) 306 } 307 if direct { 308 txReplyKnownMeter.Mark(duplicate) 309 txReplyUnderpricedMeter.Mark(underpriced) 310 txReplyOtherRejectMeter.Mark(otherreject) 311 } else { 312 txBroadcastKnownMeter.Mark(duplicate) 313 txBroadcastUnderpricedMeter.Mark(underpriced) 314 txBroadcastOtherRejectMeter.Mark(otherreject) 315 } 316 select { 317 case f.cleanup <- &txDelivery{origin: peer, hashes: added, direct: direct}: 318 return nil 319 case <-f.quit: 320 return errTerminated 321 } 322 } 323 324 // Drop should be called when a peer disconnects. It cleans up all the internal 325 // data structures of the given node. 326 func (f *TxFetcher) Drop(peer string) error { 327 select { 328 case f.drop <- &txDrop{peer: peer}: 329 return nil 330 case <-f.quit: 331 return errTerminated 332 } 333 } 334 335 // Start boots up the announcement based synchroniser, accepting and processing 336 // hash notifications and block fetches until termination requested. 337 func (f *TxFetcher) Start() { 338 go f.loop() 339 } 340 341 // Stop terminates the announcement based synchroniser, canceling all pending 342 // operations. 343 func (f *TxFetcher) Stop() { 344 close(f.quit) 345 } 346 347 func (f *TxFetcher) loop() { 348 var ( 349 waitTimer = new(mclock.Timer) 350 timeoutTimer = new(mclock.Timer) 351 352 waitTrigger = make(chan struct{}, 1) 353 timeoutTrigger = make(chan struct{}, 1) 354 ) 355 for { 356 select { 357 case ann := <-f.notify: 358 // Drop part of the new announcements if there are too many accumulated. 359 // Note, we could but do not filter already known transactions here as 360 // the probability of something arriving between this call and the pre- 361 // filter outside is essentially zero. 362 used := len(f.waitslots[ann.origin]) + len(f.announces[ann.origin]) 363 if used >= maxTxAnnounces { 364 // This can happen if a set of transactions are requested but not 365 // all fulfilled, so the remainder are rescheduled without the cap 366 // check. Should be fine as the limit is in the thousands and the 367 // request size in the hundreds. 368 txAnnounceDOSMeter.Mark(int64(len(ann.hashes))) 369 break 370 } 371 want := used + len(ann.hashes) 372 if want > maxTxAnnounces { 373 txAnnounceDOSMeter.Mark(int64(want - maxTxAnnounces)) 374 ann.hashes = ann.hashes[:want-maxTxAnnounces] 375 } 376 // All is well, schedule the remainder of the transactions 377 idleWait := len(f.waittime) == 0 378 _, oldPeer := f.announces[ann.origin] 379 380 for _, hash := range ann.hashes { 381 // If the transaction is already downloading, add it to the list 382 // of possible alternates (in case the current retrieval fails) and 383 // also account it for the peer. 384 if f.alternates[hash] != nil { 385 f.alternates[hash][ann.origin] = struct{}{} 386 387 // Stage 2 and 3 share the set of origins per tx 388 if announces := f.announces[ann.origin]; announces != nil { 389 announces[hash] = struct{}{} 390 } else { 391 f.announces[ann.origin] = map[common.Hash]struct{}{hash: {}} 392 } 393 continue 394 } 395 // If the transaction is not downloading, but is already queued 396 // from a different peer, track it for the new peer too. 397 if f.announced[hash] != nil { 398 f.announced[hash][ann.origin] = struct{}{} 399 400 // Stage 2 and 3 share the set of origins per tx 401 if announces := f.announces[ann.origin]; announces != nil { 402 announces[hash] = struct{}{} 403 } else { 404 f.announces[ann.origin] = map[common.Hash]struct{}{hash: {}} 405 } 406 continue 407 } 408 // If the transaction is already known to the fetcher, but not 409 // yet downloading, add the peer as an alternate origin in the 410 // waiting list. 411 if f.waitlist[hash] != nil { 412 f.waitlist[hash][ann.origin] = struct{}{} 413 414 if waitslots := f.waitslots[ann.origin]; waitslots != nil { 415 waitslots[hash] = struct{}{} 416 } else { 417 f.waitslots[ann.origin] = map[common.Hash]struct{}{hash: {}} 418 } 419 continue 420 } 421 // Transaction unknown to the fetcher, insert it into the waiting list 422 f.waitlist[hash] = map[string]struct{}{ann.origin: {}} 423 f.waittime[hash] = f.clock.Now() 424 425 if waitslots := f.waitslots[ann.origin]; waitslots != nil { 426 waitslots[hash] = struct{}{} 427 } else { 428 f.waitslots[ann.origin] = map[common.Hash]struct{}{hash: {}} 429 } 430 } 431 // If a new item was added to the waitlist, schedule it into the fetcher 432 if idleWait && len(f.waittime) > 0 { 433 f.rescheduleWait(waitTimer, waitTrigger) 434 } 435 // If this peer is new and announced something already queued, maybe 436 // request transactions from them 437 if !oldPeer && len(f.announces[ann.origin]) > 0 { 438 f.scheduleFetches(timeoutTimer, timeoutTrigger, map[string]struct{}{ann.origin: {}}) 439 } 440 441 case <-waitTrigger: 442 // At least one transaction's waiting time ran out, push all expired 443 // ones into the retrieval queues 444 actives := make(map[string]struct{}) 445 for hash, instance := range f.waittime { 446 if time.Duration(f.clock.Now()-instance)+txGatherSlack > txArriveTimeout { 447 // Transaction expired without propagation, schedule for retrieval 448 if f.announced[hash] != nil { 449 panic("announce tracker already contains waitlist item") 450 } 451 f.announced[hash] = f.waitlist[hash] 452 for peer := range f.waitlist[hash] { 453 if announces := f.announces[peer]; announces != nil { 454 announces[hash] = struct{}{} 455 } else { 456 f.announces[peer] = map[common.Hash]struct{}{hash: {}} 457 } 458 delete(f.waitslots[peer], hash) 459 if len(f.waitslots[peer]) == 0 { 460 delete(f.waitslots, peer) 461 } 462 actives[peer] = struct{}{} 463 } 464 delete(f.waittime, hash) 465 delete(f.waitlist, hash) 466 } 467 } 468 // If transactions are still waiting for propagation, reschedule the wait timer 469 if len(f.waittime) > 0 { 470 f.rescheduleWait(waitTimer, waitTrigger) 471 } 472 // If any peers became active and are idle, request transactions from them 473 if len(actives) > 0 { 474 f.scheduleFetches(timeoutTimer, timeoutTrigger, actives) 475 } 476 477 case <-timeoutTrigger: 478 // Clean up any expired retrievals and avoid re-requesting them from the 479 // same peer (either overloaded or malicious, useless in both cases). We 480 // could also penalize (Drop), but there's nothing to gain, and if could 481 // possibly further increase the load on it. 482 for peer, req := range f.requests { 483 if time.Duration(f.clock.Now()-req.time)+txGatherSlack > txFetchTimeout { 484 txRequestTimeoutMeter.Mark(int64(len(req.hashes))) 485 486 // Reschedule all the not-yet-delivered fetches to alternate peers 487 for _, hash := range req.hashes { 488 // Skip rescheduling hashes already delivered by someone else 489 if req.stolen != nil { 490 if _, ok := req.stolen[hash]; ok { 491 continue 492 } 493 } 494 // Move the delivery back from fetching to queued 495 if _, ok := f.announced[hash]; ok { 496 panic("announced tracker already contains alternate item") 497 } 498 if f.alternates[hash] != nil { // nil if tx was broadcast during fetch 499 f.announced[hash] = f.alternates[hash] 500 } 501 delete(f.announced[hash], peer) 502 if len(f.announced[hash]) == 0 { 503 delete(f.announced, hash) 504 } 505 delete(f.announces[peer], hash) 506 delete(f.alternates, hash) 507 delete(f.fetching, hash) 508 } 509 if len(f.announces[peer]) == 0 { 510 delete(f.announces, peer) 511 } 512 // Keep track of the request as dangling, but never expire 513 f.requests[peer].hashes = nil 514 } 515 } 516 // Schedule a new transaction retrieval 517 f.scheduleFetches(timeoutTimer, timeoutTrigger, nil) 518 519 // No idea if we scheduled something or not, trigger the timer if needed 520 // TODO(raisty): this is kind of lame, can't we dump it into scheduleFetches somehow? 521 f.rescheduleTimeout(timeoutTimer, timeoutTrigger) 522 523 case delivery := <-f.cleanup: 524 // Independent if the delivery was direct or broadcast, remove all 525 // traces of the hash from internal trackers 526 for _, hash := range delivery.hashes { 527 if _, ok := f.waitlist[hash]; ok { 528 for peer, txset := range f.waitslots { 529 delete(txset, hash) 530 if len(txset) == 0 { 531 delete(f.waitslots, peer) 532 } 533 } 534 delete(f.waitlist, hash) 535 delete(f.waittime, hash) 536 } else { 537 for peer, txset := range f.announces { 538 delete(txset, hash) 539 if len(txset) == 0 { 540 delete(f.announces, peer) 541 } 542 } 543 delete(f.announced, hash) 544 delete(f.alternates, hash) 545 546 // If a transaction currently being fetched from a different 547 // origin was delivered (delivery stolen), mark it so the 548 // actual delivery won't double schedule it. 549 if origin, ok := f.fetching[hash]; ok && (origin != delivery.origin || !delivery.direct) { 550 stolen := f.requests[origin].stolen 551 if stolen == nil { 552 f.requests[origin].stolen = make(map[common.Hash]struct{}) 553 stolen = f.requests[origin].stolen 554 } 555 stolen[hash] = struct{}{} 556 } 557 delete(f.fetching, hash) 558 } 559 } 560 // In case of a direct delivery, also reschedule anything missing 561 // from the original query 562 if delivery.direct { 563 // Mark the reqesting successful (independent of individual status) 564 txRequestDoneMeter.Mark(int64(len(delivery.hashes))) 565 566 // Make sure something was pending, nuke it 567 req := f.requests[delivery.origin] 568 if req == nil { 569 log.Warn("Unexpected transaction delivery", "peer", delivery.origin) 570 break 571 } 572 delete(f.requests, delivery.origin) 573 574 // Anything not delivered should be re-scheduled (with or without 575 // this peer, depending on the response cutoff) 576 delivered := make(map[common.Hash]struct{}) 577 for _, hash := range delivery.hashes { 578 delivered[hash] = struct{}{} 579 } 580 cutoff := len(req.hashes) // If nothing is delivered, assume everything is missing, don't retry!!! 581 for i, hash := range req.hashes { 582 if _, ok := delivered[hash]; ok { 583 cutoff = i 584 } 585 } 586 // Reschedule missing hashes from alternates, not-fulfilled from alt+self 587 for i, hash := range req.hashes { 588 // Skip rescheduling hashes already delivered by someone else 589 if req.stolen != nil { 590 if _, ok := req.stolen[hash]; ok { 591 continue 592 } 593 } 594 if _, ok := delivered[hash]; !ok { 595 if i < cutoff { 596 delete(f.alternates[hash], delivery.origin) 597 delete(f.announces[delivery.origin], hash) 598 if len(f.announces[delivery.origin]) == 0 { 599 delete(f.announces, delivery.origin) 600 } 601 } 602 if len(f.alternates[hash]) > 0 { 603 if _, ok := f.announced[hash]; ok { 604 panic(fmt.Sprintf("announced tracker already contains alternate item: %v", f.announced[hash])) 605 } 606 f.announced[hash] = f.alternates[hash] 607 } 608 } 609 delete(f.alternates, hash) 610 delete(f.fetching, hash) 611 } 612 // Something was delivered, try to rechedule requests 613 f.scheduleFetches(timeoutTimer, timeoutTrigger, nil) // Partial delivery may enable others to deliver too 614 } 615 616 case drop := <-f.drop: 617 // A peer was dropped, remove all traces of it 618 if _, ok := f.waitslots[drop.peer]; ok { 619 for hash := range f.waitslots[drop.peer] { 620 delete(f.waitlist[hash], drop.peer) 621 if len(f.waitlist[hash]) == 0 { 622 delete(f.waitlist, hash) 623 delete(f.waittime, hash) 624 } 625 } 626 delete(f.waitslots, drop.peer) 627 if len(f.waitlist) > 0 { 628 f.rescheduleWait(waitTimer, waitTrigger) 629 } 630 } 631 // Clean up any active requests 632 var request *txRequest 633 if request = f.requests[drop.peer]; request != nil { 634 for _, hash := range request.hashes { 635 // Skip rescheduling hashes already delivered by someone else 636 if request.stolen != nil { 637 if _, ok := request.stolen[hash]; ok { 638 continue 639 } 640 } 641 // Undelivered hash, reschedule if there's an alternative origin available 642 delete(f.alternates[hash], drop.peer) 643 if len(f.alternates[hash]) == 0 { 644 delete(f.alternates, hash) 645 } else { 646 f.announced[hash] = f.alternates[hash] 647 delete(f.alternates, hash) 648 } 649 delete(f.fetching, hash) 650 } 651 delete(f.requests, drop.peer) 652 } 653 // Clean up general announcement tracking 654 if _, ok := f.announces[drop.peer]; ok { 655 for hash := range f.announces[drop.peer] { 656 delete(f.announced[hash], drop.peer) 657 if len(f.announced[hash]) == 0 { 658 delete(f.announced, hash) 659 } 660 } 661 delete(f.announces, drop.peer) 662 } 663 // If a request was cancelled, check if anything needs to be rescheduled 664 if request != nil { 665 f.scheduleFetches(timeoutTimer, timeoutTrigger, nil) 666 f.rescheduleTimeout(timeoutTimer, timeoutTrigger) 667 } 668 669 case <-f.quit: 670 return 671 } 672 // No idea what happened, but bump some sanity metrics 673 txFetcherWaitingPeers.Update(int64(len(f.waitslots))) 674 txFetcherWaitingHashes.Update(int64(len(f.waitlist))) 675 txFetcherQueueingPeers.Update(int64(len(f.announces) - len(f.requests))) 676 txFetcherQueueingHashes.Update(int64(len(f.announced))) 677 txFetcherFetchingPeers.Update(int64(len(f.requests))) 678 txFetcherFetchingHashes.Update(int64(len(f.fetching))) 679 680 // Loop did something, ping the step notifier if needed (tests) 681 if f.step != nil { 682 f.step <- struct{}{} 683 } 684 } 685 } 686 687 // rescheduleWait iterates over all the transactions currently in the waitlist 688 // and schedules the movement into the fetcher for the earliest. 689 // 690 // The method has a granularity of 'gatherSlack', since there's not much point in 691 // spinning over all the transactions just to maybe find one that should trigger 692 // a few ms earlier. 693 func (f *TxFetcher) rescheduleWait(timer *mclock.Timer, trigger chan struct{}) { 694 if *timer != nil { 695 (*timer).Stop() 696 } 697 now := f.clock.Now() 698 699 earliest := now 700 for _, instance := range f.waittime { 701 if earliest > instance { 702 earliest = instance 703 if txArriveTimeout-time.Duration(now-earliest) < gatherSlack { 704 break 705 } 706 } 707 } 708 *timer = f.clock.AfterFunc(txArriveTimeout-time.Duration(now-earliest), func() { 709 trigger <- struct{}{} 710 }) 711 } 712 713 // rescheduleTimeout iterates over all the transactions currently in flight and 714 // schedules a cleanup run when the first would trigger. 715 // 716 // The method has a granularity of 'gatherSlack', since there's not much point in 717 // spinning over all the transactions just to maybe find one that should trigger 718 // a few ms earlier. 719 // 720 // This method is a bit "flaky" "by design". In theory the timeout timer only ever 721 // should be rescheduled if some request is pending. In practice, a timeout will 722 // cause the timer to be rescheduled every 5 secs (until the peer comes through or 723 // disconnects). This is a limitation of the fetcher code because we don't trac 724 // pending requests and timed out requests separatey. Without double tracking, if 725 // we simply didn't reschedule the timer on all-timeout then the timer would never 726 // be set again since len(request) > 0 => something's running. 727 func (f *TxFetcher) rescheduleTimeout(timer *mclock.Timer, trigger chan struct{}) { 728 if *timer != nil { 729 (*timer).Stop() 730 } 731 now := f.clock.Now() 732 733 earliest := now 734 for _, req := range f.requests { 735 // If this request already timed out, skip it altogether 736 if req.hashes == nil { 737 continue 738 } 739 if earliest > req.time { 740 earliest = req.time 741 if txFetchTimeout-time.Duration(now-earliest) < gatherSlack { 742 break 743 } 744 } 745 } 746 *timer = f.clock.AfterFunc(txFetchTimeout-time.Duration(now-earliest), func() { 747 trigger <- struct{}{} 748 }) 749 } 750 751 // scheduleFetches starts a batch of retrievals for all available idle peers. 752 func (f *TxFetcher) scheduleFetches(timer *mclock.Timer, timeout chan struct{}, whitelist map[string]struct{}) { 753 // Gather the set of peers we want to retrieve from (default to all) 754 actives := whitelist 755 if actives == nil { 756 actives = make(map[string]struct{}) 757 for peer := range f.announces { 758 actives[peer] = struct{}{} 759 } 760 } 761 if len(actives) == 0 { 762 return 763 } 764 // For each active peer, try to schedule some transaction fetches 765 idle := len(f.requests) == 0 766 767 f.forEachPeer(actives, func(peer string) { 768 if f.requests[peer] != nil { 769 return // continue in the for-each 770 } 771 if len(f.announces[peer]) == 0 { 772 return // continue in the for-each 773 } 774 hashes := make([]common.Hash, 0, maxTxRetrievals) 775 f.forEachHash(f.announces[peer], func(hash common.Hash) bool { 776 if _, ok := f.fetching[hash]; !ok { 777 // Mark the hash as fetching and stash away possible alternates 778 f.fetching[hash] = peer 779 780 if _, ok := f.alternates[hash]; ok { 781 panic(fmt.Sprintf("alternate tracker already contains fetching item: %v", f.alternates[hash])) 782 } 783 f.alternates[hash] = f.announced[hash] 784 delete(f.announced, hash) 785 786 // Accumulate the hash and stop if the limit was reached 787 hashes = append(hashes, hash) 788 if len(hashes) >= maxTxRetrievals { 789 return false // break in the for-each 790 } 791 } 792 return true // continue in the for-each 793 }) 794 // If any hashes were allocated, request them from the peer 795 if len(hashes) > 0 { 796 f.requests[peer] = &txRequest{hashes: hashes, time: f.clock.Now()} 797 txRequestOutMeter.Mark(int64(len(hashes))) 798 799 go func(peer string, hashes []common.Hash) { 800 // Try to fetch the transactions, but in case of a request 801 // failure (e.g. peer disconnected), reschedule the hashes. 802 if err := f.fetchTxs(peer, hashes); err != nil { 803 txRequestFailMeter.Mark(int64(len(hashes))) 804 f.Drop(peer) 805 } 806 }(peer, hashes) 807 } 808 }) 809 // If a new request was fired, schedule a timeout timer 810 if idle && len(f.requests) > 0 { 811 f.rescheduleTimeout(timer, timeout) 812 } 813 } 814 815 // forEachPeer does a range loop over a map of peers in production, but during 816 // testing it does a deterministic sorted random to allow reproducing issues. 817 func (f *TxFetcher) forEachPeer(peers map[string]struct{}, do func(peer string)) { 818 // If we're running production, use whatever Go's map gives us 819 if f.rand == nil { 820 for peer := range peers { 821 do(peer) 822 } 823 return 824 } 825 // We're running the test suite, make iteration deterministic 826 list := make([]string, 0, len(peers)) 827 for peer := range peers { 828 list = append(list, peer) 829 } 830 sort.Strings(list) 831 rotateStrings(list, f.rand.Intn(len(list))) 832 for _, peer := range list { 833 do(peer) 834 } 835 } 836 837 // forEachHash does a range loop over a map of hashes in production, but during 838 // testing it does a deterministic sorted random to allow reproducing issues. 839 func (f *TxFetcher) forEachHash(hashes map[common.Hash]struct{}, do func(hash common.Hash) bool) { 840 // If we're running production, use whatever Go's map gives us 841 if f.rand == nil { 842 for hash := range hashes { 843 if !do(hash) { 844 return 845 } 846 } 847 return 848 } 849 // We're running the test suite, make iteration deterministic 850 list := make([]common.Hash, 0, len(hashes)) 851 for hash := range hashes { 852 list = append(list, hash) 853 } 854 sortHashes(list) 855 rotateHashes(list, f.rand.Intn(len(list))) 856 for _, hash := range list { 857 if !do(hash) { 858 return 859 } 860 } 861 } 862 863 // rotateStrings rotates the contents of a slice by n steps. This method is only 864 // used in tests to simulate random map iteration but keep it deterministic. 865 func rotateStrings(slice []string, n int) { 866 orig := make([]string, len(slice)) 867 copy(orig, slice) 868 869 for i := 0; i < len(orig); i++ { 870 slice[i] = orig[(i+n)%len(orig)] 871 } 872 } 873 874 // sortHashes sorts a slice of hashes. This method is only used in tests in order 875 // to simulate random map iteration but keep it deterministic. 876 func sortHashes(slice []common.Hash) { 877 for i := 0; i < len(slice); i++ { 878 for j := i + 1; j < len(slice); j++ { 879 if bytes.Compare(slice[i][:], slice[j][:]) > 0 { 880 slice[i], slice[j] = slice[j], slice[i] 881 } 882 } 883 } 884 } 885 886 // rotateHashes rotates the contents of a slice by n steps. This method is only 887 // used in tests to simulate random map iteration but keep it deterministic. 888 func rotateHashes(slice []common.Hash, n int) { 889 orig := make([]common.Hash, len(slice)) 890 copy(orig, slice) 891 892 for i := 0; i < len(orig); i++ { 893 slice[i] = orig[(i+n)%len(orig)] 894 } 895 }