github.com/core-coin/go-core@v1.1.7/core/vm/contracts.go (about)

     1  // Copyright 2014 by the Authors
     2  // This file is part of the go-core library.
     3  //
     4  // The go-core library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-core library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-core library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package vm
    18  
    19  import (
    20  	"crypto/sha256"
    21  	"encoding/binary"
    22  	"errors"
    23  	"github.com/core-coin/go-goldilocks"
    24  	"golang.org/x/crypto/sha3"
    25  	"math/big"
    26  
    27  	"github.com/core-coin/go-core/common"
    28  	"github.com/core-coin/go-core/common/math"
    29  	"github.com/core-coin/go-core/crypto"
    30  	"github.com/core-coin/go-core/crypto/blake2b"
    31  	"github.com/core-coin/go-core/crypto/bn256"
    32  	"github.com/core-coin/go-core/params"
    33  
    34  	//lint:ignore SA1019 Needed for precompile
    35  	"golang.org/x/crypto/ripemd160"
    36  )
    37  
    38  // PrecompiledContract is the basic interface for native Go contracts. The implementation
    39  // requires a deterministic energy count based on the input size of the Run method of the
    40  // contract.
    41  type PrecompiledContract interface {
    42  	RequiredEnergy(input []byte) uint64 // RequiredPrice calculates the contract energy use
    43  	Run(input []byte) ([]byte, error)   // Run runs the precompiled contract
    44  }
    45  
    46  var PrecompiledContracts = map[common.Address]PrecompiledContract{
    47  	common.Addr1: &ecrecover{},
    48  	common.Addr2: &sha256hash{},
    49  	common.Addr3: &ripemd160hash{},
    50  	common.Addr4: &dataCopy{},
    51  	common.Addr5: &bigModExp{},
    52  	common.Addr6: &bn256Add{},
    53  	common.Addr7: &bn256ScalarMul{},
    54  	common.Addr8: &bn256Pairing{},
    55  	common.Addr9: &blake2F{},
    56  }
    57  
    58  // RunPrecompiledContract runs and evaluates the output of a precompiled contract.
    59  // It returns
    60  // - the returned bytes,
    61  // - the _remaining_ energy,
    62  // - any error that occurred
    63  func RunPrecompiledContract(p PrecompiledContract, input []byte, suppliedEnergy uint64) (ret []byte, remainingEnergy uint64, err error) {
    64  	energyCost := p.RequiredEnergy(input)
    65  	if suppliedEnergy < energyCost {
    66  		return nil, 0, ErrOutOfEnergy
    67  	}
    68  	suppliedEnergy -= energyCost
    69  	output, err := p.Run(input)
    70  	return output, suppliedEnergy, err
    71  }
    72  
    73  // ECRECOVER implemented as a native contract.
    74  type ecrecover struct{}
    75  
    76  func (c *ecrecover) RequiredEnergy(input []byte) uint64 {
    77  	return params.EcrecoverEnergy
    78  }
    79  
    80  func (c *ecrecover) Run(input []byte) ([]byte, error) {
    81  	var ecRecoverInputLength = sha3.New256().Size() + crypto.ExtendedSignatureLength // 32 + 171
    82  
    83  	input = common.RightPadBytes(input, ecRecoverInputLength)
    84  
    85  	pubKey, err := crypto.Ecrecover(input[:32], input[96:267])
    86  	// make sure the public key is a valid one
    87  	if err != nil {
    88  		return nil, nil
    89  	}
    90  	if pubKey != nil {
    91  		return common.LeftPadBytes(crypto.PubkeyToAddress(goldilocks.BytesToPublicKey(pubKey)).Bytes(), 32), nil
    92  	}
    93  	return nil, errors.New("invalid signature")
    94  }
    95  
    96  // SHA256 implemented as a native contract.
    97  type sha256hash struct{}
    98  
    99  // RequiredEnergy returns the energy required to execute the pre-compiled contract.
   100  //
   101  // This method does not require any overflow checking as the input size energy costs
   102  // required for anything significant is so high it's impossible to pay for.
   103  func (c *sha256hash) RequiredEnergy(input []byte) uint64 {
   104  	return uint64(len(input)+31)/32*params.Sha256PerWordEnergy + params.Sha256BaseEnergy
   105  }
   106  func (c *sha256hash) Run(input []byte) ([]byte, error) {
   107  	h := sha256.Sum256(input)
   108  	return h[:], nil
   109  }
   110  
   111  // RIPEMD160 implemented as a native contract.
   112  type ripemd160hash struct{}
   113  
   114  // RequiredEnergy returns the energy required to execute the pre-compiled contract.
   115  //
   116  // This method does not require any overflow checking as the input size energy costs
   117  // required for anything significant is so high it's impossible to pay for.
   118  func (c *ripemd160hash) RequiredEnergy(input []byte) uint64 {
   119  	return uint64(len(input)+31)/32*params.Ripemd160PerWordEnergy + params.Ripemd160BaseEnergy
   120  }
   121  func (c *ripemd160hash) Run(input []byte) ([]byte, error) {
   122  	ripemd := ripemd160.New()
   123  	ripemd.Write(input)
   124  	return common.LeftPadBytes(ripemd.Sum(nil), 32), nil
   125  }
   126  
   127  // data copy implemented as a native contract.
   128  type dataCopy struct{}
   129  
   130  // RequiredEnergy returns the energy required to execute the pre-compiled contract.
   131  //
   132  // This method does not require any overflow checking as the input size energy costs
   133  // required for anything significant is so high it's impossible to pay for.
   134  func (c *dataCopy) RequiredEnergy(input []byte) uint64 {
   135  	return uint64(len(input)+31)/32*params.IdentityPerWordEnergy + params.IdentityBaseEnergy
   136  }
   137  func (c *dataCopy) Run(in []byte) ([]byte, error) {
   138  	return in, nil
   139  }
   140  
   141  // bigModExp implements a native big integer exponential modular operation.
   142  type bigModExp struct{}
   143  
   144  var (
   145  	big0      = big.NewInt(0)
   146  	big1      = big.NewInt(1)
   147  	big4      = big.NewInt(4)
   148  	big8      = big.NewInt(8)
   149  	big16     = big.NewInt(16)
   150  	big32     = big.NewInt(32)
   151  	big64     = big.NewInt(64)
   152  	big96     = big.NewInt(96)
   153  	big480    = big.NewInt(480)
   154  	big1024   = big.NewInt(1024)
   155  	big3072   = big.NewInt(3072)
   156  	big199680 = big.NewInt(199680)
   157  )
   158  
   159  // RequiredEnergy returns the energy required to execute the pre-compiled contract.
   160  func (c *bigModExp) RequiredEnergy(input []byte) uint64 {
   161  	var (
   162  		baseLen = new(big.Int).SetBytes(getData(input, 0, 32))
   163  		expLen  = new(big.Int).SetBytes(getData(input, 32, 32))
   164  		modLen  = new(big.Int).SetBytes(getData(input, 64, 32))
   165  	)
   166  	if len(input) > 96 {
   167  		input = input[96:]
   168  	} else {
   169  		input = input[:0]
   170  	}
   171  	// Retrieve the head 32 bytes of exp for the adjusted exponent length
   172  	var expHead *big.Int
   173  	if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 {
   174  		expHead = new(big.Int)
   175  	} else {
   176  		if expLen.Cmp(big32) > 0 {
   177  			expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32))
   178  		} else {
   179  			expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64()))
   180  		}
   181  	}
   182  	// Calculate the adjusted exponent length
   183  	var msb int
   184  	if bitlen := expHead.BitLen(); bitlen > 0 {
   185  		msb = bitlen - 1
   186  	}
   187  	adjExpLen := new(big.Int)
   188  	if expLen.Cmp(big32) > 0 {
   189  		adjExpLen.Sub(expLen, big32)
   190  		adjExpLen.Mul(big8, adjExpLen)
   191  	}
   192  	adjExpLen.Add(adjExpLen, big.NewInt(int64(msb)))
   193  
   194  	// Calculate the energy cost of the operation
   195  	energy := new(big.Int).Set(math.BigMax(modLen, baseLen))
   196  	switch {
   197  	case energy.Cmp(big64) <= 0:
   198  		energy.Mul(energy, energy)
   199  	case energy.Cmp(big1024) <= 0:
   200  		energy = new(big.Int).Add(
   201  			new(big.Int).Div(new(big.Int).Mul(energy, energy), big4),
   202  			new(big.Int).Sub(new(big.Int).Mul(big96, energy), big3072),
   203  		)
   204  	default:
   205  		energy = new(big.Int).Add(
   206  			new(big.Int).Div(new(big.Int).Mul(energy, energy), big16),
   207  			new(big.Int).Sub(new(big.Int).Mul(big480, energy), big199680),
   208  		)
   209  	}
   210  	energy.Mul(energy, math.BigMax(adjExpLen, big1))
   211  	energy.Div(energy, new(big.Int).SetUint64(params.ModExpQuadCoeffDiv))
   212  
   213  	if energy.BitLen() > 64 {
   214  		return math.MaxUint64
   215  	}
   216  	return energy.Uint64()
   217  }
   218  
   219  func (c *bigModExp) Run(input []byte) ([]byte, error) {
   220  	var (
   221  		baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64()
   222  		expLen  = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64()
   223  		modLen  = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64()
   224  	)
   225  	if len(input) > 96 {
   226  		input = input[96:]
   227  	} else {
   228  		input = input[:0]
   229  	}
   230  	// Handle a special case when both the base and mod length is zero
   231  	if baseLen == 0 && modLen == 0 {
   232  		return []byte{}, nil
   233  	}
   234  	// Retrieve the operands and execute the exponentiation
   235  	var (
   236  		base = new(big.Int).SetBytes(getData(input, 0, baseLen))
   237  		exp  = new(big.Int).SetBytes(getData(input, baseLen, expLen))
   238  		mod  = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen))
   239  	)
   240  	if mod.BitLen() == 0 {
   241  		// Modulo 0 is undefined, return zero
   242  		return common.LeftPadBytes([]byte{}, int(modLen)), nil
   243  	}
   244  	return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil
   245  }
   246  
   247  // newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point,
   248  // returning it, or an error if the point is invalid.
   249  func newCurvePoint(blob []byte) (*bn256.G1, error) {
   250  	p := new(bn256.G1)
   251  	if _, err := p.Unmarshal(blob); err != nil {
   252  		return nil, err
   253  	}
   254  	return p, nil
   255  }
   256  
   257  // newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point,
   258  // returning it, or an error if the point is invalid.
   259  func newTwistPoint(blob []byte) (*bn256.G2, error) {
   260  	p := new(bn256.G2)
   261  	if _, err := p.Unmarshal(blob); err != nil {
   262  		return nil, err
   263  	}
   264  	return p, nil
   265  }
   266  
   267  // runBn256Add implements the Bn256Add precompile
   268  func runBn256Add(input []byte) ([]byte, error) {
   269  	x, err := newCurvePoint(getData(input, 0, 64))
   270  	if err != nil {
   271  		return nil, err
   272  	}
   273  	y, err := newCurvePoint(getData(input, 64, 64))
   274  	if err != nil {
   275  		return nil, err
   276  	}
   277  	res := new(bn256.G1)
   278  	res.Add(x, y)
   279  	return res.Marshal(), nil
   280  }
   281  
   282  // bn256Add implements a native elliptic curve point addition conforming to
   283  // consensus rules.
   284  type bn256Add struct{}
   285  
   286  // RequiredEnergy returns the energy required to execute the pre-compiled contract.
   287  func (c *bn256Add) RequiredEnergy(input []byte) uint64 {
   288  	return params.Bn256AddEnergy
   289  }
   290  
   291  func (c *bn256Add) Run(input []byte) ([]byte, error) {
   292  	return runBn256Add(input)
   293  }
   294  
   295  // runBn256ScalarMul implements the Bn256ScalarMul precompile
   296  func runBn256ScalarMul(input []byte) ([]byte, error) {
   297  	p, err := newCurvePoint(getData(input, 0, 64))
   298  	if err != nil {
   299  		return nil, err
   300  	}
   301  	res := new(bn256.G1)
   302  	res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32)))
   303  	return res.Marshal(), nil
   304  }
   305  
   306  // bn256ScalarMul implements a native elliptic curve scalar
   307  // multiplication conforming to consensus rules.
   308  type bn256ScalarMul struct{}
   309  
   310  // RequiredEnergy returns the energy required to execute the pre-compiled contract.
   311  func (c *bn256ScalarMul) RequiredEnergy(input []byte) uint64 {
   312  	return params.Bn256ScalarMulEnergy
   313  }
   314  
   315  func (c *bn256ScalarMul) Run(input []byte) ([]byte, error) {
   316  	return runBn256ScalarMul(input)
   317  }
   318  
   319  var (
   320  	// true32Byte is returned if the bn256 pairing check succeeds.
   321  	true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
   322  
   323  	// false32Byte is returned if the bn256 pairing check fails.
   324  	false32Byte = make([]byte, 32)
   325  
   326  	// errBadPairingInput is returned if the bn256 pairing input is invalid.
   327  	errBadPairingInput = errors.New("bad elliptic curve pairing size")
   328  )
   329  
   330  // runBn256Pairing implements the Bn256Pairing precompile
   331  func runBn256Pairing(input []byte) ([]byte, error) {
   332  	// Handle some corner cases cheaply
   333  	if len(input)%192 > 0 {
   334  		return nil, errBadPairingInput
   335  	}
   336  	// Convert the input into a set of coordinates
   337  	var (
   338  		cs []*bn256.G1
   339  		ts []*bn256.G2
   340  	)
   341  	for i := 0; i < len(input); i += 192 {
   342  		c, err := newCurvePoint(input[i : i+64])
   343  		if err != nil {
   344  			return nil, err
   345  		}
   346  		t, err := newTwistPoint(input[i+64 : i+192])
   347  		if err != nil {
   348  			return nil, err
   349  		}
   350  		cs = append(cs, c)
   351  		ts = append(ts, t)
   352  	}
   353  	// Execute the pairing checks and return the results
   354  	if bn256.PairingCheck(cs, ts) {
   355  		return true32Byte, nil
   356  	}
   357  	return false32Byte, nil
   358  }
   359  
   360  // bn256Pairing implements a pairing pre-compile for the bn256 curve
   361  type bn256Pairing struct{}
   362  
   363  // RequiredEnergy returns the energy required to execute the pre-compiled contract.
   364  func (c *bn256Pairing) RequiredEnergy(input []byte) uint64 {
   365  	return params.Bn256PairingBaseEnergy + uint64(len(input)/192)*params.Bn256PairingPerPointEnergy
   366  }
   367  
   368  func (c *bn256Pairing) Run(input []byte) ([]byte, error) {
   369  	return runBn256Pairing(input)
   370  }
   371  
   372  type blake2F struct{}
   373  
   374  func (c *blake2F) RequiredEnergy(input []byte) uint64 {
   375  	// If the input is malformed, we can't calculate the energy, return 0 and let the
   376  	// actual call choke and fault.
   377  	if len(input) != blake2FInputLength {
   378  		return 0
   379  	}
   380  	return uint64(binary.BigEndian.Uint32(input[0:4]))
   381  }
   382  
   383  const (
   384  	blake2FInputLength        = 213
   385  	blake2FFinalBlockBytes    = byte(1)
   386  	blake2FNonFinalBlockBytes = byte(0)
   387  )
   388  
   389  var (
   390  	errBlake2FInvalidInputLength = errors.New("invalid input length")
   391  	errBlake2FInvalidFinalFlag   = errors.New("invalid final flag")
   392  )
   393  
   394  func (c *blake2F) Run(input []byte) ([]byte, error) {
   395  	// Make sure the input is valid (correct lenth and final flag)
   396  	if len(input) != blake2FInputLength {
   397  		return nil, errBlake2FInvalidInputLength
   398  	}
   399  	if input[212] != blake2FNonFinalBlockBytes && input[212] != blake2FFinalBlockBytes {
   400  		return nil, errBlake2FInvalidFinalFlag
   401  	}
   402  	// Parse the input into the Blake2b call parameters
   403  	var (
   404  		rounds = binary.BigEndian.Uint32(input[0:4])
   405  		final  = (input[212] == blake2FFinalBlockBytes)
   406  
   407  		h [8]uint64
   408  		m [16]uint64
   409  		t [2]uint64
   410  	)
   411  	for i := 0; i < 8; i++ {
   412  		offset := 4 + i*8
   413  		h[i] = binary.LittleEndian.Uint64(input[offset : offset+8])
   414  	}
   415  	for i := 0; i < 16; i++ {
   416  		offset := 68 + i*8
   417  		m[i] = binary.LittleEndian.Uint64(input[offset : offset+8])
   418  	}
   419  	t[0] = binary.LittleEndian.Uint64(input[196:204])
   420  	t[1] = binary.LittleEndian.Uint64(input[204:212])
   421  
   422  	// Execute the compression function, extract and return the result
   423  	blake2b.F(&h, m, t, final, rounds)
   424  
   425  	output := make([]byte, 64)
   426  	for i := 0; i < 8; i++ {
   427  		offset := i * 8
   428  		binary.LittleEndian.PutUint64(output[offset:offset+8], h[i])
   429  	}
   430  	return output, nil
   431  }