github.com/corona10/go@v0.0.0-20180224231303-7a218942be57/src/cmd/compile/internal/gc/syntax.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // “Abstract” syntax representation. 6 7 package gc 8 9 import ( 10 "cmd/compile/internal/ssa" 11 "cmd/compile/internal/syntax" 12 "cmd/compile/internal/types" 13 "cmd/internal/obj" 14 "cmd/internal/src" 15 ) 16 17 // A Node is a single node in the syntax tree. 18 // Actually the syntax tree is a syntax DAG, because there is only one 19 // node with Op=ONAME for a given instance of a variable x. 20 // The same is true for Op=OTYPE and Op=OLITERAL. See Node.mayBeShared. 21 type Node struct { 22 // Tree structure. 23 // Generic recursive walks should follow these fields. 24 Left *Node 25 Right *Node 26 Ninit Nodes 27 Nbody Nodes 28 List Nodes 29 Rlist Nodes 30 31 // most nodes 32 Type *types.Type 33 Orig *Node // original form, for printing, and tracking copies of ONAMEs 34 35 // func 36 Func *Func 37 38 // ONAME, OTYPE, OPACK, OLABEL, some OLITERAL 39 Name *Name 40 41 Sym *types.Sym // various 42 E interface{} // Opt or Val, see methods below 43 44 // Various. Usually an offset into a struct. For example: 45 // - ONAME nodes that refer to local variables use it to identify their stack frame position. 46 // - ODOT, ODOTPTR, and OINDREGSP use it to indicate offset relative to their base address. 47 // - OSTRUCTKEY uses it to store the named field's offset. 48 // - Named OLITERALs use it to to store their ambient iota value. 49 // Possibly still more uses. If you find any, document them. 50 Xoffset int64 51 52 Pos src.XPos 53 54 flags bitset32 55 56 Esc uint16 // EscXXX 57 58 Op Op 59 Etype types.EType // op for OASOP, etype for OTYPE, exclam for export, 6g saved reg, ChanDir for OTCHAN, for OINDEXMAP 1=LHS,0=RHS 60 } 61 62 func (n *Node) IsSynthetic() bool { 63 name := n.Sym.Name 64 return name[0] == '.' || name[0] == '~' 65 } 66 67 // IsAutoTmp indicates if n was created by the compiler as a temporary, 68 // based on the setting of the .AutoTemp flag in n's Name. 69 func (n *Node) IsAutoTmp() bool { 70 if n == nil || n.Op != ONAME { 71 return false 72 } 73 return n.Name.AutoTemp() 74 } 75 76 const ( 77 nodeClass, _ = iota, 1 << iota // PPARAM, PAUTO, PEXTERN, etc; three bits; first in the list because frequently accessed 78 _, _ // second nodeClass bit 79 _, _ // third nodeClass bit 80 nodeWalkdef, _ // tracks state during typecheckdef; 2 == loop detected; two bits 81 _, _ // second nodeWalkdef bit 82 nodeTypecheck, _ // tracks state during typechecking; 2 == loop detected; two bits 83 _, _ // second nodeTypecheck bit 84 nodeInitorder, _ // tracks state during init1; two bits 85 _, _ // second nodeInitorder bit 86 _, nodeHasBreak 87 _, nodeIsClosureVar 88 _, nodeIsOutputParamHeapAddr 89 _, nodeNoInline // used internally by inliner to indicate that a function call should not be inlined; set for OCALLFUNC and OCALLMETH only 90 _, nodeAssigned // is the variable ever assigned to 91 _, nodeAddrtaken // address taken, even if not moved to heap 92 _, nodeImplicit 93 _, nodeIsddd // is the argument variadic 94 _, nodeDiag // already printed error about this 95 _, nodeColas // OAS resulting from := 96 _, nodeNonNil // guaranteed to be non-nil 97 _, nodeNoescape // func arguments do not escape; TODO(rsc): move Noescape to Func struct (see CL 7360) 98 _, nodeBounded // bounds check unnecessary 99 _, nodeAddable // addressable 100 _, nodeHasCall // expression contains a function call 101 _, nodeLikely // if statement condition likely 102 _, nodeHasVal // node.E contains a Val 103 _, nodeHasOpt // node.E contains an Opt 104 _, nodeEmbedded // ODCLFIELD embedded type 105 _, nodeInlFormal // OPAUTO created by inliner, derived from callee formal 106 _, nodeInlLocal // OPAUTO created by inliner, derived from callee local 107 ) 108 109 func (n *Node) Class() Class { return Class(n.flags.get3(nodeClass)) } 110 func (n *Node) Walkdef() uint8 { return n.flags.get2(nodeWalkdef) } 111 func (n *Node) Typecheck() uint8 { return n.flags.get2(nodeTypecheck) } 112 func (n *Node) Initorder() uint8 { return n.flags.get2(nodeInitorder) } 113 114 func (n *Node) HasBreak() bool { return n.flags&nodeHasBreak != 0 } 115 func (n *Node) IsClosureVar() bool { return n.flags&nodeIsClosureVar != 0 } 116 func (n *Node) NoInline() bool { return n.flags&nodeNoInline != 0 } 117 func (n *Node) IsOutputParamHeapAddr() bool { return n.flags&nodeIsOutputParamHeapAddr != 0 } 118 func (n *Node) Assigned() bool { return n.flags&nodeAssigned != 0 } 119 func (n *Node) Addrtaken() bool { return n.flags&nodeAddrtaken != 0 } 120 func (n *Node) Implicit() bool { return n.flags&nodeImplicit != 0 } 121 func (n *Node) Isddd() bool { return n.flags&nodeIsddd != 0 } 122 func (n *Node) Diag() bool { return n.flags&nodeDiag != 0 } 123 func (n *Node) Colas() bool { return n.flags&nodeColas != 0 } 124 func (n *Node) NonNil() bool { return n.flags&nodeNonNil != 0 } 125 func (n *Node) Noescape() bool { return n.flags&nodeNoescape != 0 } 126 func (n *Node) Bounded() bool { return n.flags&nodeBounded != 0 } 127 func (n *Node) Addable() bool { return n.flags&nodeAddable != 0 } 128 func (n *Node) HasCall() bool { return n.flags&nodeHasCall != 0 } 129 func (n *Node) Likely() bool { return n.flags&nodeLikely != 0 } 130 func (n *Node) HasVal() bool { return n.flags&nodeHasVal != 0 } 131 func (n *Node) HasOpt() bool { return n.flags&nodeHasOpt != 0 } 132 func (n *Node) Embedded() bool { return n.flags&nodeEmbedded != 0 } 133 func (n *Node) InlFormal() bool { return n.flags&nodeInlFormal != 0 } 134 func (n *Node) InlLocal() bool { return n.flags&nodeInlLocal != 0 } 135 136 func (n *Node) SetClass(b Class) { n.flags.set3(nodeClass, uint8(b)) } 137 func (n *Node) SetWalkdef(b uint8) { n.flags.set2(nodeWalkdef, b) } 138 func (n *Node) SetTypecheck(b uint8) { n.flags.set2(nodeTypecheck, b) } 139 func (n *Node) SetInitorder(b uint8) { n.flags.set2(nodeInitorder, b) } 140 141 func (n *Node) SetHasBreak(b bool) { n.flags.set(nodeHasBreak, b) } 142 func (n *Node) SetIsClosureVar(b bool) { n.flags.set(nodeIsClosureVar, b) } 143 func (n *Node) SetNoInline(b bool) { n.flags.set(nodeNoInline, b) } 144 func (n *Node) SetIsOutputParamHeapAddr(b bool) { n.flags.set(nodeIsOutputParamHeapAddr, b) } 145 func (n *Node) SetAssigned(b bool) { n.flags.set(nodeAssigned, b) } 146 func (n *Node) SetAddrtaken(b bool) { n.flags.set(nodeAddrtaken, b) } 147 func (n *Node) SetImplicit(b bool) { n.flags.set(nodeImplicit, b) } 148 func (n *Node) SetIsddd(b bool) { n.flags.set(nodeIsddd, b) } 149 func (n *Node) SetDiag(b bool) { n.flags.set(nodeDiag, b) } 150 func (n *Node) SetColas(b bool) { n.flags.set(nodeColas, b) } 151 func (n *Node) SetNonNil(b bool) { n.flags.set(nodeNonNil, b) } 152 func (n *Node) SetNoescape(b bool) { n.flags.set(nodeNoescape, b) } 153 func (n *Node) SetBounded(b bool) { n.flags.set(nodeBounded, b) } 154 func (n *Node) SetAddable(b bool) { n.flags.set(nodeAddable, b) } 155 func (n *Node) SetHasCall(b bool) { n.flags.set(nodeHasCall, b) } 156 func (n *Node) SetLikely(b bool) { n.flags.set(nodeLikely, b) } 157 func (n *Node) SetHasVal(b bool) { n.flags.set(nodeHasVal, b) } 158 func (n *Node) SetHasOpt(b bool) { n.flags.set(nodeHasOpt, b) } 159 func (n *Node) SetEmbedded(b bool) { n.flags.set(nodeEmbedded, b) } 160 func (n *Node) SetInlFormal(b bool) { n.flags.set(nodeInlFormal, b) } 161 func (n *Node) SetInlLocal(b bool) { n.flags.set(nodeInlLocal, b) } 162 163 // Val returns the Val for the node. 164 func (n *Node) Val() Val { 165 if !n.HasVal() { 166 return Val{} 167 } 168 return Val{n.E} 169 } 170 171 // SetVal sets the Val for the node, which must not have been used with SetOpt. 172 func (n *Node) SetVal(v Val) { 173 if n.HasOpt() { 174 Debug['h'] = 1 175 Dump("have Opt", n) 176 Fatalf("have Opt") 177 } 178 n.SetHasVal(true) 179 n.E = v.U 180 } 181 182 // Opt returns the optimizer data for the node. 183 func (n *Node) Opt() interface{} { 184 if !n.HasOpt() { 185 return nil 186 } 187 return n.E 188 } 189 190 // SetOpt sets the optimizer data for the node, which must not have been used with SetVal. 191 // SetOpt(nil) is ignored for Vals to simplify call sites that are clearing Opts. 192 func (n *Node) SetOpt(x interface{}) { 193 if x == nil && n.HasVal() { 194 return 195 } 196 if n.HasVal() { 197 Debug['h'] = 1 198 Dump("have Val", n) 199 Fatalf("have Val") 200 } 201 n.SetHasOpt(true) 202 n.E = x 203 } 204 205 func (n *Node) Iota() int64 { 206 return n.Xoffset 207 } 208 209 func (n *Node) SetIota(x int64) { 210 n.Xoffset = x 211 } 212 213 // mayBeShared reports whether n may occur in multiple places in the AST. 214 // Extra care must be taken when mutating such a node. 215 func (n *Node) mayBeShared() bool { 216 switch n.Op { 217 case ONAME, OLITERAL, OTYPE: 218 return true 219 } 220 return false 221 } 222 223 // isMethodExpression reports whether n represents a method expression T.M. 224 func (n *Node) isMethodExpression() bool { 225 return n.Op == ONAME && n.Left != nil && n.Left.Op == OTYPE && n.Right != nil && n.Right.Op == ONAME 226 } 227 228 // funcname returns the name of the function n. 229 func (n *Node) funcname() string { 230 if n == nil || n.Func == nil || n.Func.Nname == nil { 231 return "<nil>" 232 } 233 return n.Func.Nname.Sym.Name 234 } 235 236 // Name holds Node fields used only by named nodes (ONAME, OTYPE, OPACK, OLABEL, some OLITERAL). 237 type Name struct { 238 Pack *Node // real package for import . names 239 Pkg *types.Pkg // pkg for OPACK nodes 240 Defn *Node // initializing assignment 241 Curfn *Node // function for local variables 242 Param *Param // additional fields for ONAME, OTYPE 243 Decldepth int32 // declaration loop depth, increased for every loop or label 244 Vargen int32 // unique name for ONAME within a function. Function outputs are numbered starting at one. 245 Funcdepth int32 246 247 used bool // for variable declared and not used error 248 flags bitset8 249 } 250 251 const ( 252 nameCaptured = 1 << iota // is the variable captured by a closure 253 nameReadonly 254 nameByval // is the variable captured by value or by reference 255 nameNeedzero // if it contains pointers, needs to be zeroed on function entry 256 nameKeepalive // mark value live across unknown assembly call 257 nameAutoTemp // is the variable a temporary (implies no dwarf info. reset if escapes to heap) 258 ) 259 260 func (n *Name) Captured() bool { return n.flags&nameCaptured != 0 } 261 func (n *Name) Readonly() bool { return n.flags&nameReadonly != 0 } 262 func (n *Name) Byval() bool { return n.flags&nameByval != 0 } 263 func (n *Name) Needzero() bool { return n.flags&nameNeedzero != 0 } 264 func (n *Name) Keepalive() bool { return n.flags&nameKeepalive != 0 } 265 func (n *Name) AutoTemp() bool { return n.flags&nameAutoTemp != 0 } 266 func (n *Name) Used() bool { return n.used } 267 268 func (n *Name) SetCaptured(b bool) { n.flags.set(nameCaptured, b) } 269 func (n *Name) SetReadonly(b bool) { n.flags.set(nameReadonly, b) } 270 func (n *Name) SetByval(b bool) { n.flags.set(nameByval, b) } 271 func (n *Name) SetNeedzero(b bool) { n.flags.set(nameNeedzero, b) } 272 func (n *Name) SetKeepalive(b bool) { n.flags.set(nameKeepalive, b) } 273 func (n *Name) SetAutoTemp(b bool) { n.flags.set(nameAutoTemp, b) } 274 func (n *Name) SetUsed(b bool) { n.used = b } 275 276 type Param struct { 277 Ntype *Node 278 Heapaddr *Node // temp holding heap address of param 279 280 // ONAME PAUTOHEAP 281 Stackcopy *Node // the PPARAM/PPARAMOUT on-stack slot (moved func params only) 282 283 // ONAME PPARAM 284 Field *types.Field // TFIELD in arg struct 285 286 // ONAME closure linkage 287 // Consider: 288 // 289 // func f() { 290 // x := 1 // x1 291 // func() { 292 // use(x) // x2 293 // func() { 294 // use(x) // x3 295 // --- parser is here --- 296 // }() 297 // }() 298 // } 299 // 300 // There is an original declaration of x and then a chain of mentions of x 301 // leading into the current function. Each time x is mentioned in a new closure, 302 // we create a variable representing x for use in that specific closure, 303 // since the way you get to x is different in each closure. 304 // 305 // Let's number the specific variables as shown in the code: 306 // x1 is the original x, x2 is when mentioned in the closure, 307 // and x3 is when mentioned in the closure in the closure. 308 // 309 // We keep these linked (assume N > 1): 310 // 311 // - x1.Defn = original declaration statement for x (like most variables) 312 // - x1.Innermost = current innermost closure x (in this case x3), or nil for none 313 // - x1.IsClosureVar() = false 314 // 315 // - xN.Defn = x1, N > 1 316 // - xN.IsClosureVar() = true, N > 1 317 // - x2.Outer = nil 318 // - xN.Outer = x(N-1), N > 2 319 // 320 // 321 // When we look up x in the symbol table, we always get x1. 322 // Then we can use x1.Innermost (if not nil) to get the x 323 // for the innermost known closure function, 324 // but the first reference in a closure will find either no x1.Innermost 325 // or an x1.Innermost with .Funcdepth < Funcdepth. 326 // In that case, a new xN must be created, linked in with: 327 // 328 // xN.Defn = x1 329 // xN.Outer = x1.Innermost 330 // x1.Innermost = xN 331 // 332 // When we finish the function, we'll process its closure variables 333 // and find xN and pop it off the list using: 334 // 335 // x1 := xN.Defn 336 // x1.Innermost = xN.Outer 337 // 338 // We leave xN.Innermost set so that we can still get to the original 339 // variable quickly. Not shown here, but once we're 340 // done parsing a function and no longer need xN.Outer for the 341 // lexical x reference links as described above, closurebody 342 // recomputes xN.Outer as the semantic x reference link tree, 343 // even filling in x in intermediate closures that might not 344 // have mentioned it along the way to inner closures that did. 345 // See closurebody for details. 346 // 347 // During the eventual compilation, then, for closure variables we have: 348 // 349 // xN.Defn = original variable 350 // xN.Outer = variable captured in next outward scope 351 // to make closure where xN appears 352 // 353 // Because of the sharding of pieces of the node, x.Defn means x.Name.Defn 354 // and x.Innermost/Outer means x.Name.Param.Innermost/Outer. 355 Innermost *Node 356 Outer *Node 357 358 // OTYPE 359 // 360 // TODO: Should Func pragmas also be stored on the Name? 361 Pragma syntax.Pragma 362 Alias bool // node is alias for Ntype (only used when type-checking ODCLTYPE) 363 } 364 365 // Functions 366 // 367 // A simple function declaration is represented as an ODCLFUNC node f 368 // and an ONAME node n. They're linked to one another through 369 // f.Func.Nname == n and n.Name.Defn == f. When functions are 370 // referenced by name in an expression, the function's ONAME node is 371 // used directly. 372 // 373 // Function names have n.Class() == PFUNC. This distinguishes them 374 // from variables of function type. 375 // 376 // Confusingly, n.Func and f.Func both exist, but commonly point to 377 // different Funcs. (Exception: an OCALLPART's Func does point to its 378 // ODCLFUNC's Func.) 379 // 380 // A method declaration is represented like functions, except n.Sym 381 // will be the qualified method name (e.g., "T.m") and 382 // f.Func.Shortname is the bare method name (e.g., "m"). 383 // 384 // Method expressions are represented as ONAME/PFUNC nodes like 385 // function names, but their Left and Right fields still point to the 386 // type and method, respectively. They can be distinguished from 387 // normal functions with isMethodExpression. Also, unlike function 388 // name nodes, method expression nodes exist for each method 389 // expression. The declaration ONAME can be accessed with 390 // x.Type.Nname(), where x is the method expression ONAME node. 391 // 392 // Method values are represented by ODOTMETH/ODOTINTER when called 393 // immediately, and OCALLPART otherwise. They are like method 394 // expressions, except that for ODOTMETH/ODOTINTER the method name is 395 // stored in Sym instead of Right. 396 // 397 // Closures are represented by OCLOSURE node c. They link back and 398 // forth with the ODCLFUNC via Func.Closure; that is, c.Func.Closure 399 // == f and f.Func.Closure == c. 400 // 401 // Function bodies are stored in f.Nbody, and inline function bodies 402 // are stored in n.Func.Inl. Pragmas are stored in f.Func.Pragma. 403 // 404 // Imported functions skip the ODCLFUNC, so n.Name.Defn is nil. They 405 // also use Dcl instead of Inldcl. 406 407 // Func holds Node fields used only with function-like nodes. 408 type Func struct { 409 Shortname *types.Sym 410 Enter Nodes // for example, allocate and initialize memory for escaping parameters 411 Exit Nodes 412 Cvars Nodes // closure params 413 Dcl []*Node // autodcl for this func/closure 414 Inldcl Nodes // copy of dcl for use in inlining 415 416 // Parents records the parent scope of each scope within a 417 // function. The root scope (0) has no parent, so the i'th 418 // scope's parent is stored at Parents[i-1]. 419 Parents []ScopeID 420 421 // Marks records scope boundary changes. 422 Marks []Mark 423 424 Closgen int 425 Outerfunc *Node // outer function (for closure) 426 FieldTrack map[*types.Sym]struct{} 427 DebugInfo *ssa.FuncDebug 428 Ntype *Node // signature 429 Top int // top context (Ecall, Eproc, etc) 430 Closure *Node // OCLOSURE <-> ODCLFUNC 431 Nname *Node 432 lsym *obj.LSym 433 434 Inl Nodes // copy of the body for use in inlining 435 InlCost int32 436 Depth int32 437 438 Label int32 // largest auto-generated label in this function 439 440 Endlineno src.XPos 441 WBPos src.XPos // position of first write barrier; see SetWBPos 442 443 Pragma syntax.Pragma // go:xxx function annotations 444 445 flags bitset16 446 447 // nwbrCalls records the LSyms of functions called by this 448 // function for go:nowritebarrierrec analysis. Only filled in 449 // if nowritebarrierrecCheck != nil. 450 nwbrCalls *[]nowritebarrierrecCallSym 451 } 452 453 // A Mark represents a scope boundary. 454 type Mark struct { 455 // Pos is the position of the token that marks the scope 456 // change. 457 Pos src.XPos 458 459 // Scope identifies the innermost scope to the right of Pos. 460 Scope ScopeID 461 } 462 463 // A ScopeID represents a lexical scope within a function. 464 type ScopeID int32 465 466 const ( 467 funcDupok = 1 << iota // duplicate definitions ok 468 funcWrapper // is method wrapper 469 funcNeedctxt // function uses context register (has closure variables) 470 funcReflectMethod // function calls reflect.Type.Method or MethodByName 471 funcIsHiddenClosure 472 funcHasDefer // contains a defer statement 473 funcNilCheckDisabled // disable nil checks when compiling this function 474 funcInlinabilityChecked // inliner has already determined whether the function is inlinable 475 funcExportInline // include inline body in export data 476 ) 477 478 func (f *Func) Dupok() bool { return f.flags&funcDupok != 0 } 479 func (f *Func) Wrapper() bool { return f.flags&funcWrapper != 0 } 480 func (f *Func) Needctxt() bool { return f.flags&funcNeedctxt != 0 } 481 func (f *Func) ReflectMethod() bool { return f.flags&funcReflectMethod != 0 } 482 func (f *Func) IsHiddenClosure() bool { return f.flags&funcIsHiddenClosure != 0 } 483 func (f *Func) HasDefer() bool { return f.flags&funcHasDefer != 0 } 484 func (f *Func) NilCheckDisabled() bool { return f.flags&funcNilCheckDisabled != 0 } 485 func (f *Func) InlinabilityChecked() bool { return f.flags&funcInlinabilityChecked != 0 } 486 func (f *Func) ExportInline() bool { return f.flags&funcExportInline != 0 } 487 488 func (f *Func) SetDupok(b bool) { f.flags.set(funcDupok, b) } 489 func (f *Func) SetWrapper(b bool) { f.flags.set(funcWrapper, b) } 490 func (f *Func) SetNeedctxt(b bool) { f.flags.set(funcNeedctxt, b) } 491 func (f *Func) SetReflectMethod(b bool) { f.flags.set(funcReflectMethod, b) } 492 func (f *Func) SetIsHiddenClosure(b bool) { f.flags.set(funcIsHiddenClosure, b) } 493 func (f *Func) SetHasDefer(b bool) { f.flags.set(funcHasDefer, b) } 494 func (f *Func) SetNilCheckDisabled(b bool) { f.flags.set(funcNilCheckDisabled, b) } 495 func (f *Func) SetInlinabilityChecked(b bool) { f.flags.set(funcInlinabilityChecked, b) } 496 func (f *Func) SetExportInline(b bool) { f.flags.set(funcExportInline, b) } 497 498 func (f *Func) setWBPos(pos src.XPos) { 499 if Debug_wb != 0 { 500 Warnl(pos, "write barrier") 501 } 502 if !f.WBPos.IsKnown() { 503 f.WBPos = pos 504 } 505 } 506 507 //go:generate stringer -type=Op -trimprefix=O 508 509 type Op uint8 510 511 // Node ops. 512 const ( 513 OXXX Op = iota 514 515 // names 516 ONAME // var, const or func name 517 ONONAME // unnamed arg or return value: f(int, string) (int, error) { etc } 518 OTYPE // type name 519 OPACK // import 520 OLITERAL // literal 521 522 // expressions 523 OADD // Left + Right 524 OSUB // Left - Right 525 OOR // Left | Right 526 OXOR // Left ^ Right 527 OADDSTR // +{List} (string addition, list elements are strings) 528 OADDR // &Left 529 OANDAND // Left && Right 530 OAPPEND // append(List); after walk, Left may contain elem type descriptor 531 OARRAYBYTESTR // Type(Left) (Type is string, Left is a []byte) 532 OARRAYBYTESTRTMP // Type(Left) (Type is string, Left is a []byte, ephemeral) 533 OARRAYRUNESTR // Type(Left) (Type is string, Left is a []rune) 534 OSTRARRAYBYTE // Type(Left) (Type is []byte, Left is a string) 535 OSTRARRAYBYTETMP // Type(Left) (Type is []byte, Left is a string, ephemeral) 536 OSTRARRAYRUNE // Type(Left) (Type is []rune, Left is a string) 537 OAS // Left = Right or (if Colas=true) Left := Right 538 OAS2 // List = Rlist (x, y, z = a, b, c) 539 OAS2FUNC // List = Rlist (x, y = f()) 540 OAS2RECV // List = Rlist (x, ok = <-c) 541 OAS2MAPR // List = Rlist (x, ok = m["foo"]) 542 OAS2DOTTYPE // List = Rlist (x, ok = I.(int)) 543 OASOP // Left Etype= Right (x += y) 544 OCALL // Left(List) (function call, method call or type conversion) 545 OCALLFUNC // Left(List) (function call f(args)) 546 OCALLMETH // Left(List) (direct method call x.Method(args)) 547 OCALLINTER // Left(List) (interface method call x.Method(args)) 548 OCALLPART // Left.Right (method expression x.Method, not called) 549 OCAP // cap(Left) 550 OCLOSE // close(Left) 551 OCLOSURE // func Type { Body } (func literal) 552 OCMPIFACE // Left Etype Right (interface comparison, x == y or x != y) 553 OCMPSTR // Left Etype Right (string comparison, x == y, x < y, etc) 554 OCOMPLIT // Right{List} (composite literal, not yet lowered to specific form) 555 OMAPLIT // Type{List} (composite literal, Type is map) 556 OSTRUCTLIT // Type{List} (composite literal, Type is struct) 557 OARRAYLIT // Type{List} (composite literal, Type is array) 558 OSLICELIT // Type{List} (composite literal, Type is slice) 559 OPTRLIT // &Left (left is composite literal) 560 OCONV // Type(Left) (type conversion) 561 OCONVIFACE // Type(Left) (type conversion, to interface) 562 OCONVNOP // Type(Left) (type conversion, no effect) 563 OCOPY // copy(Left, Right) 564 ODCL // var Left (declares Left of type Left.Type) 565 566 // Used during parsing but don't last. 567 ODCLFUNC // func f() or func (r) f() 568 ODCLFIELD // struct field, interface field, or func/method argument/return value. 569 ODCLCONST // const pi = 3.14 570 ODCLTYPE // type Int int or type Int = int 571 572 ODELETE // delete(Left, Right) 573 ODOT // Left.Sym (Left is of struct type) 574 ODOTPTR // Left.Sym (Left is of pointer to struct type) 575 ODOTMETH // Left.Sym (Left is non-interface, Right is method name) 576 ODOTINTER // Left.Sym (Left is interface, Right is method name) 577 OXDOT // Left.Sym (before rewrite to one of the preceding) 578 ODOTTYPE // Left.Right or Left.Type (.Right during parsing, .Type once resolved); after walk, .Right contains address of interface type descriptor and .Right.Right contains address of concrete type descriptor 579 ODOTTYPE2 // Left.Right or Left.Type (.Right during parsing, .Type once resolved; on rhs of OAS2DOTTYPE); after walk, .Right contains address of interface type descriptor 580 OEQ // Left == Right 581 ONE // Left != Right 582 OLT // Left < Right 583 OLE // Left <= Right 584 OGE // Left >= Right 585 OGT // Left > Right 586 OIND // *Left 587 OINDEX // Left[Right] (index of array or slice) 588 OINDEXMAP // Left[Right] (index of map) 589 OKEY // Left:Right (key:value in struct/array/map literal) 590 OSTRUCTKEY // Sym:Left (key:value in struct literal, after type checking) 591 OLEN // len(Left) 592 OMAKE // make(List) (before type checking converts to one of the following) 593 OMAKECHAN // make(Type, Left) (type is chan) 594 OMAKEMAP // make(Type, Left) (type is map) 595 OMAKESLICE // make(Type, Left, Right) (type is slice) 596 OMUL // Left * Right 597 ODIV // Left / Right 598 OMOD // Left % Right 599 OLSH // Left << Right 600 ORSH // Left >> Right 601 OAND // Left & Right 602 OANDNOT // Left &^ Right 603 ONEW // new(Left) 604 ONOT // !Left 605 OCOM // ^Left 606 OPLUS // +Left 607 OMINUS // -Left 608 OOROR // Left || Right 609 OPANIC // panic(Left) 610 OPRINT // print(List) 611 OPRINTN // println(List) 612 OPAREN // (Left) 613 OSEND // Left <- Right 614 OSLICE // Left[List[0] : List[1]] (Left is untypechecked or slice) 615 OSLICEARR // Left[List[0] : List[1]] (Left is array) 616 OSLICESTR // Left[List[0] : List[1]] (Left is string) 617 OSLICE3 // Left[List[0] : List[1] : List[2]] (Left is untypedchecked or slice) 618 OSLICE3ARR // Left[List[0] : List[1] : List[2]] (Left is array) 619 ORECOVER // recover() 620 ORECV // <-Left 621 ORUNESTR // Type(Left) (Type is string, Left is rune) 622 OSELRECV // Left = <-Right.Left: (appears as .Left of OCASE; Right.Op == ORECV) 623 OSELRECV2 // List = <-Right.Left: (apperas as .Left of OCASE; count(List) == 2, Right.Op == ORECV) 624 OIOTA // iota 625 OREAL // real(Left) 626 OIMAG // imag(Left) 627 OCOMPLEX // complex(Left, Right) 628 OALIGNOF // unsafe.Alignof(Left) 629 OOFFSETOF // unsafe.Offsetof(Left) 630 OSIZEOF // unsafe.Sizeof(Left) 631 632 // statements 633 OBLOCK // { List } (block of code) 634 OBREAK // break 635 OCASE // case Left or List[0]..List[1]: Nbody (select case after processing; Left==nil and List==nil means default) 636 OXCASE // case List: Nbody (select case before processing; List==nil means default) 637 OCONTINUE // continue 638 ODEFER // defer Left (Left must be call) 639 OEMPTY // no-op (empty statement) 640 OFALL // fallthrough 641 OFOR // for Ninit; Left; Right { Nbody } 642 OFORUNTIL // for Ninit; Left; Right { Nbody } ; test applied after executing body, not before 643 OGOTO // goto Left 644 OIF // if Ninit; Left { Nbody } else { Rlist } 645 OLABEL // Left: 646 OPROC // go Left (Left must be call) 647 ORANGE // for List = range Right { Nbody } 648 ORETURN // return List 649 OSELECT // select { List } (List is list of OXCASE or OCASE) 650 OSWITCH // switch Ninit; Left { List } (List is a list of OXCASE or OCASE) 651 OTYPESW // Left = Right.(type) (appears as .Left of OSWITCH) 652 653 // types 654 OTCHAN // chan int 655 OTMAP // map[string]int 656 OTSTRUCT // struct{} 657 OTINTER // interface{} 658 OTFUNC // func() 659 OTARRAY // []int, [8]int, [N]int or [...]int 660 661 // misc 662 ODDD // func f(args ...int) or f(l...) or var a = [...]int{0, 1, 2}. 663 ODDDARG // func f(args ...int), introduced by escape analysis. 664 OINLCALL // intermediary representation of an inlined call. 665 OEFACE // itable and data words of an empty-interface value. 666 OITAB // itable word of an interface value. 667 OIDATA // data word of an interface value in Left 668 OSPTR // base pointer of a slice or string. 669 OCLOSUREVAR // variable reference at beginning of closure function 670 OCFUNC // reference to c function pointer (not go func value) 671 OCHECKNIL // emit code to ensure pointer/interface not nil 672 OVARKILL // variable is dead 673 OVARLIVE // variable is alive 674 OINDREGSP // offset plus indirect of REGSP, such as 8(SP). 675 676 // arch-specific opcodes 677 ORETJMP // return to other function 678 OGETG // runtime.getg() (read g pointer) 679 680 OEND 681 ) 682 683 // Nodes is a pointer to a slice of *Node. 684 // For fields that are not used in most nodes, this is used instead of 685 // a slice to save space. 686 type Nodes struct{ slice *[]*Node } 687 688 // Slice returns the entries in Nodes as a slice. 689 // Changes to the slice entries (as in s[i] = n) will be reflected in 690 // the Nodes. 691 func (n Nodes) Slice() []*Node { 692 if n.slice == nil { 693 return nil 694 } 695 return *n.slice 696 } 697 698 // Len returns the number of entries in Nodes. 699 func (n Nodes) Len() int { 700 if n.slice == nil { 701 return 0 702 } 703 return len(*n.slice) 704 } 705 706 // Index returns the i'th element of Nodes. 707 // It panics if n does not have at least i+1 elements. 708 func (n Nodes) Index(i int) *Node { 709 return (*n.slice)[i] 710 } 711 712 // First returns the first element of Nodes (same as n.Index(0)). 713 // It panics if n has no elements. 714 func (n Nodes) First() *Node { 715 return (*n.slice)[0] 716 } 717 718 // Second returns the second element of Nodes (same as n.Index(1)). 719 // It panics if n has fewer than two elements. 720 func (n Nodes) Second() *Node { 721 return (*n.slice)[1] 722 } 723 724 // Set sets n to a slice. 725 // This takes ownership of the slice. 726 func (n *Nodes) Set(s []*Node) { 727 if len(s) == 0 { 728 n.slice = nil 729 } else { 730 // Copy s and take address of t rather than s to avoid 731 // allocation in the case where len(s) == 0 (which is 732 // over 3x more common, dynamically, for make.bash). 733 t := s 734 n.slice = &t 735 } 736 } 737 738 // Set1 sets n to a slice containing a single node. 739 func (n *Nodes) Set1(n1 *Node) { 740 n.slice = &[]*Node{n1} 741 } 742 743 // Set2 sets n to a slice containing two nodes. 744 func (n *Nodes) Set2(n1, n2 *Node) { 745 n.slice = &[]*Node{n1, n2} 746 } 747 748 // Set3 sets n to a slice containing three nodes. 749 func (n *Nodes) Set3(n1, n2, n3 *Node) { 750 n.slice = &[]*Node{n1, n2, n3} 751 } 752 753 // MoveNodes sets n to the contents of n2, then clears n2. 754 func (n *Nodes) MoveNodes(n2 *Nodes) { 755 n.slice = n2.slice 756 n2.slice = nil 757 } 758 759 // SetIndex sets the i'th element of Nodes to node. 760 // It panics if n does not have at least i+1 elements. 761 func (n Nodes) SetIndex(i int, node *Node) { 762 (*n.slice)[i] = node 763 } 764 765 // SetFirst sets the first element of Nodes to node. 766 // It panics if n does not have at least one elements. 767 func (n Nodes) SetFirst(node *Node) { 768 (*n.slice)[0] = node 769 } 770 771 // SetSecond sets the second element of Nodes to node. 772 // It panics if n does not have at least two elements. 773 func (n Nodes) SetSecond(node *Node) { 774 (*n.slice)[1] = node 775 } 776 777 // Addr returns the address of the i'th element of Nodes. 778 // It panics if n does not have at least i+1 elements. 779 func (n Nodes) Addr(i int) **Node { 780 return &(*n.slice)[i] 781 } 782 783 // Append appends entries to Nodes. 784 func (n *Nodes) Append(a ...*Node) { 785 if len(a) == 0 { 786 return 787 } 788 if n.slice == nil { 789 s := make([]*Node, len(a)) 790 copy(s, a) 791 n.slice = &s 792 return 793 } 794 *n.slice = append(*n.slice, a...) 795 } 796 797 // Prepend prepends entries to Nodes. 798 // If a slice is passed in, this will take ownership of it. 799 func (n *Nodes) Prepend(a ...*Node) { 800 if len(a) == 0 { 801 return 802 } 803 if n.slice == nil { 804 n.slice = &a 805 } else { 806 *n.slice = append(a, *n.slice...) 807 } 808 } 809 810 // AppendNodes appends the contents of *n2 to n, then clears n2. 811 func (n *Nodes) AppendNodes(n2 *Nodes) { 812 switch { 813 case n2.slice == nil: 814 case n.slice == nil: 815 n.slice = n2.slice 816 default: 817 *n.slice = append(*n.slice, *n2.slice...) 818 } 819 n2.slice = nil 820 } 821 822 // inspect invokes f on each node in an AST in depth-first order. 823 // If f(n) returns false, inspect skips visiting n's children. 824 func inspect(n *Node, f func(*Node) bool) { 825 if n == nil || !f(n) { 826 return 827 } 828 inspectList(n.Ninit, f) 829 inspect(n.Left, f) 830 inspect(n.Right, f) 831 inspectList(n.List, f) 832 inspectList(n.Nbody, f) 833 inspectList(n.Rlist, f) 834 } 835 836 func inspectList(l Nodes, f func(*Node) bool) { 837 for _, n := range l.Slice() { 838 inspect(n, f) 839 } 840 } 841 842 // nodeQueue is a FIFO queue of *Node. The zero value of nodeQueue is 843 // a ready-to-use empty queue. 844 type nodeQueue struct { 845 ring []*Node 846 head, tail int 847 } 848 849 // empty returns true if q contains no Nodes. 850 func (q *nodeQueue) empty() bool { 851 return q.head == q.tail 852 } 853 854 // pushRight appends n to the right of the queue. 855 func (q *nodeQueue) pushRight(n *Node) { 856 if len(q.ring) == 0 { 857 q.ring = make([]*Node, 16) 858 } else if q.head+len(q.ring) == q.tail { 859 // Grow the ring. 860 nring := make([]*Node, len(q.ring)*2) 861 // Copy the old elements. 862 part := q.ring[q.head%len(q.ring):] 863 if q.tail-q.head <= len(part) { 864 part = part[:q.tail-q.head] 865 copy(nring, part) 866 } else { 867 pos := copy(nring, part) 868 copy(nring[pos:], q.ring[:q.tail%len(q.ring)]) 869 } 870 q.ring, q.head, q.tail = nring, 0, q.tail-q.head 871 } 872 873 q.ring[q.tail%len(q.ring)] = n 874 q.tail++ 875 } 876 877 // popLeft pops a node from the left of the queue. It panics if q is 878 // empty. 879 func (q *nodeQueue) popLeft() *Node { 880 if q.empty() { 881 panic("dequeue empty") 882 } 883 n := q.ring[q.head%len(q.ring)] 884 q.head++ 885 return n 886 }