github.com/corona10/go@v0.0.0-20180224231303-7a218942be57/src/cmd/compile/internal/ssa/gen/generic.rules (about) 1 // Copyright 2015 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Simplifications that apply to all backend architectures. As an example, this 6 // Go source code 7 // 8 // y := 0 * x 9 // 10 // can be translated into y := 0 without losing any information, which saves a 11 // pointless multiplication instruction. Other .rules files in this directory 12 // (for example AMD64.rules) contain rules specific to the architecture in the 13 // filename. The rules here apply to every architecture. 14 // 15 // The code for parsing this file lives in rulegen.go; this file generates 16 // ssa/rewritegeneric.go. 17 18 // values are specified using the following format: 19 // (op <type> [auxint] {aux} arg0 arg1 ...) 20 // the type, aux, and auxint fields are optional 21 // on the matching side 22 // - the type, aux, and auxint fields must match if they are specified. 23 // - the first occurrence of a variable defines that variable. Subsequent 24 // uses must match (be == to) the first use. 25 // - v is defined to be the value matched. 26 // - an additional conditional can be provided after the match pattern with "&&". 27 // on the generated side 28 // - the type of the top-level expression is the same as the one on the left-hand side. 29 // - the type of any subexpressions must be specified explicitly (or 30 // be specified in the op's type field). 31 // - auxint will be 0 if not specified. 32 // - aux will be nil if not specified. 33 34 // blocks are specified using the following format: 35 // (kind controlvalue succ0 succ1 ...) 36 // controlvalue must be "nil" or a value expression 37 // succ* fields must be variables 38 // For now, the generated successors must be a permutation of the matched successors. 39 40 // constant folding 41 (Trunc16to8 (Const16 [c])) -> (Const8 [int64(int8(c))]) 42 (Trunc32to8 (Const32 [c])) -> (Const8 [int64(int8(c))]) 43 (Trunc32to16 (Const32 [c])) -> (Const16 [int64(int16(c))]) 44 (Trunc64to8 (Const64 [c])) -> (Const8 [int64(int8(c))]) 45 (Trunc64to16 (Const64 [c])) -> (Const16 [int64(int16(c))]) 46 (Trunc64to32 (Const64 [c])) -> (Const32 [int64(int32(c))]) 47 (Cvt64Fto32F (Const64F [c])) -> (Const32F [f2i(float64(i2f32(c)))]) 48 (Cvt32Fto64F (Const32F [c])) -> (Const64F [c]) // c is already a 64 bit float 49 (Cvt32to32F (Const32 [c])) -> (Const32F [f2i(float64(float32(int32(c))))]) 50 (Cvt32to64F (Const32 [c])) -> (Const64F [f2i(float64(int32(c)))]) 51 (Cvt64to32F (Const64 [c])) -> (Const32F [f2i(float64(float32(c)))]) 52 (Cvt64to64F (Const64 [c])) -> (Const64F [f2i(float64(c))]) 53 (Cvt32Fto32 (Const32F [c])) -> (Const32 [int64(int32(i2f(c)))]) 54 (Cvt32Fto64 (Const32F [c])) -> (Const64 [int64(i2f(c))]) 55 (Cvt64Fto32 (Const64F [c])) -> (Const32 [int64(int32(i2f(c)))]) 56 (Cvt64Fto64 (Const64F [c])) -> (Const64 [int64(i2f(c))]) 57 (Round32F x:(Const32F)) -> x 58 (Round64F x:(Const64F)) -> x 59 60 (Trunc16to8 (ZeroExt8to16 x)) -> x 61 (Trunc32to8 (ZeroExt8to32 x)) -> x 62 (Trunc32to16 (ZeroExt8to32 x)) -> (ZeroExt8to16 x) 63 (Trunc32to16 (ZeroExt16to32 x)) -> x 64 (Trunc64to8 (ZeroExt8to64 x)) -> x 65 (Trunc64to16 (ZeroExt8to64 x)) -> (ZeroExt8to16 x) 66 (Trunc64to16 (ZeroExt16to64 x)) -> x 67 (Trunc64to32 (ZeroExt8to64 x)) -> (ZeroExt8to32 x) 68 (Trunc64to32 (ZeroExt16to64 x)) -> (ZeroExt16to32 x) 69 (Trunc64to32 (ZeroExt32to64 x)) -> x 70 (Trunc16to8 (SignExt8to16 x)) -> x 71 (Trunc32to8 (SignExt8to32 x)) -> x 72 (Trunc32to16 (SignExt8to32 x)) -> (SignExt8to16 x) 73 (Trunc32to16 (SignExt16to32 x)) -> x 74 (Trunc64to8 (SignExt8to64 x)) -> x 75 (Trunc64to16 (SignExt8to64 x)) -> (SignExt8to16 x) 76 (Trunc64to16 (SignExt16to64 x)) -> x 77 (Trunc64to32 (SignExt8to64 x)) -> (SignExt8to32 x) 78 (Trunc64to32 (SignExt16to64 x)) -> (SignExt16to32 x) 79 (Trunc64to32 (SignExt32to64 x)) -> x 80 81 (ZeroExt8to16 (Const8 [c])) -> (Const16 [int64( uint8(c))]) 82 (ZeroExt8to32 (Const8 [c])) -> (Const32 [int64( uint8(c))]) 83 (ZeroExt8to64 (Const8 [c])) -> (Const64 [int64( uint8(c))]) 84 (ZeroExt16to32 (Const16 [c])) -> (Const32 [int64(uint16(c))]) 85 (ZeroExt16to64 (Const16 [c])) -> (Const64 [int64(uint16(c))]) 86 (ZeroExt32to64 (Const32 [c])) -> (Const64 [int64(uint32(c))]) 87 (SignExt8to16 (Const8 [c])) -> (Const16 [int64( int8(c))]) 88 (SignExt8to32 (Const8 [c])) -> (Const32 [int64( int8(c))]) 89 (SignExt8to64 (Const8 [c])) -> (Const64 [int64( int8(c))]) 90 (SignExt16to32 (Const16 [c])) -> (Const32 [int64( int16(c))]) 91 (SignExt16to64 (Const16 [c])) -> (Const64 [int64( int16(c))]) 92 (SignExt32to64 (Const32 [c])) -> (Const64 [int64( int32(c))]) 93 94 (Neg8 (Const8 [c])) -> (Const8 [int64( -int8(c))]) 95 (Neg16 (Const16 [c])) -> (Const16 [int64(-int16(c))]) 96 (Neg32 (Const32 [c])) -> (Const32 [int64(-int32(c))]) 97 (Neg64 (Const64 [c])) -> (Const64 [-c]) 98 (Neg32F (Const32F [c])) && i2f(c) != 0 -> (Const32F [f2i(-i2f(c))]) 99 (Neg64F (Const64F [c])) && i2f(c) != 0 -> (Const64F [f2i(-i2f(c))]) 100 101 (Add8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c+d))]) 102 (Add16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c+d))]) 103 (Add32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c+d))]) 104 (Add64 (Const64 [c]) (Const64 [d])) -> (Const64 [c+d]) 105 (Add32F (Const32F [c]) (Const32F [d])) -> 106 (Const32F [f2i(float64(i2f32(c) + i2f32(d)))]) // ensure we combine the operands with 32 bit precision 107 (Add64F (Const64F [c]) (Const64F [d])) -> (Const64F [f2i(i2f(c) + i2f(d))]) 108 (AddPtr <t> x (Const64 [c])) -> (OffPtr <t> x [c]) 109 (AddPtr <t> x (Const32 [c])) -> (OffPtr <t> x [c]) 110 111 (Sub8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c-d))]) 112 (Sub16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c-d))]) 113 (Sub32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c-d))]) 114 (Sub64 (Const64 [c]) (Const64 [d])) -> (Const64 [c-d]) 115 (Sub32F (Const32F [c]) (Const32F [d])) -> 116 (Const32F [f2i(float64(i2f32(c) - i2f32(d)))]) 117 (Sub64F (Const64F [c]) (Const64F [d])) -> (Const64F [f2i(i2f(c) - i2f(d))]) 118 119 (Mul8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c*d))]) 120 (Mul16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c*d))]) 121 (Mul32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c*d))]) 122 (Mul64 (Const64 [c]) (Const64 [d])) -> (Const64 [c*d]) 123 (Mul32F (Const32F [c]) (Const32F [d])) -> 124 (Const32F [f2i(float64(i2f32(c) * i2f32(d)))]) 125 (Mul64F (Const64F [c]) (Const64F [d])) -> (Const64F [f2i(i2f(c) * i2f(d))]) 126 127 (And8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c&d))]) 128 (And16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c&d))]) 129 (And32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c&d))]) 130 (And64 (Const64 [c]) (Const64 [d])) -> (Const64 [c&d]) 131 132 (Or8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c|d))]) 133 (Or16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c|d))]) 134 (Or32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c|d))]) 135 (Or64 (Const64 [c]) (Const64 [d])) -> (Const64 [c|d]) 136 137 (Xor8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c^d))]) 138 (Xor16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c^d))]) 139 (Xor32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c^d))]) 140 (Xor64 (Const64 [c]) (Const64 [d])) -> (Const64 [c^d]) 141 142 (Div8 (Const8 [c]) (Const8 [d])) && d != 0 -> (Const8 [int64(int8(c)/int8(d))]) 143 (Div16 (Const16 [c]) (Const16 [d])) && d != 0 -> (Const16 [int64(int16(c)/int16(d))]) 144 (Div32 (Const32 [c]) (Const32 [d])) && d != 0 -> (Const32 [int64(int32(c)/int32(d))]) 145 (Div64 (Const64 [c]) (Const64 [d])) && d != 0 -> (Const64 [c/d]) 146 (Div8u (Const8 [c]) (Const8 [d])) && d != 0 -> (Const8 [int64(int8(uint8(c)/uint8(d)))]) 147 (Div16u (Const16 [c]) (Const16 [d])) && d != 0 -> (Const16 [int64(int16(uint16(c)/uint16(d)))]) 148 (Div32u (Const32 [c]) (Const32 [d])) && d != 0 -> (Const32 [int64(int32(uint32(c)/uint32(d)))]) 149 (Div64u (Const64 [c]) (Const64 [d])) && d != 0 -> (Const64 [int64(uint64(c)/uint64(d))]) 150 (Div32F (Const32F [c]) (Const32F [d])) -> (Const32F [f2i(float64(i2f32(c) / i2f32(d)))]) 151 (Div64F (Const64F [c]) (Const64F [d])) -> (Const64F [f2i(i2f(c) / i2f(d))]) 152 153 (Not (ConstBool [c])) -> (ConstBool [1-c]) 154 155 // Convert x * 1 to x. 156 (Mul(8|16|32|64) (Const(8|16|32|64) [1]) x) -> x 157 158 // Convert x * -1 to -x. 159 (Mul(8|16|32|64) (Const(8|16|32|64) [-1]) x) -> (Neg(8|16|32|64) x) 160 161 // Convert multiplication by a power of two to a shift. 162 (Mul8 <t> n (Const8 [c])) && isPowerOfTwo(c) -> (Lsh8x64 <t> n (Const64 <typ.UInt64> [log2(c)])) 163 (Mul16 <t> n (Const16 [c])) && isPowerOfTwo(c) -> (Lsh16x64 <t> n (Const64 <typ.UInt64> [log2(c)])) 164 (Mul32 <t> n (Const32 [c])) && isPowerOfTwo(c) -> (Lsh32x64 <t> n (Const64 <typ.UInt64> [log2(c)])) 165 (Mul64 <t> n (Const64 [c])) && isPowerOfTwo(c) -> (Lsh64x64 <t> n (Const64 <typ.UInt64> [log2(c)])) 166 (Mul8 <t> n (Const8 [c])) && t.IsSigned() && isPowerOfTwo(-c) -> (Neg8 (Lsh8x64 <t> n (Const64 <typ.UInt64> [log2(-c)]))) 167 (Mul16 <t> n (Const16 [c])) && t.IsSigned() && isPowerOfTwo(-c) -> (Neg16 (Lsh16x64 <t> n (Const64 <typ.UInt64> [log2(-c)]))) 168 (Mul32 <t> n (Const32 [c])) && t.IsSigned() && isPowerOfTwo(-c) -> (Neg32 (Lsh32x64 <t> n (Const64 <typ.UInt64> [log2(-c)]))) 169 (Mul64 <t> n (Const64 [c])) && t.IsSigned() && isPowerOfTwo(-c) -> (Neg64 (Lsh64x64 <t> n (Const64 <typ.UInt64> [log2(-c)]))) 170 171 (Mod8 (Const8 [c]) (Const8 [d])) && d != 0 -> (Const8 [int64(int8(c % d))]) 172 (Mod16 (Const16 [c]) (Const16 [d])) && d != 0 -> (Const16 [int64(int16(c % d))]) 173 (Mod32 (Const32 [c]) (Const32 [d])) && d != 0 -> (Const32 [int64(int32(c % d))]) 174 (Mod64 (Const64 [c]) (Const64 [d])) && d != 0 -> (Const64 [c % d]) 175 176 (Mod8u (Const8 [c]) (Const8 [d])) && d != 0 -> (Const8 [int64(uint8(c) % uint8(d))]) 177 (Mod16u (Const16 [c]) (Const16 [d])) && d != 0 -> (Const16 [int64(uint16(c) % uint16(d))]) 178 (Mod32u (Const32 [c]) (Const32 [d])) && d != 0 -> (Const32 [int64(uint32(c) % uint32(d))]) 179 (Mod64u (Const64 [c]) (Const64 [d])) && d != 0 -> (Const64 [int64(uint64(c) % uint64(d))]) 180 181 (Lsh64x64 (Const64 [c]) (Const64 [d])) -> (Const64 [c << uint64(d)]) 182 (Rsh64x64 (Const64 [c]) (Const64 [d])) -> (Const64 [c >> uint64(d)]) 183 (Rsh64Ux64 (Const64 [c]) (Const64 [d])) -> (Const64 [int64(uint64(c) >> uint64(d))]) 184 (Lsh32x64 (Const32 [c]) (Const64 [d])) -> (Const32 [int64(int32(c) << uint64(d))]) 185 (Rsh32x64 (Const32 [c]) (Const64 [d])) -> (Const32 [int64(int32(c) >> uint64(d))]) 186 (Rsh32Ux64 (Const32 [c]) (Const64 [d])) -> (Const32 [int64(int32(uint32(c) >> uint64(d)))]) 187 (Lsh16x64 (Const16 [c]) (Const64 [d])) -> (Const16 [int64(int16(c) << uint64(d))]) 188 (Rsh16x64 (Const16 [c]) (Const64 [d])) -> (Const16 [int64(int16(c) >> uint64(d))]) 189 (Rsh16Ux64 (Const16 [c]) (Const64 [d])) -> (Const16 [int64(int16(uint16(c) >> uint64(d)))]) 190 (Lsh8x64 (Const8 [c]) (Const64 [d])) -> (Const8 [int64(int8(c) << uint64(d))]) 191 (Rsh8x64 (Const8 [c]) (Const64 [d])) -> (Const8 [int64(int8(c) >> uint64(d))]) 192 (Rsh8Ux64 (Const8 [c]) (Const64 [d])) -> (Const8 [int64(int8(uint8(c) >> uint64(d)))]) 193 194 // Fold IsInBounds when the range of the index cannot exceed the limit. 195 (IsInBounds (ZeroExt8to32 _) (Const32 [c])) && (1 << 8) <= c -> (ConstBool [1]) 196 (IsInBounds (ZeroExt8to64 _) (Const64 [c])) && (1 << 8) <= c -> (ConstBool [1]) 197 (IsInBounds (ZeroExt16to32 _) (Const32 [c])) && (1 << 16) <= c -> (ConstBool [1]) 198 (IsInBounds (ZeroExt16to64 _) (Const64 [c])) && (1 << 16) <= c -> (ConstBool [1]) 199 (IsInBounds x x) -> (ConstBool [0]) 200 (IsInBounds (And8 (Const8 [c]) _) (Const8 [d])) && 0 <= c && c < d -> (ConstBool [1]) 201 (IsInBounds (ZeroExt8to16 (And8 (Const8 [c]) _)) (Const16 [d])) && 0 <= c && c < d -> (ConstBool [1]) 202 (IsInBounds (ZeroExt8to32 (And8 (Const8 [c]) _)) (Const32 [d])) && 0 <= c && c < d -> (ConstBool [1]) 203 (IsInBounds (ZeroExt8to64 (And8 (Const8 [c]) _)) (Const64 [d])) && 0 <= c && c < d -> (ConstBool [1]) 204 (IsInBounds (And16 (Const16 [c]) _) (Const16 [d])) && 0 <= c && c < d -> (ConstBool [1]) 205 (IsInBounds (ZeroExt16to32 (And16 (Const16 [c]) _)) (Const32 [d])) && 0 <= c && c < d -> (ConstBool [1]) 206 (IsInBounds (ZeroExt16to64 (And16 (Const16 [c]) _)) (Const64 [d])) && 0 <= c && c < d -> (ConstBool [1]) 207 (IsInBounds (And32 (Const32 [c]) _) (Const32 [d])) && 0 <= c && c < d -> (ConstBool [1]) 208 (IsInBounds (ZeroExt32to64 (And32 (Const32 [c]) _)) (Const64 [d])) && 0 <= c && c < d -> (ConstBool [1]) 209 (IsInBounds (And64 (Const64 [c]) _) (Const64 [d])) && 0 <= c && c < d -> (ConstBool [1]) 210 (IsInBounds (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(0 <= c && c < d)]) 211 (IsInBounds (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(0 <= c && c < d)]) 212 // (Mod64u x y) is always between 0 (inclusive) and y (exclusive). 213 (IsInBounds (Mod32u _ y) y) -> (ConstBool [1]) 214 (IsInBounds (Mod64u _ y) y) -> (ConstBool [1]) 215 // Right shifting a unsigned number limits its value. 216 (IsInBounds (ZeroExt8to64 (Rsh8Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d -> (ConstBool [1]) 217 (IsInBounds (ZeroExt8to32 (Rsh8Ux64 _ (Const64 [c]))) (Const32 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d -> (ConstBool [1]) 218 (IsInBounds (ZeroExt8to16 (Rsh8Ux64 _ (Const64 [c]))) (Const16 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d -> (ConstBool [1]) 219 (IsInBounds (Rsh8Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d -> (ConstBool [1]) 220 (IsInBounds (ZeroExt16to64 (Rsh16Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d -> (ConstBool [1]) 221 (IsInBounds (ZeroExt16to32 (Rsh16Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d -> (ConstBool [1]) 222 (IsInBounds (Rsh16Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d -> (ConstBool [1]) 223 (IsInBounds (ZeroExt32to64 (Rsh32Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 32 && 1<<uint(32-c)-1 < d -> (ConstBool [1]) 224 (IsInBounds (Rsh32Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 32 && 1<<uint(32-c)-1 < d -> (ConstBool [1]) 225 (IsInBounds (Rsh64Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 64 && 1<<uint(64-c)-1 < d -> (ConstBool [1]) 226 227 (IsSliceInBounds x x) -> (ConstBool [1]) 228 (IsSliceInBounds (And32 (Const32 [c]) _) (Const32 [d])) && 0 <= c && c <= d -> (ConstBool [1]) 229 (IsSliceInBounds (And64 (Const64 [c]) _) (Const64 [d])) && 0 <= c && c <= d -> (ConstBool [1]) 230 (IsSliceInBounds (Const32 [0]) _) -> (ConstBool [1]) 231 (IsSliceInBounds (Const64 [0]) _) -> (ConstBool [1]) 232 (IsSliceInBounds (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(0 <= c && c <= d)]) 233 (IsSliceInBounds (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(0 <= c && c <= d)]) 234 (IsSliceInBounds (SliceLen x) (SliceCap x)) -> (ConstBool [1]) 235 236 (Eq(64|32|16|8) x x) -> (ConstBool [1]) 237 (EqB (ConstBool [c]) (ConstBool [d])) -> (ConstBool [b2i(c == d)]) 238 (EqB (ConstBool [0]) x) -> (Not x) 239 (EqB (ConstBool [1]) x) -> x 240 241 (Neq(64|32|16|8) x x) -> (ConstBool [0]) 242 (NeqB (ConstBool [c]) (ConstBool [d])) -> (ConstBool [b2i(c != d)]) 243 (NeqB (ConstBool [0]) x) -> x 244 (NeqB (ConstBool [1]) x) -> (Not x) 245 (NeqB (Not x) (Not y)) -> (NeqB x y) 246 247 (Eq64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) -> (Eq64 (Const64 <t> [c-d]) x) 248 (Eq32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) -> (Eq32 (Const32 <t> [int64(int32(c-d))]) x) 249 (Eq16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) -> (Eq16 (Const16 <t> [int64(int16(c-d))]) x) 250 (Eq8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) -> (Eq8 (Const8 <t> [int64(int8(c-d))]) x) 251 252 (Neq64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) -> (Neq64 (Const64 <t> [c-d]) x) 253 (Neq32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) -> (Neq32 (Const32 <t> [int64(int32(c-d))]) x) 254 (Neq16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) -> (Neq16 (Const16 <t> [int64(int16(c-d))]) x) 255 (Neq8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) -> (Neq8 (Const8 <t> [int64(int8(c-d))]) x) 256 257 // Canonicalize x-const to x+(-const) 258 (Sub64 x (Const64 <t> [c])) && x.Op != OpConst64 -> (Add64 (Const64 <t> [-c]) x) 259 (Sub32 x (Const32 <t> [c])) && x.Op != OpConst32 -> (Add32 (Const32 <t> [int64(int32(-c))]) x) 260 (Sub16 x (Const16 <t> [c])) && x.Op != OpConst16 -> (Add16 (Const16 <t> [int64(int16(-c))]) x) 261 (Sub8 x (Const8 <t> [c])) && x.Op != OpConst8 -> (Add8 (Const8 <t> [int64(int8(-c))]) x) 262 263 // fold negation into comparison operators 264 (Not (Eq(64|32|16|8|B) x y)) -> (Neq(64|32|16|8|B) x y) 265 (Not (Neq(64|32|16|8|B) x y)) -> (Eq(64|32|16|8|B) x y) 266 267 (Not (Greater(64|32|16|8) x y)) -> (Leq(64|32|16|8) x y) 268 (Not (Greater(64|32|16|8)U x y)) -> (Leq(64|32|16|8)U x y) 269 (Not (Geq(64|32|16|8) x y)) -> (Less(64|32|16|8) x y) 270 (Not (Geq(64|32|16|8)U x y)) -> (Less(64|32|16|8)U x y) 271 272 (Not (Less(64|32|16|8) x y)) -> (Geq(64|32|16|8) x y) 273 (Not (Less(64|32|16|8)U x y)) -> (Geq(64|32|16|8)U x y) 274 (Not (Leq(64|32|16|8) x y)) -> (Greater(64|32|16|8) x y) 275 (Not (Leq(64|32|16|8)U x y)) -> (Greater(64|32|16|8)U x y) 276 277 278 // Distribute multiplication c * (d+x) -> c*d + c*x. Useful for: 279 // a[i].b = ...; a[i+1].b = ... 280 (Mul64 (Const64 <t> [c]) (Add64 <t> (Const64 <t> [d]) x)) -> 281 (Add64 (Const64 <t> [c*d]) (Mul64 <t> (Const64 <t> [c]) x)) 282 (Mul32 (Const32 <t> [c]) (Add32 <t> (Const32 <t> [d]) x)) -> 283 (Add32 (Const32 <t> [int64(int32(c*d))]) (Mul32 <t> (Const32 <t> [c]) x)) 284 285 // Rewrite x*y + x*z to x*(y+z) 286 (Add64 <t> (Mul64 x y) (Mul64 x z)) -> (Mul64 x (Add64 <t> y z)) 287 (Add32 <t> (Mul32 x y) (Mul32 x z)) -> (Mul32 x (Add32 <t> y z)) 288 (Add16 <t> (Mul16 x y) (Mul16 x z)) -> (Mul16 x (Add16 <t> y z)) 289 (Add8 <t> (Mul8 x y) (Mul8 x z)) -> (Mul8 x (Add8 <t> y z)) 290 291 // Rewrite x*y - x*z to x*(y-z) 292 (Sub64 <t> (Mul64 x y) (Mul64 x z)) -> (Mul64 x (Sub64 <t> y z)) 293 (Sub32 <t> (Mul32 x y) (Mul32 x z)) -> (Mul32 x (Sub32 <t> y z)) 294 (Sub16 <t> (Mul16 x y) (Mul16 x z)) -> (Mul16 x (Sub16 <t> y z)) 295 (Sub8 <t> (Mul8 x y) (Mul8 x z)) -> (Mul8 x (Sub8 <t> y z)) 296 297 // rewrite shifts of 8/16/32 bit consts into 64 bit consts to reduce 298 // the number of the other rewrite rules for const shifts 299 (Lsh64x32 <t> x (Const32 [c])) -> (Lsh64x64 x (Const64 <t> [int64(uint32(c))])) 300 (Lsh64x16 <t> x (Const16 [c])) -> (Lsh64x64 x (Const64 <t> [int64(uint16(c))])) 301 (Lsh64x8 <t> x (Const8 [c])) -> (Lsh64x64 x (Const64 <t> [int64(uint8(c))])) 302 (Rsh64x32 <t> x (Const32 [c])) -> (Rsh64x64 x (Const64 <t> [int64(uint32(c))])) 303 (Rsh64x16 <t> x (Const16 [c])) -> (Rsh64x64 x (Const64 <t> [int64(uint16(c))])) 304 (Rsh64x8 <t> x (Const8 [c])) -> (Rsh64x64 x (Const64 <t> [int64(uint8(c))])) 305 (Rsh64Ux32 <t> x (Const32 [c])) -> (Rsh64Ux64 x (Const64 <t> [int64(uint32(c))])) 306 (Rsh64Ux16 <t> x (Const16 [c])) -> (Rsh64Ux64 x (Const64 <t> [int64(uint16(c))])) 307 (Rsh64Ux8 <t> x (Const8 [c])) -> (Rsh64Ux64 x (Const64 <t> [int64(uint8(c))])) 308 309 (Lsh32x32 <t> x (Const32 [c])) -> (Lsh32x64 x (Const64 <t> [int64(uint32(c))])) 310 (Lsh32x16 <t> x (Const16 [c])) -> (Lsh32x64 x (Const64 <t> [int64(uint16(c))])) 311 (Lsh32x8 <t> x (Const8 [c])) -> (Lsh32x64 x (Const64 <t> [int64(uint8(c))])) 312 (Rsh32x32 <t> x (Const32 [c])) -> (Rsh32x64 x (Const64 <t> [int64(uint32(c))])) 313 (Rsh32x16 <t> x (Const16 [c])) -> (Rsh32x64 x (Const64 <t> [int64(uint16(c))])) 314 (Rsh32x8 <t> x (Const8 [c])) -> (Rsh32x64 x (Const64 <t> [int64(uint8(c))])) 315 (Rsh32Ux32 <t> x (Const32 [c])) -> (Rsh32Ux64 x (Const64 <t> [int64(uint32(c))])) 316 (Rsh32Ux16 <t> x (Const16 [c])) -> (Rsh32Ux64 x (Const64 <t> [int64(uint16(c))])) 317 (Rsh32Ux8 <t> x (Const8 [c])) -> (Rsh32Ux64 x (Const64 <t> [int64(uint8(c))])) 318 319 (Lsh16x32 <t> x (Const32 [c])) -> (Lsh16x64 x (Const64 <t> [int64(uint32(c))])) 320 (Lsh16x16 <t> x (Const16 [c])) -> (Lsh16x64 x (Const64 <t> [int64(uint16(c))])) 321 (Lsh16x8 <t> x (Const8 [c])) -> (Lsh16x64 x (Const64 <t> [int64(uint8(c))])) 322 (Rsh16x32 <t> x (Const32 [c])) -> (Rsh16x64 x (Const64 <t> [int64(uint32(c))])) 323 (Rsh16x16 <t> x (Const16 [c])) -> (Rsh16x64 x (Const64 <t> [int64(uint16(c))])) 324 (Rsh16x8 <t> x (Const8 [c])) -> (Rsh16x64 x (Const64 <t> [int64(uint8(c))])) 325 (Rsh16Ux32 <t> x (Const32 [c])) -> (Rsh16Ux64 x (Const64 <t> [int64(uint32(c))])) 326 (Rsh16Ux16 <t> x (Const16 [c])) -> (Rsh16Ux64 x (Const64 <t> [int64(uint16(c))])) 327 (Rsh16Ux8 <t> x (Const8 [c])) -> (Rsh16Ux64 x (Const64 <t> [int64(uint8(c))])) 328 329 (Lsh8x32 <t> x (Const32 [c])) -> (Lsh8x64 x (Const64 <t> [int64(uint32(c))])) 330 (Lsh8x16 <t> x (Const16 [c])) -> (Lsh8x64 x (Const64 <t> [int64(uint16(c))])) 331 (Lsh8x8 <t> x (Const8 [c])) -> (Lsh8x64 x (Const64 <t> [int64(uint8(c))])) 332 (Rsh8x32 <t> x (Const32 [c])) -> (Rsh8x64 x (Const64 <t> [int64(uint32(c))])) 333 (Rsh8x16 <t> x (Const16 [c])) -> (Rsh8x64 x (Const64 <t> [int64(uint16(c))])) 334 (Rsh8x8 <t> x (Const8 [c])) -> (Rsh8x64 x (Const64 <t> [int64(uint8(c))])) 335 (Rsh8Ux32 <t> x (Const32 [c])) -> (Rsh8Ux64 x (Const64 <t> [int64(uint32(c))])) 336 (Rsh8Ux16 <t> x (Const16 [c])) -> (Rsh8Ux64 x (Const64 <t> [int64(uint16(c))])) 337 (Rsh8Ux8 <t> x (Const8 [c])) -> (Rsh8Ux64 x (Const64 <t> [int64(uint8(c))])) 338 339 // shifts by zero 340 (Lsh64x64 x (Const64 [0])) -> x 341 (Rsh64x64 x (Const64 [0])) -> x 342 (Rsh64Ux64 x (Const64 [0])) -> x 343 (Lsh32x64 x (Const64 [0])) -> x 344 (Rsh32x64 x (Const64 [0])) -> x 345 (Rsh32Ux64 x (Const64 [0])) -> x 346 (Lsh16x64 x (Const64 [0])) -> x 347 (Rsh16x64 x (Const64 [0])) -> x 348 (Rsh16Ux64 x (Const64 [0])) -> x 349 (Lsh8x64 x (Const64 [0])) -> x 350 (Rsh8x64 x (Const64 [0])) -> x 351 (Rsh8Ux64 x (Const64 [0])) -> x 352 353 // zero shifted. 354 (Lsh64x(64|32|16|8) (Const64 [0]) _) -> (Const64 [0]) 355 (Rsh64x(64|32|16|8) (Const64 [0]) _) -> (Const64 [0]) 356 (Rsh64Ux(64|32|16|8) (Const64 [0]) _) -> (Const64 [0]) 357 (Lsh32x(64|32|16|8) (Const32 [0]) _) -> (Const32 [0]) 358 (Rsh32x(64|32|16|8) (Const32 [0]) _) -> (Const32 [0]) 359 (Rsh32Ux(64|32|16|8) (Const32 [0]) _) -> (Const32 [0]) 360 (Lsh16x(64|32|16|8) (Const16 [0]) _) -> (Const16 [0]) 361 (Rsh16x(64|32|16|8) (Const16 [0]) _) -> (Const16 [0]) 362 (Rsh16Ux(64|32|16|8) (Const16 [0]) _) -> (Const16 [0]) 363 (Lsh8x(64|32|16|8) (Const8 [0]) _) -> (Const8 [0]) 364 (Rsh8x(64|32|16|8) (Const8 [0]) _) -> (Const8 [0]) 365 (Rsh8Ux(64|32|16|8) (Const8 [0]) _) -> (Const8 [0]) 366 367 // large left shifts of all values, and right shifts of unsigned values 368 ((Lsh64|Rsh64U)x64 _ (Const64 [c])) && uint64(c) >= 64 -> (Const64 [0]) 369 ((Lsh32|Rsh32U)x64 _ (Const64 [c])) && uint64(c) >= 32 -> (Const32 [0]) 370 ((Lsh16|Rsh16U)x64 _ (Const64 [c])) && uint64(c) >= 16 -> (Const16 [0]) 371 ((Lsh8|Rsh8U)x64 _ (Const64 [c])) && uint64(c) >= 8 -> (Const8 [0]) 372 373 // combine const shifts 374 (Lsh64x64 <t> (Lsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Lsh64x64 x (Const64 <t> [c+d])) 375 (Lsh32x64 <t> (Lsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Lsh32x64 x (Const64 <t> [c+d])) 376 (Lsh16x64 <t> (Lsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Lsh16x64 x (Const64 <t> [c+d])) 377 (Lsh8x64 <t> (Lsh8x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Lsh8x64 x (Const64 <t> [c+d])) 378 379 (Rsh64x64 <t> (Rsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh64x64 x (Const64 <t> [c+d])) 380 (Rsh32x64 <t> (Rsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh32x64 x (Const64 <t> [c+d])) 381 (Rsh16x64 <t> (Rsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh16x64 x (Const64 <t> [c+d])) 382 (Rsh8x64 <t> (Rsh8x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh8x64 x (Const64 <t> [c+d])) 383 384 (Rsh64Ux64 <t> (Rsh64Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh64Ux64 x (Const64 <t> [c+d])) 385 (Rsh32Ux64 <t> (Rsh32Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh32Ux64 x (Const64 <t> [c+d])) 386 (Rsh16Ux64 <t> (Rsh16Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh16Ux64 x (Const64 <t> [c+d])) 387 (Rsh8Ux64 <t> (Rsh8Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh8Ux64 x (Const64 <t> [c+d])) 388 389 // ((x >> c1) << c2) >> c3 390 (Rsh(64|32|16|8)Ux64 (Lsh(64|32|16|8)x64 (Rsh(64|32|16|8)Ux64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) 391 && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) 392 -> (Rsh(64|32|16|8)Ux64 x (Const64 <typ.UInt64> [c1-c2+c3])) 393 394 // ((x << c1) >> c2) << c3 395 (Lsh(64|32|16|8)x64 (Rsh(64|32|16|8)Ux64 (Lsh(64|32|16|8)x64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) 396 && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) 397 -> (Lsh(64|32|16|8)x64 x (Const64 <typ.UInt64> [c1-c2+c3])) 398 399 // replace shifts with zero extensions 400 (Rsh16Ux64 (Lsh16x64 x (Const64 [8])) (Const64 [8])) -> (ZeroExt8to16 (Trunc16to8 <typ.UInt8> x)) 401 (Rsh32Ux64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) -> (ZeroExt8to32 (Trunc32to8 <typ.UInt8> x)) 402 (Rsh64Ux64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) -> (ZeroExt8to64 (Trunc64to8 <typ.UInt8> x)) 403 (Rsh32Ux64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) -> (ZeroExt16to32 (Trunc32to16 <typ.UInt16> x)) 404 (Rsh64Ux64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) -> (ZeroExt16to64 (Trunc64to16 <typ.UInt16> x)) 405 (Rsh64Ux64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) -> (ZeroExt32to64 (Trunc64to32 <typ.UInt32> x)) 406 407 // replace shifts with sign extensions 408 (Rsh16x64 (Lsh16x64 x (Const64 [8])) (Const64 [8])) -> (SignExt8to16 (Trunc16to8 <typ.Int8> x)) 409 (Rsh32x64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) -> (SignExt8to32 (Trunc32to8 <typ.Int8> x)) 410 (Rsh64x64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) -> (SignExt8to64 (Trunc64to8 <typ.Int8> x)) 411 (Rsh32x64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) -> (SignExt16to32 (Trunc32to16 <typ.Int16> x)) 412 (Rsh64x64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) -> (SignExt16to64 (Trunc64to16 <typ.Int16> x)) 413 (Rsh64x64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) -> (SignExt32to64 (Trunc64to32 <typ.Int32> x)) 414 415 // constant comparisons 416 (Eq(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) -> (ConstBool [b2i(c == d)]) 417 (Neq(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) -> (ConstBool [b2i(c != d)]) 418 (Greater(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) -> (ConstBool [b2i(c > d)]) 419 (Geq(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) -> (ConstBool [b2i(c >= d)]) 420 (Less(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) -> (ConstBool [b2i(c < d)]) 421 (Leq(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) -> (ConstBool [b2i(c <= d)]) 422 423 (Greater64U (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(uint64(c) > uint64(d))]) 424 (Greater32U (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(uint32(c) > uint32(d))]) 425 (Greater16U (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(uint16(c) > uint16(d))]) 426 (Greater8U (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(uint8(c) > uint8(d))]) 427 428 (Geq64U (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(uint64(c) >= uint64(d))]) 429 (Geq32U (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(uint32(c) >= uint32(d))]) 430 (Geq16U (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(uint16(c) >= uint16(d))]) 431 (Geq8U (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(uint8(c) >= uint8(d))]) 432 433 (Less64U (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(uint64(c) < uint64(d))]) 434 (Less32U (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(uint32(c) < uint32(d))]) 435 (Less16U (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(uint16(c) < uint16(d))]) 436 (Less8U (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(uint8(c) < uint8(d))]) 437 438 (Leq64U (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(uint64(c) <= uint64(d))]) 439 (Leq32U (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(uint32(c) <= uint32(d))]) 440 (Leq16U (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(uint16(c) <= uint16(d))]) 441 (Leq8U (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(uint8(c) <= uint8(d))]) 442 443 // constant floating point comparisons 444 (Eq(64|32)F (Const(64|32)F [c]) (Const(64|32)F [d])) -> (ConstBool [b2i(i2f(c) == i2f(d))]) 445 (Neq(64|32)F (Const(64|32)F [c]) (Const(64|32)F [d])) -> (ConstBool [b2i(i2f(c) != i2f(d))]) 446 (Greater(64|32)F (Const(64|32)F [c]) (Const(64|32)F [d])) -> (ConstBool [b2i(i2f(c) > i2f(d))]) 447 (Geq(64|32)F (Const(64|32)F [c]) (Const(64|32)F [d])) -> (ConstBool [b2i(i2f(c) >= i2f(d))]) 448 (Less(64|32)F (Const(64|32)F [c]) (Const(64|32)F [d])) -> (ConstBool [b2i(i2f(c) < i2f(d))]) 449 (Leq(64|32)F (Const(64|32)F [c]) (Const(64|32)F [d])) -> (ConstBool [b2i(i2f(c) <= i2f(d))]) 450 451 // simplifications 452 (Or(64|32|16|8) x x) -> x 453 (Or(64|32|16|8) (Const(64|32|16|8) [0]) x) -> x 454 (Or(64|32|16|8) (Const(64|32|16|8) [-1]) _) -> (Const(64|32|16|8) [-1]) 455 456 (And(64|32|16|8) x x) -> x 457 (And(64|32|16|8) (Const(64|32|16|8) [-1]) x) -> x 458 (And(64|32|16|8) (Const(64|32|16|8) [0]) _) -> (Const(64|32|16|8) [0]) 459 460 (Xor(64|32|16|8) x x) -> (Const(64|32|16|8) [0]) 461 (Xor(64|32|16|8) (Const(64|32|16|8) [0]) x) -> x 462 463 (Add(64|32|16|8) (Const(64|32|16|8) [0]) x) -> x 464 (Sub(64|32|16|8) x x) -> (Const(64|32|16|8) [0]) 465 (Mul(64|32|16|8) (Const(64|32|16|8) [0]) _) -> (Const(64|32|16|8) [0]) 466 467 (Com(64|32|16|8) (Com(64|32|16|8) x)) -> x 468 (Com(64|32|16|8) (Const(64|32|16|8) [c])) -> (Const(64|32|16|8) [^c]) 469 470 (Neg(64|32|16|8) (Sub(64|32|16|8) x y)) -> (Sub(64|32|16|8) y x) 471 472 (Add8 (Const8 [1]) (Com8 x)) -> (Neg8 x) 473 (Add16 (Const16 [1]) (Com16 x)) -> (Neg16 x) 474 (Add32 (Const32 [1]) (Com32 x)) -> (Neg32 x) 475 (Add64 (Const64 [1]) (Com64 x)) -> (Neg64 x) 476 477 (And64 x (And64 x y)) -> (And64 x y) 478 (And32 x (And32 x y)) -> (And32 x y) 479 (And16 x (And16 x y)) -> (And16 x y) 480 (And8 x (And8 x y)) -> (And8 x y) 481 (Or64 x (Or64 x y)) -> (Or64 x y) 482 (Or32 x (Or32 x y)) -> (Or32 x y) 483 (Or16 x (Or16 x y)) -> (Or16 x y) 484 (Or8 x (Or8 x y)) -> (Or8 x y) 485 (Xor(64|32|16|8) x (Xor(64|32|16|8) x y)) -> y 486 487 // Ands clear bits. Ors set bits. 488 // If a subsequent Or will set all the bits 489 // that an And cleared, we can skip the And. 490 // This happens in bitmasking code like: 491 // x &^= 3 << shift // clear two old bits 492 // x |= v << shift // set two new bits 493 // when shift is a small constant and v ends up a constant 3. 494 (Or8 (And8 x (Const8 [c2])) (Const8 <t> [c1])) && ^(c1 | c2) == 0 -> (Or8 (Const8 <t> [c1]) x) 495 (Or16 (And16 x (Const16 [c2])) (Const16 <t> [c1])) && ^(c1 | c2) == 0 -> (Or16 (Const16 <t> [c1]) x) 496 (Or32 (And32 x (Const32 [c2])) (Const32 <t> [c1])) && ^(c1 | c2) == 0 -> (Or32 (Const32 <t> [c1]) x) 497 (Or64 (And64 x (Const64 [c2])) (Const64 <t> [c1])) && ^(c1 | c2) == 0 -> (Or64 (Const64 <t> [c1]) x) 498 499 (Trunc64to8 (And64 (Const64 [y]) x)) && y&0xFF == 0xFF -> (Trunc64to8 x) 500 (Trunc64to16 (And64 (Const64 [y]) x)) && y&0xFFFF == 0xFFFF -> (Trunc64to16 x) 501 (Trunc64to32 (And64 (Const64 [y]) x)) && y&0xFFFFFFFF == 0xFFFFFFFF -> (Trunc64to32 x) 502 (Trunc32to8 (And32 (Const32 [y]) x)) && y&0xFF == 0xFF -> (Trunc32to8 x) 503 (Trunc32to16 (And32 (Const32 [y]) x)) && y&0xFFFF == 0xFFFF -> (Trunc32to16 x) 504 (Trunc16to8 (And16 (Const16 [y]) x)) && y&0xFF == 0xFF -> (Trunc16to8 x) 505 506 (ZeroExt8to64 (Trunc64to8 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 56 -> x 507 (ZeroExt16to64 (Trunc64to16 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 48 -> x 508 (ZeroExt32to64 (Trunc64to32 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 32 -> x 509 (ZeroExt8to32 (Trunc32to8 x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 24 -> x 510 (ZeroExt16to32 (Trunc32to16 x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 16 -> x 511 (ZeroExt8to16 (Trunc16to8 x:(Rsh16Ux64 _ (Const64 [s])))) && s >= 8 -> x 512 513 (SignExt8to64 (Trunc64to8 x:(Rsh64x64 _ (Const64 [s])))) && s >= 56 -> x 514 (SignExt16to64 (Trunc64to16 x:(Rsh64x64 _ (Const64 [s])))) && s >= 48 -> x 515 (SignExt32to64 (Trunc64to32 x:(Rsh64x64 _ (Const64 [s])))) && s >= 32 -> x 516 (SignExt8to32 (Trunc32to8 x:(Rsh32x64 _ (Const64 [s])))) && s >= 24 -> x 517 (SignExt16to32 (Trunc32to16 x:(Rsh32x64 _ (Const64 [s])))) && s >= 16 -> x 518 (SignExt8to16 (Trunc16to8 x:(Rsh16x64 _ (Const64 [s])))) && s >= 8 -> x 519 520 (Slicemask (Const32 [x])) && x > 0 -> (Const32 [-1]) 521 (Slicemask (Const32 [0])) -> (Const32 [0]) 522 (Slicemask (Const64 [x])) && x > 0 -> (Const64 [-1]) 523 (Slicemask (Const64 [0])) -> (Const64 [0]) 524 525 // Rewrite AND of consts as shifts if possible, slightly faster for 64 bit operands 526 // leading zeros can be shifted left, then right 527 (And64 <t> (Const64 [y]) x) && nlz(y) + nto(y) == 64 && nto(y) >= 32 528 -> (Rsh64Ux64 (Lsh64x64 <t> x (Const64 <t> [nlz(y)])) (Const64 <t> [nlz(y)])) 529 // trailing zeros can be shifted right, then left 530 (And64 <t> (Const64 [y]) x) && nlo(y) + ntz(y) == 64 && ntz(y) >= 32 531 -> (Lsh64x64 (Rsh64Ux64 <t> x (Const64 <t> [ntz(y)])) (Const64 <t> [ntz(y)])) 532 533 // simplifications often used for lengths. e.g. len(s[i:i+5])==5 534 (Sub(64|32|16|8) (Add(64|32|16|8) x y) x) -> y 535 (Sub(64|32|16|8) (Add(64|32|16|8) x y) y) -> x 536 537 // basic phi simplifications 538 (Phi (Const8 [c]) (Const8 [c])) -> (Const8 [c]) 539 (Phi (Const16 [c]) (Const16 [c])) -> (Const16 [c]) 540 (Phi (Const32 [c]) (Const32 [c])) -> (Const32 [c]) 541 (Phi (Const64 [c]) (Const64 [c])) -> (Const64 [c]) 542 543 // user nil checks 544 (NeqPtr p (ConstNil)) -> (IsNonNil p) 545 (EqPtr p (ConstNil)) -> (Not (IsNonNil p)) 546 (IsNonNil (ConstNil)) -> (ConstBool [0]) 547 548 // slice and interface comparisons 549 // The frontend ensures that we can only compare against nil, 550 // so we need only compare the first word (interface type or slice ptr). 551 (EqInter x y) -> (EqPtr (ITab x) (ITab y)) 552 (NeqInter x y) -> (NeqPtr (ITab x) (ITab y)) 553 (EqSlice x y) -> (EqPtr (SlicePtr x) (SlicePtr y)) 554 (NeqSlice x y) -> (NeqPtr (SlicePtr x) (SlicePtr y)) 555 556 // Load of store of same address, with compatibly typed value and same size 557 (Load <t1> p1 (Store {t2} p2 x _)) && isSamePtr(p1,p2) && t1.Compare(x.Type) == types.CMPeq && t1.Size() == t2.(*types.Type).Size() -> x 558 559 // Pass constants through math.Float{32,64}bits and math.Float{32,64}frombits 560 (Load <t1> p1 (Store {t2} p2 (Const64 [x]) _)) && isSamePtr(p1,p2) && t2.(*types.Type).Size() == 8 && is64BitFloat(t1) -> (Const64F [x]) 561 (Load <t1> p1 (Store {t2} p2 (Const32 [x]) _)) && isSamePtr(p1,p2) && t2.(*types.Type).Size() == 4 && is32BitFloat(t1) -> (Const32F [f2i(float64(math.Float32frombits(uint32(x))))]) 562 (Load <t1> p1 (Store {t2} p2 (Const64F [x]) _)) && isSamePtr(p1,p2) && t2.(*types.Type).Size() == 8 && is64BitInt(t1) -> (Const64 [x]) 563 (Load <t1> p1 (Store {t2} p2 (Const32F [x]) _)) && isSamePtr(p1,p2) && t2.(*types.Type).Size() == 4 && is32BitInt(t1) -> (Const32 [int64(int32(math.Float32bits(float32(i2f(x)))))]) 564 565 // Eliminate stores of values that have just been loaded from the same location. 566 // We also handle the common case where there are some intermediate stores to non-overlapping struct fields. 567 (Store {t1} p1 (Load <t2> p2 mem) mem) && 568 isSamePtr(p1, p2) && 569 t2.Size() == t1.(*types.Type).Size() -> mem 570 (Store {t1} (OffPtr [o1] p1) (Load <t2> (OffPtr [o1] p2) oldmem) mem:(Store {t3} (OffPtr [o3] p3) _ oldmem)) && 571 isSamePtr(p1, p2) && 572 isSamePtr(p1, p3) && 573 t2.Size() == t1.(*types.Type).Size() && 574 !overlap(o1, t2.Size(), o3, t3.(*types.Type).Size()) -> mem 575 (Store {t1} (OffPtr [o1] p1) (Load <t2> (OffPtr [o1] p2) oldmem) mem:(Store {t3} (OffPtr [o3] p3) _ (Store {t4} (OffPtr [o4] p4) _ oldmem))) && 576 isSamePtr(p1, p2) && 577 isSamePtr(p1, p3) && 578 isSamePtr(p1, p4) && 579 t2.Size() == t1.(*types.Type).Size() && 580 !overlap(o1, t2.Size(), o3, t3.(*types.Type).Size()) && 581 !overlap(o1, t2.Size(), o4, t4.(*types.Type).Size()) -> mem 582 (Store {t1} (OffPtr [o1] p1) (Load <t2> (OffPtr [o1] p2) oldmem) mem:(Store {t3} (OffPtr [o3] p3) _ (Store {t4} (OffPtr [o4] p4) _ (Store {t5} (OffPtr [o5] p5) _ oldmem)))) && 583 isSamePtr(p1, p2) && 584 isSamePtr(p1, p3) && 585 isSamePtr(p1, p4) && 586 isSamePtr(p1, p5) && 587 t2.Size() == t1.(*types.Type).Size() && 588 !overlap(o1, t2.Size(), o3, t3.(*types.Type).Size()) && 589 !overlap(o1, t2.Size(), o4, t4.(*types.Type).Size()) && 590 !overlap(o1, t2.Size(), o5, t5.(*types.Type).Size()) -> mem 591 592 // Collapse OffPtr 593 (OffPtr (OffPtr p [b]) [a]) -> (OffPtr p [a+b]) 594 (OffPtr p [0]) && v.Type.Compare(p.Type) == types.CMPeq -> p 595 596 // indexing operations 597 // Note: bounds check has already been done 598 (PtrIndex <t> ptr idx) && config.PtrSize == 4 -> (AddPtr ptr (Mul32 <typ.Int> idx (Const32 <typ.Int> [t.ElemType().Size()]))) 599 (PtrIndex <t> ptr idx) && config.PtrSize == 8 -> (AddPtr ptr (Mul64 <typ.Int> idx (Const64 <typ.Int> [t.ElemType().Size()]))) 600 601 // struct operations 602 (StructSelect (StructMake1 x)) -> x 603 (StructSelect [0] (StructMake2 x _)) -> x 604 (StructSelect [1] (StructMake2 _ x)) -> x 605 (StructSelect [0] (StructMake3 x _ _)) -> x 606 (StructSelect [1] (StructMake3 _ x _)) -> x 607 (StructSelect [2] (StructMake3 _ _ x)) -> x 608 (StructSelect [0] (StructMake4 x _ _ _)) -> x 609 (StructSelect [1] (StructMake4 _ x _ _)) -> x 610 (StructSelect [2] (StructMake4 _ _ x _)) -> x 611 (StructSelect [3] (StructMake4 _ _ _ x)) -> x 612 613 (Load <t> _ _) && t.IsStruct() && t.NumFields() == 0 && fe.CanSSA(t) -> 614 (StructMake0) 615 (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 1 && fe.CanSSA(t) -> 616 (StructMake1 617 (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem)) 618 (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 2 && fe.CanSSA(t) -> 619 (StructMake2 620 (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem) 621 (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem)) 622 (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 3 && fe.CanSSA(t) -> 623 (StructMake3 624 (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem) 625 (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem) 626 (Load <t.FieldType(2)> (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] ptr) mem)) 627 (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 4 && fe.CanSSA(t) -> 628 (StructMake4 629 (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem) 630 (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem) 631 (Load <t.FieldType(2)> (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] ptr) mem) 632 (Load <t.FieldType(3)> (OffPtr <t.FieldType(3).PtrTo()> [t.FieldOff(3)] ptr) mem)) 633 634 (StructSelect [i] x:(Load <t> ptr mem)) && !fe.CanSSA(t) -> 635 @x.Block (Load <v.Type> (OffPtr <v.Type.PtrTo()> [t.FieldOff(int(i))] ptr) mem) 636 637 (Store _ (StructMake0) mem) -> mem 638 (Store dst (StructMake1 <t> f0) mem) -> 639 (Store {t.FieldType(0)} (OffPtr <t.FieldType(0).PtrTo()> [0] dst) f0 mem) 640 (Store dst (StructMake2 <t> f0 f1) mem) -> 641 (Store {t.FieldType(1)} 642 (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst) 643 f1 644 (Store {t.FieldType(0)} 645 (OffPtr <t.FieldType(0).PtrTo()> [0] dst) 646 f0 mem)) 647 (Store dst (StructMake3 <t> f0 f1 f2) mem) -> 648 (Store {t.FieldType(2)} 649 (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] dst) 650 f2 651 (Store {t.FieldType(1)} 652 (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst) 653 f1 654 (Store {t.FieldType(0)} 655 (OffPtr <t.FieldType(0).PtrTo()> [0] dst) 656 f0 mem))) 657 (Store dst (StructMake4 <t> f0 f1 f2 f3) mem) -> 658 (Store {t.FieldType(3)} 659 (OffPtr <t.FieldType(3).PtrTo()> [t.FieldOff(3)] dst) 660 f3 661 (Store {t.FieldType(2)} 662 (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] dst) 663 f2 664 (Store {t.FieldType(1)} 665 (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst) 666 f1 667 (Store {t.FieldType(0)} 668 (OffPtr <t.FieldType(0).PtrTo()> [0] dst) 669 f0 mem)))) 670 671 // Putting struct{*byte} and similar into direct interfaces. 672 (IMake typ (StructMake1 val)) -> (IMake typ val) 673 (StructSelect [0] x:(IData _)) -> x 674 675 // un-SSAable values use mem->mem copies 676 (Store {t} dst (Load src mem) mem) && !fe.CanSSA(t.(*types.Type)) -> 677 (Move {t} [t.(*types.Type).Size()] dst src mem) 678 (Store {t} dst (Load src mem) (VarDef {x} mem)) && !fe.CanSSA(t.(*types.Type)) -> 679 (Move {t} [t.(*types.Type).Size()] dst src (VarDef {x} mem)) 680 681 // array ops 682 (ArraySelect (ArrayMake1 x)) -> x 683 684 (Load <t> _ _) && t.IsArray() && t.NumElem() == 0 -> 685 (ArrayMake0) 686 687 (Load <t> ptr mem) && t.IsArray() && t.NumElem() == 1 && fe.CanSSA(t) -> 688 (ArrayMake1 (Load <t.ElemType()> ptr mem)) 689 690 (Store _ (ArrayMake0) mem) -> mem 691 (Store dst (ArrayMake1 e) mem) -> (Store {e.Type} dst e mem) 692 693 // Putting [1]{*byte} and similar into direct interfaces. 694 (IMake typ (ArrayMake1 val)) -> (IMake typ val) 695 (ArraySelect [0] x:(IData _)) -> x 696 697 // string ops 698 // Decomposing StringMake and lowering of StringPtr and StringLen 699 // happens in a later pass, dec, so that these operations are available 700 // to other passes for optimizations. 701 (StringPtr (StringMake (Const64 <t> [c]) _)) -> (Const64 <t> [c]) 702 (StringLen (StringMake _ (Const64 <t> [c]))) -> (Const64 <t> [c]) 703 (ConstString {s}) && config.PtrSize == 4 && s.(string) == "" -> 704 (StringMake (ConstNil) (Const32 <typ.Int> [0])) 705 (ConstString {s}) && config.PtrSize == 8 && s.(string) == "" -> 706 (StringMake (ConstNil) (Const64 <typ.Int> [0])) 707 (ConstString {s}) && config.PtrSize == 4 && s.(string) != "" -> 708 (StringMake 709 (Addr <typ.BytePtr> {fe.StringData(s.(string))} 710 (SB)) 711 (Const32 <typ.Int> [int64(len(s.(string)))])) 712 (ConstString {s}) && config.PtrSize == 8 && s.(string) != "" -> 713 (StringMake 714 (Addr <typ.BytePtr> {fe.StringData(s.(string))} 715 (SB)) 716 (Const64 <typ.Int> [int64(len(s.(string)))])) 717 718 // slice ops 719 // Only a few slice rules are provided here. See dec.rules for 720 // a more comprehensive set. 721 (SliceLen (SliceMake _ (Const64 <t> [c]) _)) -> (Const64 <t> [c]) 722 (SliceCap (SliceMake _ _ (Const64 <t> [c]))) -> (Const64 <t> [c]) 723 (SliceLen (SliceMake _ (Const32 <t> [c]) _)) -> (Const32 <t> [c]) 724 (SliceCap (SliceMake _ _ (Const32 <t> [c]))) -> (Const32 <t> [c]) 725 (SlicePtr (SliceMake (SlicePtr x) _ _)) -> (SlicePtr x) 726 (SliceLen (SliceMake _ (SliceLen x) _)) -> (SliceLen x) 727 (SliceCap (SliceMake _ _ (SliceCap x))) -> (SliceCap x) 728 (SliceCap (SliceMake _ _ (SliceLen x))) -> (SliceLen x) 729 (ConstSlice) && config.PtrSize == 4 -> 730 (SliceMake 731 (ConstNil <v.Type.ElemType().PtrTo()>) 732 (Const32 <typ.Int> [0]) 733 (Const32 <typ.Int> [0])) 734 (ConstSlice) && config.PtrSize == 8 -> 735 (SliceMake 736 (ConstNil <v.Type.ElemType().PtrTo()>) 737 (Const64 <typ.Int> [0]) 738 (Const64 <typ.Int> [0])) 739 740 // interface ops 741 (ConstInterface) -> 742 (IMake 743 (ConstNil <typ.BytePtr>) 744 (ConstNil <typ.BytePtr>)) 745 746 (NilCheck (GetG mem) mem) -> mem 747 748 (If (Not cond) yes no) -> (If cond no yes) 749 (If (ConstBool [c]) yes no) && c == 1 -> (First nil yes no) 750 (If (ConstBool [c]) yes no) && c == 0 -> (First nil no yes) 751 752 // Get rid of Convert ops for pointer arithmetic on unsafe.Pointer. 753 (Convert (Add64 (Convert ptr mem) off) mem) -> (Add64 ptr off) 754 (Convert (Convert ptr mem) mem) -> ptr 755 756 // Decompose compound argument values 757 (Arg {n} [off]) && v.Type.IsString() -> 758 (StringMake 759 (Arg <typ.BytePtr> {n} [off]) 760 (Arg <typ.Int> {n} [off+config.PtrSize])) 761 762 (Arg {n} [off]) && v.Type.IsSlice() -> 763 (SliceMake 764 (Arg <v.Type.ElemType().PtrTo()> {n} [off]) 765 (Arg <typ.Int> {n} [off+config.PtrSize]) 766 (Arg <typ.Int> {n} [off+2*config.PtrSize])) 767 768 (Arg {n} [off]) && v.Type.IsInterface() -> 769 (IMake 770 (Arg <typ.BytePtr> {n} [off]) 771 (Arg <typ.BytePtr> {n} [off+config.PtrSize])) 772 773 (Arg {n} [off]) && v.Type.IsComplex() && v.Type.Size() == 16 -> 774 (ComplexMake 775 (Arg <typ.Float64> {n} [off]) 776 (Arg <typ.Float64> {n} [off+8])) 777 778 (Arg {n} [off]) && v.Type.IsComplex() && v.Type.Size() == 8 -> 779 (ComplexMake 780 (Arg <typ.Float32> {n} [off]) 781 (Arg <typ.Float32> {n} [off+4])) 782 783 (Arg <t>) && t.IsStruct() && t.NumFields() == 0 && fe.CanSSA(t) -> 784 (StructMake0) 785 (Arg <t> {n} [off]) && t.IsStruct() && t.NumFields() == 1 && fe.CanSSA(t) -> 786 (StructMake1 787 (Arg <t.FieldType(0)> {n} [off+t.FieldOff(0)])) 788 (Arg <t> {n} [off]) && t.IsStruct() && t.NumFields() == 2 && fe.CanSSA(t) -> 789 (StructMake2 790 (Arg <t.FieldType(0)> {n} [off+t.FieldOff(0)]) 791 (Arg <t.FieldType(1)> {n} [off+t.FieldOff(1)])) 792 (Arg <t> {n} [off]) && t.IsStruct() && t.NumFields() == 3 && fe.CanSSA(t) -> 793 (StructMake3 794 (Arg <t.FieldType(0)> {n} [off+t.FieldOff(0)]) 795 (Arg <t.FieldType(1)> {n} [off+t.FieldOff(1)]) 796 (Arg <t.FieldType(2)> {n} [off+t.FieldOff(2)])) 797 (Arg <t> {n} [off]) && t.IsStruct() && t.NumFields() == 4 && fe.CanSSA(t) -> 798 (StructMake4 799 (Arg <t.FieldType(0)> {n} [off+t.FieldOff(0)]) 800 (Arg <t.FieldType(1)> {n} [off+t.FieldOff(1)]) 801 (Arg <t.FieldType(2)> {n} [off+t.FieldOff(2)]) 802 (Arg <t.FieldType(3)> {n} [off+t.FieldOff(3)])) 803 804 (Arg <t>) && t.IsArray() && t.NumElem() == 0 -> 805 (ArrayMake0) 806 (Arg <t> {n} [off]) && t.IsArray() && t.NumElem() == 1 && fe.CanSSA(t) -> 807 (ArrayMake1 (Arg <t.ElemType()> {n} [off])) 808 809 // strength reduction of divide by a constant. 810 // See ../magic.go for a detailed description of these algorithms. 811 812 // Unsigned divide by power of 2. Strength reduce to a shift. 813 (Div8u n (Const8 [c])) && isPowerOfTwo(c&0xff) -> (Rsh8Ux64 n (Const64 <typ.UInt64> [log2(c&0xff)])) 814 (Div16u n (Const16 [c])) && isPowerOfTwo(c&0xffff) -> (Rsh16Ux64 n (Const64 <typ.UInt64> [log2(c&0xffff)])) 815 (Div32u n (Const32 [c])) && isPowerOfTwo(c&0xffffffff) -> (Rsh32Ux64 n (Const64 <typ.UInt64> [log2(c&0xffffffff)])) 816 (Div64u n (Const64 [c])) && isPowerOfTwo(c) -> (Rsh64Ux64 n (Const64 <typ.UInt64> [log2(c)])) 817 (Div64u n (Const64 [-1<<63])) -> (Rsh64Ux64 n (Const64 <typ.UInt64> [63])) 818 819 // Signed non-negative divide by power of 2. 820 (Div8 n (Const8 [c])) && isNonNegative(n) && isPowerOfTwo(c&0xff) -> (Rsh8Ux64 n (Const64 <typ.UInt64> [log2(c&0xff)])) 821 (Div16 n (Const16 [c])) && isNonNegative(n) && isPowerOfTwo(c&0xffff) -> (Rsh16Ux64 n (Const64 <typ.UInt64> [log2(c&0xffff)])) 822 (Div32 n (Const32 [c])) && isNonNegative(n) && isPowerOfTwo(c&0xffffffff) -> (Rsh32Ux64 n (Const64 <typ.UInt64> [log2(c&0xffffffff)])) 823 (Div64 n (Const64 [c])) && isNonNegative(n) && isPowerOfTwo(c) -> (Rsh64Ux64 n (Const64 <typ.UInt64> [log2(c)])) 824 (Div64 n (Const64 [-1<<63])) && isNonNegative(n) -> (Const64 [0]) 825 826 // Unsigned divide, not a power of 2. Strength reduce to a multiply. 827 // For 8-bit divides, we just do a direct 9-bit by 8-bit multiply. 828 (Div8u x (Const8 [c])) && umagicOK(8, c) -> 829 (Trunc32to8 830 (Rsh32Ux64 <typ.UInt32> 831 (Mul32 <typ.UInt32> 832 (Const32 <typ.UInt32> [int64(1<<8+umagic(8,c).m)]) 833 (ZeroExt8to32 x)) 834 (Const64 <typ.UInt64> [8+umagic(8,c).s]))) 835 836 // For 16-bit divides on 64-bit machines, we do a direct 17-bit by 16-bit multiply. 837 (Div16u x (Const16 [c])) && umagicOK(16, c) && config.RegSize == 8 -> 838 (Trunc64to16 839 (Rsh64Ux64 <typ.UInt64> 840 (Mul64 <typ.UInt64> 841 (Const64 <typ.UInt64> [int64(1<<16+umagic(16,c).m)]) 842 (ZeroExt16to64 x)) 843 (Const64 <typ.UInt64> [16+umagic(16,c).s]))) 844 845 // For 16-bit divides on 32-bit machines 846 (Div16u x (Const16 [c])) && umagicOK(16, c) && config.RegSize == 4 && umagic(16,c).m&1 == 0 -> 847 (Trunc32to16 848 (Rsh32Ux64 <typ.UInt32> 849 (Mul32 <typ.UInt32> 850 (Const32 <typ.UInt32> [int64(1<<15+umagic(16,c).m/2)]) 851 (ZeroExt16to32 x)) 852 (Const64 <typ.UInt64> [16+umagic(16,c).s-1]))) 853 (Div16u x (Const16 [c])) && umagicOK(16, c) && config.RegSize == 4 && c&1 == 0 -> 854 (Trunc32to16 855 (Rsh32Ux64 <typ.UInt32> 856 (Mul32 <typ.UInt32> 857 (Const32 <typ.UInt32> [int64(1<<15+(umagic(16,c).m+1)/2)]) 858 (Rsh32Ux64 <typ.UInt32> (ZeroExt16to32 x) (Const64 <typ.UInt64> [1]))) 859 (Const64 <typ.UInt64> [16+umagic(16,c).s-2]))) 860 (Div16u x (Const16 [c])) && umagicOK(16, c) && config.RegSize == 4 -> 861 (Trunc32to16 862 (Rsh32Ux64 <typ.UInt32> 863 (Avg32u 864 (Lsh32x64 <typ.UInt32> (ZeroExt16to32 x) (Const64 <typ.UInt64> [16])) 865 (Mul32 <typ.UInt32> 866 (Const32 <typ.UInt32> [int64(umagic(16,c).m)]) 867 (ZeroExt16to32 x))) 868 (Const64 <typ.UInt64> [16+umagic(16,c).s-1]))) 869 870 // For 32-bit divides on 32-bit machines 871 (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 4 && umagic(32,c).m&1 == 0 -> 872 (Rsh32Ux64 <typ.UInt32> 873 (Hmul32u <typ.UInt32> 874 (Const32 <typ.UInt32> [int64(int32(1<<31+umagic(32,c).m/2))]) 875 x) 876 (Const64 <typ.UInt64> [umagic(32,c).s-1])) 877 (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 4 && c&1 == 0 -> 878 (Rsh32Ux64 <typ.UInt32> 879 (Hmul32u <typ.UInt32> 880 (Const32 <typ.UInt32> [int64(int32(1<<31+(umagic(32,c).m+1)/2))]) 881 (Rsh32Ux64 <typ.UInt32> x (Const64 <typ.UInt64> [1]))) 882 (Const64 <typ.UInt64> [umagic(32,c).s-2])) 883 (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 4 -> 884 (Rsh32Ux64 <typ.UInt32> 885 (Avg32u 886 x 887 (Hmul32u <typ.UInt32> 888 (Const32 <typ.UInt32> [int64(int32(umagic(32,c).m))]) 889 x)) 890 (Const64 <typ.UInt64> [umagic(32,c).s-1])) 891 892 // For 32-bit divides on 64-bit machines 893 // We'll use a regular (non-hi) multiply for this case. 894 (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 8 && umagic(32,c).m&1 == 0 -> 895 (Trunc64to32 896 (Rsh64Ux64 <typ.UInt64> 897 (Mul64 <typ.UInt64> 898 (Const64 <typ.UInt64> [int64(1<<31+umagic(32,c).m/2)]) 899 (ZeroExt32to64 x)) 900 (Const64 <typ.UInt64> [32+umagic(32,c).s-1]))) 901 (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 8 && c&1 == 0 -> 902 (Trunc64to32 903 (Rsh64Ux64 <typ.UInt64> 904 (Mul64 <typ.UInt64> 905 (Const64 <typ.UInt64> [int64(1<<31+(umagic(32,c).m+1)/2)]) 906 (Rsh64Ux64 <typ.UInt64> (ZeroExt32to64 x) (Const64 <typ.UInt64> [1]))) 907 (Const64 <typ.UInt64> [32+umagic(32,c).s-2]))) 908 (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 8 -> 909 (Trunc64to32 910 (Rsh64Ux64 <typ.UInt64> 911 (Avg64u 912 (Lsh64x64 <typ.UInt64> (ZeroExt32to64 x) (Const64 <typ.UInt64> [32])) 913 (Mul64 <typ.UInt64> 914 (Const64 <typ.UInt32> [int64(umagic(32,c).m)]) 915 (ZeroExt32to64 x))) 916 (Const64 <typ.UInt64> [32+umagic(32,c).s-1]))) 917 918 // For 64-bit divides on 64-bit machines 919 // (64-bit divides on 32-bit machines are lowered to a runtime call by the walk pass.) 920 (Div64u x (Const64 [c])) && umagicOK(64, c) && config.RegSize == 8 && umagic(64,c).m&1 == 0 -> 921 (Rsh64Ux64 <typ.UInt64> 922 (Hmul64u <typ.UInt64> 923 (Const64 <typ.UInt64> [int64(1<<63+umagic(64,c).m/2)]) 924 x) 925 (Const64 <typ.UInt64> [umagic(64,c).s-1])) 926 (Div64u x (Const64 [c])) && umagicOK(64, c) && config.RegSize == 8 && c&1 == 0 -> 927 (Rsh64Ux64 <typ.UInt64> 928 (Hmul64u <typ.UInt64> 929 (Const64 <typ.UInt64> [int64(1<<63+(umagic(64,c).m+1)/2)]) 930 (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [1]))) 931 (Const64 <typ.UInt64> [umagic(64,c).s-2])) 932 (Div64u x (Const64 [c])) && umagicOK(64, c) && config.RegSize == 8 -> 933 (Rsh64Ux64 <typ.UInt64> 934 (Avg64u 935 x 936 (Hmul64u <typ.UInt64> 937 (Const64 <typ.UInt64> [int64(umagic(64,c).m)]) 938 x)) 939 (Const64 <typ.UInt64> [umagic(64,c).s-1])) 940 941 // Signed divide by a negative constant. Rewrite to divide by a positive constant. 942 (Div8 <t> n (Const8 [c])) && c < 0 && c != -1<<7 -> (Neg8 (Div8 <t> n (Const8 <t> [-c]))) 943 (Div16 <t> n (Const16 [c])) && c < 0 && c != -1<<15 -> (Neg16 (Div16 <t> n (Const16 <t> [-c]))) 944 (Div32 <t> n (Const32 [c])) && c < 0 && c != -1<<31 -> (Neg32 (Div32 <t> n (Const32 <t> [-c]))) 945 (Div64 <t> n (Const64 [c])) && c < 0 && c != -1<<63 -> (Neg64 (Div64 <t> n (Const64 <t> [-c]))) 946 947 // Dividing by the most-negative number. Result is always 0 except 948 // if the input is also the most-negative number. 949 // We can detect that using the sign bit of x & -x. 950 (Div8 <t> x (Const8 [-1<<7 ])) -> (Rsh8Ux64 (And8 <t> x (Neg8 <t> x)) (Const64 <typ.UInt64> [7 ])) 951 (Div16 <t> x (Const16 [-1<<15])) -> (Rsh16Ux64 (And16 <t> x (Neg16 <t> x)) (Const64 <typ.UInt64> [15])) 952 (Div32 <t> x (Const32 [-1<<31])) -> (Rsh32Ux64 (And32 <t> x (Neg32 <t> x)) (Const64 <typ.UInt64> [31])) 953 (Div64 <t> x (Const64 [-1<<63])) -> (Rsh64Ux64 (And64 <t> x (Neg64 <t> x)) (Const64 <typ.UInt64> [63])) 954 955 // Signed divide by power of 2. 956 // n / c = n >> log(c) if n >= 0 957 // = (n+c-1) >> log(c) if n < 0 958 // We conditionally add c-1 by adding n>>63>>(64-log(c)) (first shift signed, second shift unsigned). 959 (Div8 <t> n (Const8 [c])) && isPowerOfTwo(c) -> 960 (Rsh8x64 961 (Add8 <t> n (Rsh8Ux64 <t> (Rsh8x64 <t> n (Const64 <typ.UInt64> [ 7])) (Const64 <typ.UInt64> [ 8-log2(c)]))) 962 (Const64 <typ.UInt64> [log2(c)])) 963 (Div16 <t> n (Const16 [c])) && isPowerOfTwo(c) -> 964 (Rsh16x64 965 (Add16 <t> n (Rsh16Ux64 <t> (Rsh16x64 <t> n (Const64 <typ.UInt64> [15])) (Const64 <typ.UInt64> [16-log2(c)]))) 966 (Const64 <typ.UInt64> [log2(c)])) 967 (Div32 <t> n (Const32 [c])) && isPowerOfTwo(c) -> 968 (Rsh32x64 969 (Add32 <t> n (Rsh32Ux64 <t> (Rsh32x64 <t> n (Const64 <typ.UInt64> [31])) (Const64 <typ.UInt64> [32-log2(c)]))) 970 (Const64 <typ.UInt64> [log2(c)])) 971 (Div64 <t> n (Const64 [c])) && isPowerOfTwo(c) -> 972 (Rsh64x64 973 (Add64 <t> n (Rsh64Ux64 <t> (Rsh64x64 <t> n (Const64 <typ.UInt64> [63])) (Const64 <typ.UInt64> [64-log2(c)]))) 974 (Const64 <typ.UInt64> [log2(c)])) 975 976 // Signed divide, not a power of 2. Strength reduce to a multiply. 977 (Div8 <t> x (Const8 [c])) && smagicOK(8,c) -> 978 (Sub8 <t> 979 (Rsh32x64 <t> 980 (Mul32 <typ.UInt32> 981 (Const32 <typ.UInt32> [int64(smagic(8,c).m)]) 982 (SignExt8to32 x)) 983 (Const64 <typ.UInt64> [8+smagic(8,c).s])) 984 (Rsh32x64 <t> 985 (SignExt8to32 x) 986 (Const64 <typ.UInt64> [31]))) 987 (Div16 <t> x (Const16 [c])) && smagicOK(16,c) -> 988 (Sub16 <t> 989 (Rsh32x64 <t> 990 (Mul32 <typ.UInt32> 991 (Const32 <typ.UInt32> [int64(smagic(16,c).m)]) 992 (SignExt16to32 x)) 993 (Const64 <typ.UInt64> [16+smagic(16,c).s])) 994 (Rsh32x64 <t> 995 (SignExt16to32 x) 996 (Const64 <typ.UInt64> [31]))) 997 (Div32 <t> x (Const32 [c])) && smagicOK(32,c) && config.RegSize == 8 -> 998 (Sub32 <t> 999 (Rsh64x64 <t> 1000 (Mul64 <typ.UInt64> 1001 (Const64 <typ.UInt64> [int64(smagic(32,c).m)]) 1002 (SignExt32to64 x)) 1003 (Const64 <typ.UInt64> [32+smagic(32,c).s])) 1004 (Rsh64x64 <t> 1005 (SignExt32to64 x) 1006 (Const64 <typ.UInt64> [63]))) 1007 (Div32 <t> x (Const32 [c])) && smagicOK(32,c) && config.RegSize == 4 && smagic(32,c).m&1 == 0 -> 1008 (Sub32 <t> 1009 (Rsh32x64 <t> 1010 (Hmul32 <t> 1011 (Const32 <typ.UInt32> [int64(int32(smagic(32,c).m/2))]) 1012 x) 1013 (Const64 <typ.UInt64> [smagic(32,c).s-1])) 1014 (Rsh32x64 <t> 1015 x 1016 (Const64 <typ.UInt64> [31]))) 1017 (Div32 <t> x (Const32 [c])) && smagicOK(32,c) && config.RegSize == 4 && smagic(32,c).m&1 != 0 -> 1018 (Sub32 <t> 1019 (Rsh32x64 <t> 1020 (Add32 <t> 1021 (Hmul32 <t> 1022 (Const32 <typ.UInt32> [int64(int32(smagic(32,c).m))]) 1023 x) 1024 x) 1025 (Const64 <typ.UInt64> [smagic(32,c).s])) 1026 (Rsh32x64 <t> 1027 x 1028 (Const64 <typ.UInt64> [31]))) 1029 (Div64 <t> x (Const64 [c])) && smagicOK(64,c) && smagic(64,c).m&1 == 0 -> 1030 (Sub64 <t> 1031 (Rsh64x64 <t> 1032 (Hmul64 <t> 1033 (Const64 <typ.UInt64> [int64(smagic(64,c).m/2)]) 1034 x) 1035 (Const64 <typ.UInt64> [smagic(64,c).s-1])) 1036 (Rsh64x64 <t> 1037 x 1038 (Const64 <typ.UInt64> [63]))) 1039 (Div64 <t> x (Const64 [c])) && smagicOK(64,c) && smagic(64,c).m&1 != 0 -> 1040 (Sub64 <t> 1041 (Rsh64x64 <t> 1042 (Add64 <t> 1043 (Hmul64 <t> 1044 (Const64 <typ.UInt64> [int64(smagic(64,c).m)]) 1045 x) 1046 x) 1047 (Const64 <typ.UInt64> [smagic(64,c).s])) 1048 (Rsh64x64 <t> 1049 x 1050 (Const64 <typ.UInt64> [63]))) 1051 1052 // Unsigned mod by power of 2 constant. 1053 (Mod8u <t> n (Const8 [c])) && isPowerOfTwo(c&0xff) -> (And8 n (Const8 <t> [(c&0xff)-1])) 1054 (Mod16u <t> n (Const16 [c])) && isPowerOfTwo(c&0xffff) -> (And16 n (Const16 <t> [(c&0xffff)-1])) 1055 (Mod32u <t> n (Const32 [c])) && isPowerOfTwo(c&0xffffffff) -> (And32 n (Const32 <t> [(c&0xffffffff)-1])) 1056 (Mod64u <t> n (Const64 [c])) && isPowerOfTwo(c) -> (And64 n (Const64 <t> [c-1])) 1057 (Mod64u <t> n (Const64 [-1<<63])) -> (And64 n (Const64 <t> [1<<63-1])) 1058 1059 // Signed non-negative mod by power of 2 constant. 1060 (Mod8 <t> n (Const8 [c])) && isNonNegative(n) && isPowerOfTwo(c&0xff) -> (And8 n (Const8 <t> [(c&0xff)-1])) 1061 (Mod16 <t> n (Const16 [c])) && isNonNegative(n) && isPowerOfTwo(c&0xffff) -> (And16 n (Const16 <t> [(c&0xffff)-1])) 1062 (Mod32 <t> n (Const32 [c])) && isNonNegative(n) && isPowerOfTwo(c&0xffffffff) -> (And32 n (Const32 <t> [(c&0xffffffff)-1])) 1063 (Mod64 <t> n (Const64 [c])) && isNonNegative(n) && isPowerOfTwo(c) -> (And64 n (Const64 <t> [c-1])) 1064 (Mod64 n (Const64 [-1<<63])) && isNonNegative(n) -> n 1065 1066 // Signed mod by negative constant. 1067 (Mod8 <t> n (Const8 [c])) && c < 0 && c != -1<<7 -> (Mod8 <t> n (Const8 <t> [-c])) 1068 (Mod16 <t> n (Const16 [c])) && c < 0 && c != -1<<15 -> (Mod16 <t> n (Const16 <t> [-c])) 1069 (Mod32 <t> n (Const32 [c])) && c < 0 && c != -1<<31 -> (Mod32 <t> n (Const32 <t> [-c])) 1070 (Mod64 <t> n (Const64 [c])) && c < 0 && c != -1<<63 -> (Mod64 <t> n (Const64 <t> [-c])) 1071 1072 // All other mods by constants, do A%B = A-(A/B*B). 1073 // This implements % with two * and a bunch of ancillary ops. 1074 // One of the * is free if the user's code also computes A/B. 1075 (Mod8 <t> x (Const8 [c])) && x.Op != OpConst8 && (c > 0 || c == -1<<7) 1076 -> (Sub8 x (Mul8 <t> (Div8 <t> x (Const8 <t> [c])) (Const8 <t> [c]))) 1077 (Mod16 <t> x (Const16 [c])) && x.Op != OpConst16 && (c > 0 || c == -1<<15) 1078 -> (Sub16 x (Mul16 <t> (Div16 <t> x (Const16 <t> [c])) (Const16 <t> [c]))) 1079 (Mod32 <t> x (Const32 [c])) && x.Op != OpConst32 && (c > 0 || c == -1<<31) 1080 -> (Sub32 x (Mul32 <t> (Div32 <t> x (Const32 <t> [c])) (Const32 <t> [c]))) 1081 (Mod64 <t> x (Const64 [c])) && x.Op != OpConst64 && (c > 0 || c == -1<<63) 1082 -> (Sub64 x (Mul64 <t> (Div64 <t> x (Const64 <t> [c])) (Const64 <t> [c]))) 1083 (Mod8u <t> x (Const8 [c])) && x.Op != OpConst8 && c > 0 && umagicOK(8 ,c) 1084 -> (Sub8 x (Mul8 <t> (Div8u <t> x (Const8 <t> [c])) (Const8 <t> [c]))) 1085 (Mod16u <t> x (Const16 [c])) && x.Op != OpConst16 && c > 0 && umagicOK(16,c) 1086 -> (Sub16 x (Mul16 <t> (Div16u <t> x (Const16 <t> [c])) (Const16 <t> [c]))) 1087 (Mod32u <t> x (Const32 [c])) && x.Op != OpConst32 && c > 0 && umagicOK(32,c) 1088 -> (Sub32 x (Mul32 <t> (Div32u <t> x (Const32 <t> [c])) (Const32 <t> [c]))) 1089 (Mod64u <t> x (Const64 [c])) && x.Op != OpConst64 && c > 0 && umagicOK(64,c) 1090 -> (Sub64 x (Mul64 <t> (Div64u <t> x (Const64 <t> [c])) (Const64 <t> [c]))) 1091 1092 // Reassociate expressions involving 1093 // constants such that constants come first, 1094 // exposing obvious constant-folding opportunities. 1095 // Reassociate (op (op y C) x) to (op C (op x y)) or similar, where C 1096 // is constant, which pushes constants to the outside 1097 // of the expression. At that point, any constant-folding 1098 // opportunities should be obvious. 1099 1100 // x + (C + z) -> C + (x + z) 1101 (Add64 (Add64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Add64 i (Add64 <t> z x)) 1102 (Add32 (Add32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Add32 i (Add32 <t> z x)) 1103 (Add16 (Add16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Add16 i (Add16 <t> z x)) 1104 (Add8 (Add8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Add8 i (Add8 <t> z x)) 1105 1106 // x + (C - z) -> C + (x - z) 1107 (Add64 (Sub64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Add64 i (Sub64 <t> x z)) 1108 (Add32 (Sub32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Add32 i (Sub32 <t> x z)) 1109 (Add16 (Sub16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Add16 i (Sub16 <t> x z)) 1110 (Add8 (Sub8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Add8 i (Sub8 <t> x z)) 1111 (Add64 x (Sub64 i:(Const64 <t>) z)) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Add64 i (Sub64 <t> x z)) 1112 (Add32 x (Sub32 i:(Const32 <t>) z)) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Add32 i (Sub32 <t> x z)) 1113 (Add16 x (Sub16 i:(Const16 <t>) z)) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Add16 i (Sub16 <t> x z)) 1114 (Add8 x (Sub8 i:(Const8 <t>) z)) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Add8 i (Sub8 <t> x z)) 1115 1116 // x + (z - C) -> (x + z) - C 1117 (Add64 (Sub64 z i:(Const64 <t>)) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Sub64 (Add64 <t> x z) i) 1118 (Add32 (Sub32 z i:(Const32 <t>)) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Sub32 (Add32 <t> x z) i) 1119 (Add16 (Sub16 z i:(Const16 <t>)) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Sub16 (Add16 <t> x z) i) 1120 (Add8 (Sub8 z i:(Const8 <t>)) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Sub8 (Add8 <t> x z) i) 1121 (Add64 x (Sub64 z i:(Const64 <t>))) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Sub64 (Add64 <t> x z) i) 1122 (Add32 x (Sub32 z i:(Const32 <t>))) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Sub32 (Add32 <t> x z) i) 1123 (Add16 x (Sub16 z i:(Const16 <t>))) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Sub16 (Add16 <t> x z) i) 1124 (Add8 x (Sub8 z i:(Const8 <t>))) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Sub8 (Add8 <t> x z) i) 1125 1126 // x - (C - z) -> x + (z - C) -> (x + z) - C 1127 (Sub64 x (Sub64 i:(Const64 <t>) z)) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Sub64 (Add64 <t> x z) i) 1128 (Sub32 x (Sub32 i:(Const32 <t>) z)) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Sub32 (Add32 <t> x z) i) 1129 (Sub16 x (Sub16 i:(Const16 <t>) z)) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Sub16 (Add16 <t> x z) i) 1130 (Sub8 x (Sub8 i:(Const8 <t>) z)) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Sub8 (Add8 <t> x z) i) 1131 1132 // x - (z - C) -> x + (C - z) -> (x - z) + C 1133 (Sub64 x (Sub64 z i:(Const64 <t>))) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Add64 i (Sub64 <t> x z)) 1134 (Sub32 x (Sub32 z i:(Const32 <t>))) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Add32 i (Sub32 <t> x z)) 1135 (Sub16 x (Sub16 z i:(Const16 <t>))) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Add16 i (Sub16 <t> x z)) 1136 (Sub8 x (Sub8 z i:(Const8 <t>))) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Add8 i (Sub8 <t> x z)) 1137 1138 // x & (C & z) -> C & (x & z) 1139 (And64 (And64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (And64 i (And64 <t> z x)) 1140 (And32 (And32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (And32 i (And32 <t> z x)) 1141 (And16 (And16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (And16 i (And16 <t> z x)) 1142 (And8 (And8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (And8 i (And8 <t> z x)) 1143 1144 // x | (C | z) -> C | (x | z) 1145 (Or64 (Or64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Or64 i (Or64 <t> z x)) 1146 (Or32 (Or32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Or32 i (Or32 <t> z x)) 1147 (Or16 (Or16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Or16 i (Or16 <t> z x)) 1148 (Or8 (Or8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Or8 i (Or8 <t> z x)) 1149 1150 // x ^ (C ^ z) -> C ^ (x ^ z) 1151 (Xor64 (Xor64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Xor64 i (Xor64 <t> z x)) 1152 (Xor32 (Xor32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Xor32 i (Xor32 <t> z x)) 1153 (Xor16 (Xor16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Xor16 i (Xor16 <t> z x)) 1154 (Xor8 (Xor8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Xor8 i (Xor8 <t> z x)) 1155 1156 // C + (D + x) -> (C + D) + x 1157 (Add64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) -> (Add64 (Const64 <t> [c+d]) x) 1158 (Add32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) -> (Add32 (Const32 <t> [int64(int32(c+d))]) x) 1159 (Add16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) -> (Add16 (Const16 <t> [int64(int16(c+d))]) x) 1160 (Add8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) -> (Add8 (Const8 <t> [int64(int8(c+d))]) x) 1161 1162 // C + (D - x) -> (C + D) - x 1163 (Add64 (Const64 <t> [c]) (Sub64 (Const64 <t> [d]) x)) -> (Sub64 (Const64 <t> [c+d]) x) 1164 (Add32 (Const32 <t> [c]) (Sub32 (Const32 <t> [d]) x)) -> (Sub32 (Const32 <t> [int64(int32(c+d))]) x) 1165 (Add16 (Const16 <t> [c]) (Sub16 (Const16 <t> [d]) x)) -> (Sub16 (Const16 <t> [int64(int16(c+d))]) x) 1166 (Add8 (Const8 <t> [c]) (Sub8 (Const8 <t> [d]) x)) -> (Sub8 (Const8 <t> [int64(int8(c+d))]) x) 1167 1168 // C + (x - D) -> (C - D) + x 1169 (Add64 (Const64 <t> [c]) (Sub64 x (Const64 <t> [d]))) -> (Add64 (Const64 <t> [c-d]) x) 1170 (Add32 (Const32 <t> [c]) (Sub32 x (Const32 <t> [d]))) -> (Add32 (Const32 <t> [int64(int32(c-d))]) x) 1171 (Add16 (Const16 <t> [c]) (Sub16 x (Const16 <t> [d]))) -> (Add16 (Const16 <t> [int64(int16(c-d))]) x) 1172 (Add8 (Const8 <t> [c]) (Sub8 x (Const8 <t> [d]))) -> (Add8 (Const8 <t> [int64(int8(c-d))]) x) 1173 1174 // C - (x - D) -> (C + D) - x 1175 (Sub64 (Const64 <t> [c]) (Sub64 x (Const64 <t> [d]))) -> (Sub64 (Const64 <t> [c+d]) x) 1176 (Sub32 (Const32 <t> [c]) (Sub32 x (Const32 <t> [d]))) -> (Sub32 (Const32 <t> [int64(int32(c+d))]) x) 1177 (Sub16 (Const16 <t> [c]) (Sub16 x (Const16 <t> [d]))) -> (Sub16 (Const16 <t> [int64(int16(c+d))]) x) 1178 (Sub8 (Const8 <t> [c]) (Sub8 x (Const8 <t> [d]))) -> (Sub8 (Const8 <t> [int64(int8(c+d))]) x) 1179 1180 // C - (D - x) -> (C - D) + x 1181 (Sub64 (Const64 <t> [c]) (Sub64 (Const64 <t> [d]) x)) -> (Add64 (Const64 <t> [c-d]) x) 1182 (Sub32 (Const32 <t> [c]) (Sub32 (Const32 <t> [d]) x)) -> (Add32 (Const32 <t> [int64(int32(c-d))]) x) 1183 (Sub16 (Const16 <t> [c]) (Sub16 (Const16 <t> [d]) x)) -> (Add16 (Const16 <t> [int64(int16(c-d))]) x) 1184 (Sub8 (Const8 <t> [c]) (Sub8 (Const8 <t> [d]) x)) -> (Add8 (Const8 <t> [int64(int8(c-d))]) x) 1185 1186 // C & (D & x) -> (C & D) & x 1187 (And64 (Const64 <t> [c]) (And64 (Const64 <t> [d]) x)) -> (And64 (Const64 <t> [c&d]) x) 1188 (And32 (Const32 <t> [c]) (And32 (Const32 <t> [d]) x)) -> (And32 (Const32 <t> [int64(int32(c&d))]) x) 1189 (And16 (Const16 <t> [c]) (And16 (Const16 <t> [d]) x)) -> (And16 (Const16 <t> [int64(int16(c&d))]) x) 1190 (And8 (Const8 <t> [c]) (And8 (Const8 <t> [d]) x)) -> (And8 (Const8 <t> [int64(int8(c&d))]) x) 1191 1192 // C | (D | x) -> (C | D) | x 1193 (Or64 (Const64 <t> [c]) (Or64 (Const64 <t> [d]) x)) -> (Or64 (Const64 <t> [c|d]) x) 1194 (Or32 (Const32 <t> [c]) (Or32 (Const32 <t> [d]) x)) -> (Or32 (Const32 <t> [int64(int32(c|d))]) x) 1195 (Or16 (Const16 <t> [c]) (Or16 (Const16 <t> [d]) x)) -> (Or16 (Const16 <t> [int64(int16(c|d))]) x) 1196 (Or8 (Const8 <t> [c]) (Or8 (Const8 <t> [d]) x)) -> (Or8 (Const8 <t> [int64(int8(c|d))]) x) 1197 1198 // C ^ (D ^ x) -> (C ^ D) ^ x 1199 (Xor64 (Const64 <t> [c]) (Xor64 (Const64 <t> [d]) x)) -> (Xor64 (Const64 <t> [c^d]) x) 1200 (Xor32 (Const32 <t> [c]) (Xor32 (Const32 <t> [d]) x)) -> (Xor32 (Const32 <t> [int64(int32(c^d))]) x) 1201 (Xor16 (Const16 <t> [c]) (Xor16 (Const16 <t> [d]) x)) -> (Xor16 (Const16 <t> [int64(int16(c^d))]) x) 1202 (Xor8 (Const8 <t> [c]) (Xor8 (Const8 <t> [d]) x)) -> (Xor8 (Const8 <t> [int64(int8(c^d))]) x) 1203 1204 // C * (D * x) = (C * D) * x 1205 (Mul64 (Const64 <t> [c]) (Mul64 (Const64 <t> [d]) x)) -> (Mul64 (Const64 <t> [c*d]) x) 1206 (Mul32 (Const32 <t> [c]) (Mul32 (Const32 <t> [d]) x)) -> (Mul32 (Const32 <t> [int64(int32(c*d))]) x) 1207 (Mul16 (Const16 <t> [c]) (Mul16 (Const16 <t> [d]) x)) -> (Mul16 (Const16 <t> [int64(int16(c*d))]) x) 1208 (Mul8 (Const8 <t> [c]) (Mul8 (Const8 <t> [d]) x)) -> (Mul8 (Const8 <t> [int64(int8(c*d))]) x) 1209 1210 // floating point optimizations 1211 (Add(32|64)F x (Const(32|64)F [0])) -> x 1212 (Sub(32|64)F x (Const(32|64)F [0])) -> x 1213 1214 (Mul(32|64)F x (Const(32|64)F [f2i(1)])) -> x 1215 (Mul32F x (Const32F [f2i(-1)])) -> (Neg32F x) 1216 (Mul64F x (Const64F [f2i(-1)])) -> (Neg64F x) 1217 (Mul32F x (Const32F [f2i(2)])) -> (Add32F x x) 1218 (Mul64F x (Const64F [f2i(2)])) -> (Add64F x x) 1219 1220 (Div32F x (Const32F <t> [c])) && reciprocalExact32(float32(i2f(c))) -> (Mul32F x (Const32F <t> [f2i(1/i2f(c))])) 1221 (Div64F x (Const64F <t> [c])) && reciprocalExact64(i2f(c)) -> (Mul64F x (Const64F <t> [f2i(1/i2f(c))])) 1222 1223 (Sqrt (Const64F [c])) -> (Const64F [f2i(math.Sqrt(i2f(c)))]) 1224 1225 // recognize runtime.newobject and don't Zero/Nilcheck it 1226 (Zero (Load (OffPtr [c] (SP)) mem) mem) 1227 && mem.Op == OpStaticCall 1228 && isSameSym(mem.Aux, "runtime.newobject") 1229 && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value 1230 -> mem 1231 (Store (Load (OffPtr [c] (SP)) mem) x mem) 1232 && isConstZero(x) 1233 && mem.Op == OpStaticCall 1234 && isSameSym(mem.Aux, "runtime.newobject") 1235 && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value 1236 -> mem 1237 (Store (OffPtr (Load (OffPtr [c] (SP)) mem)) x mem) 1238 && isConstZero(x) 1239 && mem.Op == OpStaticCall 1240 && isSameSym(mem.Aux, "runtime.newobject") 1241 && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value 1242 -> mem 1243 // nil checks just need to rewrite to something useless. 1244 // they will be deadcode eliminated soon afterwards. 1245 (NilCheck (Load (OffPtr [c] (SP)) (StaticCall {sym} _)) _) 1246 && isSameSym(sym, "runtime.newobject") 1247 && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value 1248 && warnRule(fe.Debug_checknil() && v.Pos.Line() > 1, v, "removed nil check") 1249 -> (Invalid) 1250 (NilCheck (OffPtr (Load (OffPtr [c] (SP)) (StaticCall {sym} _))) _) 1251 && isSameSym(sym, "runtime.newobject") 1252 && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value 1253 && warnRule(fe.Debug_checknil() && v.Pos.Line() > 1, v, "removed nil check") 1254 -> (Invalid) 1255 1256 // Address comparison shows up in type assertions. 1257 (EqPtr x x) -> (ConstBool [1]) 1258 (EqPtr (Addr {a} x) (Addr {b} x)) -> (ConstBool [b2i(a == b)]) 1259 1260 // Inline small runtime.memmove calls with constant length. 1261 (StaticCall {sym} s1:(Store _ (Const64 [sz]) s2:(Store _ src s3:(Store {t} _ dst mem)))) 1262 && isSameSym(sym,"runtime.memmove") && s1.Uses == 1 && s2.Uses == 1 && s3.Uses == 1 && isInlinableMemmoveSize(sz,config) 1263 -> (Move {t.(*types.Type).Elem()} [sz] dst src mem) 1264 (StaticCall {sym} s1:(Store _ (Const32 [sz]) s2:(Store _ src s3:(Store {t} _ dst mem)))) 1265 && isSameSym(sym,"runtime.memmove") && s1.Uses == 1 && s2.Uses == 1 && s3.Uses == 1 && isInlinableMemmoveSize(sz,config) 1266 -> (Move {t.(*types.Type).Elem()} [sz] dst src mem) 1267 1268 // De-virtualize interface calls into static calls. 1269 // Note that (ITab (IMake)) doesn't get 1270 // rewritten until after the first opt pass, 1271 // so this rule should trigger reliably. 1272 (InterCall [argsize] (Load (OffPtr [off] (ITab (IMake (Addr {itab} (SB)) _))) _) mem) && devirt(v, itab, off) != nil -> 1273 (StaticCall [argsize] {devirt(v, itab, off)} mem)