github.com/corona10/go@v0.0.0-20180224231303-7a218942be57/src/cmd/compile/internal/ssa/regalloc.go (about)

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Register allocation.
     6  //
     7  // We use a version of a linear scan register allocator. We treat the
     8  // whole function as a single long basic block and run through
     9  // it using a greedy register allocator. Then all merge edges
    10  // (those targeting a block with len(Preds)>1) are processed to
    11  // shuffle data into the place that the target of the edge expects.
    12  //
    13  // The greedy allocator moves values into registers just before they
    14  // are used, spills registers only when necessary, and spills the
    15  // value whose next use is farthest in the future.
    16  //
    17  // The register allocator requires that a block is not scheduled until
    18  // at least one of its predecessors have been scheduled. The most recent
    19  // such predecessor provides the starting register state for a block.
    20  //
    21  // It also requires that there are no critical edges (critical =
    22  // comes from a block with >1 successor and goes to a block with >1
    23  // predecessor).  This makes it easy to add fixup code on merge edges -
    24  // the source of a merge edge has only one successor, so we can add
    25  // fixup code to the end of that block.
    26  
    27  // Spilling
    28  //
    29  // During the normal course of the allocator, we might throw a still-live
    30  // value out of all registers. When that value is subsequently used, we must
    31  // load it from a slot on the stack. We must also issue an instruction to
    32  // initialize that stack location with a copy of v.
    33  //
    34  // pre-regalloc:
    35  //   (1) v = Op ...
    36  //   (2) x = Op ...
    37  //   (3) ... = Op v ...
    38  //
    39  // post-regalloc:
    40  //   (1) v = Op ...    : AX // computes v, store result in AX
    41  //       s = StoreReg v     // spill v to a stack slot
    42  //   (2) x = Op ...    : AX // some other op uses AX
    43  //       c = LoadReg s : CX // restore v from stack slot
    44  //   (3) ... = Op c ...     // use the restored value
    45  //
    46  // Allocation occurs normally until we reach (3) and we realize we have
    47  // a use of v and it isn't in any register. At that point, we allocate
    48  // a spill (a StoreReg) for v. We can't determine the correct place for
    49  // the spill at this point, so we allocate the spill as blockless initially.
    50  // The restore is then generated to load v back into a register so it can
    51  // be used. Subsequent uses of v will use the restored value c instead.
    52  //
    53  // What remains is the question of where to schedule the spill.
    54  // During allocation, we keep track of the dominator of all restores of v.
    55  // The spill of v must dominate that block. The spill must also be issued at
    56  // a point where v is still in a register.
    57  //
    58  // To find the right place, start at b, the block which dominates all restores.
    59  //  - If b is v.Block, then issue the spill right after v.
    60  //    It is known to be in a register at that point, and dominates any restores.
    61  //  - Otherwise, if v is in a register at the start of b,
    62  //    put the spill of v at the start of b.
    63  //  - Otherwise, set b = immediate dominator of b, and repeat.
    64  //
    65  // Phi values are special, as always. We define two kinds of phis, those
    66  // where the merge happens in a register (a "register" phi) and those where
    67  // the merge happens in a stack location (a "stack" phi).
    68  //
    69  // A register phi must have the phi and all of its inputs allocated to the
    70  // same register. Register phis are spilled similarly to regular ops.
    71  //
    72  // A stack phi must have the phi and all of its inputs allocated to the same
    73  // stack location. Stack phis start out life already spilled - each phi
    74  // input must be a store (using StoreReg) at the end of the corresponding
    75  // predecessor block.
    76  //     b1: y = ... : AX        b2: z = ... : BX
    77  //         y2 = StoreReg y         z2 = StoreReg z
    78  //         goto b3                 goto b3
    79  //     b3: x = phi(y2, z2)
    80  // The stack allocator knows that StoreReg args of stack-allocated phis
    81  // must be allocated to the same stack slot as the phi that uses them.
    82  // x is now a spilled value and a restore must appear before its first use.
    83  
    84  // TODO
    85  
    86  // Use an affinity graph to mark two values which should use the
    87  // same register. This affinity graph will be used to prefer certain
    88  // registers for allocation. This affinity helps eliminate moves that
    89  // are required for phi implementations and helps generate allocations
    90  // for 2-register architectures.
    91  
    92  // Note: regalloc generates a not-quite-SSA output. If we have:
    93  //
    94  //             b1: x = ... : AX
    95  //                 x2 = StoreReg x
    96  //                 ... AX gets reused for something else ...
    97  //                 if ... goto b3 else b4
    98  //
    99  //   b3: x3 = LoadReg x2 : BX       b4: x4 = LoadReg x2 : CX
   100  //       ... use x3 ...                 ... use x4 ...
   101  //
   102  //             b2: ... use x3 ...
   103  //
   104  // If b3 is the primary predecessor of b2, then we use x3 in b2 and
   105  // add a x4:CX->BX copy at the end of b4.
   106  // But the definition of x3 doesn't dominate b2.  We should really
   107  // insert a dummy phi at the start of b2 (x5=phi(x3,x4):BX) to keep
   108  // SSA form. For now, we ignore this problem as remaining in strict
   109  // SSA form isn't needed after regalloc. We'll just leave the use
   110  // of x3 not dominated by the definition of x3, and the CX->BX copy
   111  // will have no use (so don't run deadcode after regalloc!).
   112  // TODO: maybe we should introduce these extra phis?
   113  
   114  package ssa
   115  
   116  import (
   117  	"cmd/compile/internal/types"
   118  	"cmd/internal/objabi"
   119  	"cmd/internal/src"
   120  	"fmt"
   121  	"unsafe"
   122  )
   123  
   124  const (
   125  	moveSpills = iota
   126  	logSpills
   127  	regDebug
   128  	stackDebug
   129  )
   130  
   131  // distance is a measure of how far into the future values are used.
   132  // distance is measured in units of instructions.
   133  const (
   134  	likelyDistance   = 1
   135  	normalDistance   = 10
   136  	unlikelyDistance = 100
   137  )
   138  
   139  // regalloc performs register allocation on f. It sets f.RegAlloc
   140  // to the resulting allocation.
   141  func regalloc(f *Func) {
   142  	var s regAllocState
   143  	s.init(f)
   144  	s.regalloc(f)
   145  }
   146  
   147  type register uint8
   148  
   149  const noRegister register = 255
   150  
   151  type regMask uint64
   152  
   153  func (m regMask) String() string {
   154  	s := ""
   155  	for r := register(0); m != 0; r++ {
   156  		if m>>r&1 == 0 {
   157  			continue
   158  		}
   159  		m &^= regMask(1) << r
   160  		if s != "" {
   161  			s += " "
   162  		}
   163  		s += fmt.Sprintf("r%d", r)
   164  	}
   165  	return s
   166  }
   167  
   168  // countRegs returns the number of set bits in the register mask.
   169  func countRegs(r regMask) int {
   170  	n := 0
   171  	for r != 0 {
   172  		n += int(r & 1)
   173  		r >>= 1
   174  	}
   175  	return n
   176  }
   177  
   178  // pickReg picks an arbitrary register from the register mask.
   179  func pickReg(r regMask) register {
   180  	// pick the lowest one
   181  	if r == 0 {
   182  		panic("can't pick a register from an empty set")
   183  	}
   184  	for i := register(0); ; i++ {
   185  		if r&1 != 0 {
   186  			return i
   187  		}
   188  		r >>= 1
   189  	}
   190  }
   191  
   192  type use struct {
   193  	dist int32    // distance from start of the block to a use of a value
   194  	pos  src.XPos // source position of the use
   195  	next *use     // linked list of uses of a value in nondecreasing dist order
   196  }
   197  
   198  // A valState records the register allocation state for a (pre-regalloc) value.
   199  type valState struct {
   200  	regs              regMask // the set of registers holding a Value (usually just one)
   201  	uses              *use    // list of uses in this block
   202  	spill             *Value  // spilled copy of the Value (if any)
   203  	restoreMin        int32   // minimum of all restores' blocks' sdom.entry
   204  	restoreMax        int32   // maximum of all restores' blocks' sdom.exit
   205  	needReg           bool    // cached value of !v.Type.IsMemory() && !v.Type.IsVoid() && !.v.Type.IsFlags()
   206  	rematerializeable bool    // cached value of v.rematerializeable()
   207  }
   208  
   209  type regState struct {
   210  	v *Value // Original (preregalloc) Value stored in this register.
   211  	c *Value // A Value equal to v which is currently in a register.  Might be v or a copy of it.
   212  	// If a register is unused, v==c==nil
   213  }
   214  
   215  type regAllocState struct {
   216  	f *Func
   217  
   218  	sdom        SparseTree
   219  	registers   []Register
   220  	numRegs     register
   221  	SPReg       register
   222  	SBReg       register
   223  	GReg        register
   224  	allocatable regMask
   225  
   226  	// for each block, its primary predecessor.
   227  	// A predecessor of b is primary if it is the closest
   228  	// predecessor that appears before b in the layout order.
   229  	// We record the index in the Preds list where the primary predecessor sits.
   230  	primary []int32
   231  
   232  	// live values at the end of each block.  live[b.ID] is a list of value IDs
   233  	// which are live at the end of b, together with a count of how many instructions
   234  	// forward to the next use.
   235  	live [][]liveInfo
   236  	// desired register assignments at the end of each block.
   237  	// Note that this is a static map computed before allocation occurs. Dynamic
   238  	// register desires (from partially completed allocations) will trump
   239  	// this information.
   240  	desired []desiredState
   241  
   242  	// current state of each (preregalloc) Value
   243  	values []valState
   244  
   245  	// ID of SP, SB values
   246  	sp, sb ID
   247  
   248  	// For each Value, map from its value ID back to the
   249  	// preregalloc Value it was derived from.
   250  	orig []*Value
   251  
   252  	// current state of each register
   253  	regs []regState
   254  
   255  	// registers that contain values which can't be kicked out
   256  	nospill regMask
   257  
   258  	// mask of registers currently in use
   259  	used regMask
   260  
   261  	// mask of registers used in the current instruction
   262  	tmpused regMask
   263  
   264  	// current block we're working on
   265  	curBlock *Block
   266  
   267  	// cache of use records
   268  	freeUseRecords *use
   269  
   270  	// endRegs[blockid] is the register state at the end of each block.
   271  	// encoded as a set of endReg records.
   272  	endRegs [][]endReg
   273  
   274  	// startRegs[blockid] is the register state at the start of merge blocks.
   275  	// saved state does not include the state of phi ops in the block.
   276  	startRegs [][]startReg
   277  
   278  	// spillLive[blockid] is the set of live spills at the end of each block
   279  	spillLive [][]ID
   280  
   281  	// a set of copies we generated to move things around, and
   282  	// whether it is used in shuffle. Unused copies will be deleted.
   283  	copies map[*Value]bool
   284  
   285  	loopnest *loopnest
   286  
   287  	// choose a good order in which to visit blocks for allocation purposes.
   288  	visitOrder []*Block
   289  }
   290  
   291  type endReg struct {
   292  	r register
   293  	v *Value // pre-regalloc value held in this register (TODO: can we use ID here?)
   294  	c *Value // cached version of the value
   295  }
   296  
   297  type startReg struct {
   298  	r   register
   299  	v   *Value   // pre-regalloc value needed in this register
   300  	c   *Value   // cached version of the value
   301  	pos src.XPos // source position of use of this register
   302  }
   303  
   304  // freeReg frees up register r. Any current user of r is kicked out.
   305  func (s *regAllocState) freeReg(r register) {
   306  	v := s.regs[r].v
   307  	if v == nil {
   308  		s.f.Fatalf("tried to free an already free register %d\n", r)
   309  	}
   310  
   311  	// Mark r as unused.
   312  	if s.f.pass.debug > regDebug {
   313  		fmt.Printf("freeReg %s (dump %s/%s)\n", &s.registers[r], v, s.regs[r].c)
   314  	}
   315  	s.regs[r] = regState{}
   316  	s.values[v.ID].regs &^= regMask(1) << r
   317  	s.used &^= regMask(1) << r
   318  }
   319  
   320  // freeRegs frees up all registers listed in m.
   321  func (s *regAllocState) freeRegs(m regMask) {
   322  	for m&s.used != 0 {
   323  		s.freeReg(pickReg(m & s.used))
   324  	}
   325  }
   326  
   327  // setOrig records that c's original value is the same as
   328  // v's original value.
   329  func (s *regAllocState) setOrig(c *Value, v *Value) {
   330  	for int(c.ID) >= len(s.orig) {
   331  		s.orig = append(s.orig, nil)
   332  	}
   333  	if s.orig[c.ID] != nil {
   334  		s.f.Fatalf("orig value set twice %s %s", c, v)
   335  	}
   336  	s.orig[c.ID] = s.orig[v.ID]
   337  }
   338  
   339  // assignReg assigns register r to hold c, a copy of v.
   340  // r must be unused.
   341  func (s *regAllocState) assignReg(r register, v *Value, c *Value) {
   342  	if s.f.pass.debug > regDebug {
   343  		fmt.Printf("assignReg %s %s/%s\n", &s.registers[r], v, c)
   344  	}
   345  	if s.regs[r].v != nil {
   346  		s.f.Fatalf("tried to assign register %d to %s/%s but it is already used by %s", r, v, c, s.regs[r].v)
   347  	}
   348  
   349  	// Update state.
   350  	s.regs[r] = regState{v, c}
   351  	s.values[v.ID].regs |= regMask(1) << r
   352  	s.used |= regMask(1) << r
   353  	s.f.setHome(c, &s.registers[r])
   354  }
   355  
   356  // allocReg chooses a register from the set of registers in mask.
   357  // If there is no unused register, a Value will be kicked out of
   358  // a register to make room.
   359  func (s *regAllocState) allocReg(mask regMask, v *Value) register {
   360  	mask &= s.allocatable
   361  	mask &^= s.nospill
   362  	if mask == 0 {
   363  		s.f.Fatalf("no register available for %s", v)
   364  	}
   365  
   366  	// Pick an unused register if one is available.
   367  	if mask&^s.used != 0 {
   368  		return pickReg(mask &^ s.used)
   369  	}
   370  
   371  	// Pick a value to spill. Spill the value with the
   372  	// farthest-in-the-future use.
   373  	// TODO: Prefer registers with already spilled Values?
   374  	// TODO: Modify preference using affinity graph.
   375  	// TODO: if a single value is in multiple registers, spill one of them
   376  	// before spilling a value in just a single register.
   377  
   378  	// Find a register to spill. We spill the register containing the value
   379  	// whose next use is as far in the future as possible.
   380  	// https://en.wikipedia.org/wiki/Page_replacement_algorithm#The_theoretically_optimal_page_replacement_algorithm
   381  	var r register
   382  	maxuse := int32(-1)
   383  	for t := register(0); t < s.numRegs; t++ {
   384  		if mask>>t&1 == 0 {
   385  			continue
   386  		}
   387  		v := s.regs[t].v
   388  		if n := s.values[v.ID].uses.dist; n > maxuse {
   389  			// v's next use is farther in the future than any value
   390  			// we've seen so far. A new best spill candidate.
   391  			r = t
   392  			maxuse = n
   393  		}
   394  	}
   395  	if maxuse == -1 {
   396  		s.f.Fatalf("couldn't find register to spill")
   397  	}
   398  
   399  	// Try to move it around before kicking out, if there is a free register.
   400  	// We generate a Copy and record it. It will be deleted if never used.
   401  	v2 := s.regs[r].v
   402  	m := s.compatRegs(v2.Type) &^ s.used &^ s.tmpused &^ (regMask(1) << r)
   403  	if m != 0 && !s.values[v2.ID].rematerializeable && countRegs(s.values[v2.ID].regs) == 1 {
   404  		r2 := pickReg(m)
   405  		c := s.curBlock.NewValue1(v2.Pos, OpCopy, v2.Type, s.regs[r].c)
   406  		s.copies[c] = false
   407  		if s.f.pass.debug > regDebug {
   408  			fmt.Printf("copy %s to %s : %s\n", v2, c, &s.registers[r2])
   409  		}
   410  		s.setOrig(c, v2)
   411  		s.assignReg(r2, v2, c)
   412  	}
   413  	s.freeReg(r)
   414  	return r
   415  }
   416  
   417  // makeSpill returns a Value which represents the spilled value of v.
   418  // b is the block in which the spill is used.
   419  func (s *regAllocState) makeSpill(v *Value, b *Block) *Value {
   420  	vi := &s.values[v.ID]
   421  	if vi.spill != nil {
   422  		// Final block not known - keep track of subtree where restores reside.
   423  		vi.restoreMin = min32(vi.restoreMin, s.sdom[b.ID].entry)
   424  		vi.restoreMax = max32(vi.restoreMax, s.sdom[b.ID].exit)
   425  		return vi.spill
   426  	}
   427  	// Make a spill for v. We don't know where we want
   428  	// to put it yet, so we leave it blockless for now.
   429  	spill := s.f.newValueNoBlock(OpStoreReg, v.Type, v.Pos)
   430  	// We also don't know what the spill's arg will be.
   431  	// Leave it argless for now.
   432  	s.setOrig(spill, v)
   433  	vi.spill = spill
   434  	vi.restoreMin = s.sdom[b.ID].entry
   435  	vi.restoreMax = s.sdom[b.ID].exit
   436  	return spill
   437  }
   438  
   439  // allocValToReg allocates v to a register selected from regMask and
   440  // returns the register copy of v. Any previous user is kicked out and spilled
   441  // (if necessary). Load code is added at the current pc. If nospill is set the
   442  // allocated register is marked nospill so the assignment cannot be
   443  // undone until the caller allows it by clearing nospill. Returns a
   444  // *Value which is either v or a copy of v allocated to the chosen register.
   445  func (s *regAllocState) allocValToReg(v *Value, mask regMask, nospill bool, pos src.XPos) *Value {
   446  	vi := &s.values[v.ID]
   447  
   448  	// Check if v is already in a requested register.
   449  	if mask&vi.regs != 0 {
   450  		r := pickReg(mask & vi.regs)
   451  		if s.regs[r].v != v || s.regs[r].c == nil {
   452  			panic("bad register state")
   453  		}
   454  		if nospill {
   455  			s.nospill |= regMask(1) << r
   456  		}
   457  		return s.regs[r].c
   458  	}
   459  
   460  	// Allocate a register.
   461  	r := s.allocReg(mask, v)
   462  
   463  	// Allocate v to the new register.
   464  	var c *Value
   465  	if vi.regs != 0 {
   466  		// Copy from a register that v is already in.
   467  		r2 := pickReg(vi.regs)
   468  		if s.regs[r2].v != v {
   469  			panic("bad register state")
   470  		}
   471  		c = s.curBlock.NewValue1(pos, OpCopy, v.Type, s.regs[r2].c)
   472  	} else if v.rematerializeable() {
   473  		// Rematerialize instead of loading from the spill location.
   474  		c = v.copyIntoWithXPos(s.curBlock, pos)
   475  	} else {
   476  		// Load v from its spill location.
   477  		spill := s.makeSpill(v, s.curBlock)
   478  		if s.f.pass.debug > logSpills {
   479  			s.f.Warnl(vi.spill.Pos, "load spill for %v from %v", v, spill)
   480  		}
   481  		c = s.curBlock.NewValue1(pos, OpLoadReg, v.Type, spill)
   482  	}
   483  	s.setOrig(c, v)
   484  	s.assignReg(r, v, c)
   485  	if nospill {
   486  		s.nospill |= regMask(1) << r
   487  	}
   488  	return c
   489  }
   490  
   491  // isLeaf reports whether f performs any calls.
   492  func isLeaf(f *Func) bool {
   493  	for _, b := range f.Blocks {
   494  		for _, v := range b.Values {
   495  			if opcodeTable[v.Op].call {
   496  				return false
   497  			}
   498  		}
   499  	}
   500  	return true
   501  }
   502  
   503  func (s *regAllocState) init(f *Func) {
   504  	s.f = f
   505  	s.f.RegAlloc = s.f.Cache.locs[:0]
   506  	s.registers = f.Config.registers
   507  	if nr := len(s.registers); nr == 0 || nr > int(noRegister) || nr > int(unsafe.Sizeof(regMask(0))*8) {
   508  		s.f.Fatalf("bad number of registers: %d", nr)
   509  	} else {
   510  		s.numRegs = register(nr)
   511  	}
   512  	// Locate SP, SB, and g registers.
   513  	s.SPReg = noRegister
   514  	s.SBReg = noRegister
   515  	s.GReg = noRegister
   516  	for r := register(0); r < s.numRegs; r++ {
   517  		switch s.registers[r].String() {
   518  		case "SP":
   519  			s.SPReg = r
   520  		case "SB":
   521  			s.SBReg = r
   522  		case "g":
   523  			s.GReg = r
   524  		}
   525  	}
   526  	// Make sure we found all required registers.
   527  	switch noRegister {
   528  	case s.SPReg:
   529  		s.f.Fatalf("no SP register found")
   530  	case s.SBReg:
   531  		s.f.Fatalf("no SB register found")
   532  	case s.GReg:
   533  		if f.Config.hasGReg {
   534  			s.f.Fatalf("no g register found")
   535  		}
   536  	}
   537  
   538  	// Figure out which registers we're allowed to use.
   539  	s.allocatable = s.f.Config.gpRegMask | s.f.Config.fpRegMask | s.f.Config.specialRegMask
   540  	s.allocatable &^= 1 << s.SPReg
   541  	s.allocatable &^= 1 << s.SBReg
   542  	if s.f.Config.hasGReg {
   543  		s.allocatable &^= 1 << s.GReg
   544  	}
   545  	if s.f.Config.ctxt.Framepointer_enabled && s.f.Config.FPReg >= 0 {
   546  		s.allocatable &^= 1 << uint(s.f.Config.FPReg)
   547  	}
   548  	if s.f.Config.LinkReg != -1 {
   549  		if isLeaf(f) {
   550  			// Leaf functions don't save/restore the link register.
   551  			s.allocatable &^= 1 << uint(s.f.Config.LinkReg)
   552  		}
   553  		if s.f.Config.arch == "arm" && objabi.GOARM == 5 {
   554  			// On ARMv5 we insert softfloat calls at each FP instruction.
   555  			// This clobbers LR almost everywhere. Disable allocating LR
   556  			// on ARMv5.
   557  			s.allocatable &^= 1 << uint(s.f.Config.LinkReg)
   558  		}
   559  	}
   560  	if s.f.Config.ctxt.Flag_dynlink {
   561  		switch s.f.Config.arch {
   562  		case "amd64":
   563  			s.allocatable &^= 1 << 15 // R15
   564  		case "arm":
   565  			s.allocatable &^= 1 << 9 // R9
   566  		case "ppc64le": // R2 already reserved.
   567  			// nothing to do
   568  		case "arm64":
   569  			// nothing to do?
   570  		case "386":
   571  			// nothing to do.
   572  			// Note that for Flag_shared (position independent code)
   573  			// we do need to be careful, but that carefulness is hidden
   574  			// in the rewrite rules so we always have a free register
   575  			// available for global load/stores. See gen/386.rules (search for Flag_shared).
   576  		case "s390x":
   577  			// nothing to do, R10 & R11 already reserved
   578  		default:
   579  			s.f.fe.Fatalf(src.NoXPos, "arch %s not implemented", s.f.Config.arch)
   580  		}
   581  	}
   582  	if s.f.Config.nacl {
   583  		switch s.f.Config.arch {
   584  		case "arm":
   585  			s.allocatable &^= 1 << 9 // R9 is "thread pointer" on nacl/arm
   586  		case "amd64p32":
   587  			s.allocatable &^= 1 << 5  // BP - reserved for nacl
   588  			s.allocatable &^= 1 << 15 // R15 - reserved for nacl
   589  		}
   590  	}
   591  	if s.f.Config.use387 {
   592  		s.allocatable &^= 1 << 15 // X7 disallowed (one 387 register is used as scratch space during SSE->387 generation in ../x86/387.go)
   593  	}
   594  
   595  	// Linear scan register allocation can be influenced by the order in which blocks appear.
   596  	// Decouple the register allocation order from the generated block order.
   597  	// This also creates an opportunity for experiments to find a better order.
   598  	s.visitOrder = layoutRegallocOrder(f)
   599  
   600  	// Compute block order. This array allows us to distinguish forward edges
   601  	// from backward edges and compute how far they go.
   602  	blockOrder := make([]int32, f.NumBlocks())
   603  	for i, b := range s.visitOrder {
   604  		blockOrder[b.ID] = int32(i)
   605  	}
   606  
   607  	s.regs = make([]regState, s.numRegs)
   608  	s.values = make([]valState, f.NumValues())
   609  	s.orig = make([]*Value, f.NumValues())
   610  	s.copies = make(map[*Value]bool)
   611  	for _, b := range s.visitOrder {
   612  		for _, v := range b.Values {
   613  			if !v.Type.IsMemory() && !v.Type.IsVoid() && !v.Type.IsFlags() && !v.Type.IsTuple() {
   614  				s.values[v.ID].needReg = true
   615  				s.values[v.ID].rematerializeable = v.rematerializeable()
   616  				s.orig[v.ID] = v
   617  			}
   618  			// Note: needReg is false for values returning Tuple types.
   619  			// Instead, we mark the corresponding Selects as needReg.
   620  		}
   621  	}
   622  	s.computeLive()
   623  
   624  	// Compute primary predecessors.
   625  	s.primary = make([]int32, f.NumBlocks())
   626  	for _, b := range s.visitOrder {
   627  		best := -1
   628  		for i, e := range b.Preds {
   629  			p := e.b
   630  			if blockOrder[p.ID] >= blockOrder[b.ID] {
   631  				continue // backward edge
   632  			}
   633  			if best == -1 || blockOrder[p.ID] > blockOrder[b.Preds[best].b.ID] {
   634  				best = i
   635  			}
   636  		}
   637  		s.primary[b.ID] = int32(best)
   638  	}
   639  
   640  	s.endRegs = make([][]endReg, f.NumBlocks())
   641  	s.startRegs = make([][]startReg, f.NumBlocks())
   642  	s.spillLive = make([][]ID, f.NumBlocks())
   643  	s.sdom = f.sdom()
   644  }
   645  
   646  // Adds a use record for id at distance dist from the start of the block.
   647  // All calls to addUse must happen with nonincreasing dist.
   648  func (s *regAllocState) addUse(id ID, dist int32, pos src.XPos) {
   649  	r := s.freeUseRecords
   650  	if r != nil {
   651  		s.freeUseRecords = r.next
   652  	} else {
   653  		r = &use{}
   654  	}
   655  	r.dist = dist
   656  	r.pos = pos
   657  	r.next = s.values[id].uses
   658  	s.values[id].uses = r
   659  	if r.next != nil && dist > r.next.dist {
   660  		s.f.Fatalf("uses added in wrong order")
   661  	}
   662  }
   663  
   664  // advanceUses advances the uses of v's args from the state before v to the state after v.
   665  // Any values which have no more uses are deallocated from registers.
   666  func (s *regAllocState) advanceUses(v *Value) {
   667  	for _, a := range v.Args {
   668  		if !s.values[a.ID].needReg {
   669  			continue
   670  		}
   671  		ai := &s.values[a.ID]
   672  		r := ai.uses
   673  		ai.uses = r.next
   674  		if r.next == nil {
   675  			// Value is dead, free all registers that hold it.
   676  			s.freeRegs(ai.regs)
   677  		}
   678  		r.next = s.freeUseRecords
   679  		s.freeUseRecords = r
   680  	}
   681  }
   682  
   683  // liveAfterCurrentInstruction reports whether v is live after
   684  // the current instruction is completed.  v must be used by the
   685  // current instruction.
   686  func (s *regAllocState) liveAfterCurrentInstruction(v *Value) bool {
   687  	u := s.values[v.ID].uses
   688  	d := u.dist
   689  	for u != nil && u.dist == d {
   690  		u = u.next
   691  	}
   692  	return u != nil && u.dist > d
   693  }
   694  
   695  // Sets the state of the registers to that encoded in regs.
   696  func (s *regAllocState) setState(regs []endReg) {
   697  	s.freeRegs(s.used)
   698  	for _, x := range regs {
   699  		s.assignReg(x.r, x.v, x.c)
   700  	}
   701  }
   702  
   703  // compatRegs returns the set of registers which can store a type t.
   704  func (s *regAllocState) compatRegs(t *types.Type) regMask {
   705  	var m regMask
   706  	if t.IsTuple() || t.IsFlags() {
   707  		return 0
   708  	}
   709  	if t.IsFloat() || t == types.TypeInt128 {
   710  		m = s.f.Config.fpRegMask
   711  	} else {
   712  		m = s.f.Config.gpRegMask
   713  	}
   714  	return m & s.allocatable
   715  }
   716  
   717  func (s *regAllocState) regalloc(f *Func) {
   718  	regValLiveSet := f.newSparseSet(f.NumValues()) // set of values that may be live in register
   719  	defer f.retSparseSet(regValLiveSet)
   720  	var oldSched []*Value
   721  	var phis []*Value
   722  	var phiRegs []register
   723  	var args []*Value
   724  
   725  	// Data structure used for computing desired registers.
   726  	var desired desiredState
   727  
   728  	// Desired registers for inputs & outputs for each instruction in the block.
   729  	type dentry struct {
   730  		out [4]register    // desired output registers
   731  		in  [3][4]register // desired input registers (for inputs 0,1, and 2)
   732  	}
   733  	var dinfo []dentry
   734  
   735  	if f.Entry != f.Blocks[0] {
   736  		f.Fatalf("entry block must be first")
   737  	}
   738  
   739  	for _, b := range s.visitOrder {
   740  		if s.f.pass.debug > regDebug {
   741  			fmt.Printf("Begin processing block %v\n", b)
   742  		}
   743  		s.curBlock = b
   744  
   745  		// Initialize regValLiveSet and uses fields for this block.
   746  		// Walk backwards through the block doing liveness analysis.
   747  		regValLiveSet.clear()
   748  		for _, e := range s.live[b.ID] {
   749  			s.addUse(e.ID, int32(len(b.Values))+e.dist, e.pos) // pseudo-uses from beyond end of block
   750  			regValLiveSet.add(e.ID)
   751  		}
   752  		if v := b.Control; v != nil && s.values[v.ID].needReg {
   753  			s.addUse(v.ID, int32(len(b.Values)), b.Pos) // pseudo-use by control value
   754  			regValLiveSet.add(v.ID)
   755  		}
   756  		for i := len(b.Values) - 1; i >= 0; i-- {
   757  			v := b.Values[i]
   758  			regValLiveSet.remove(v.ID)
   759  			if v.Op == OpPhi {
   760  				// Remove v from the live set, but don't add
   761  				// any inputs. This is the state the len(b.Preds)>1
   762  				// case below desires; it wants to process phis specially.
   763  				continue
   764  			}
   765  			if opcodeTable[v.Op].call {
   766  				// Function call clobbers all the registers but SP and SB.
   767  				regValLiveSet.clear()
   768  				if s.sp != 0 && s.values[s.sp].uses != nil {
   769  					regValLiveSet.add(s.sp)
   770  				}
   771  				if s.sb != 0 && s.values[s.sb].uses != nil {
   772  					regValLiveSet.add(s.sb)
   773  				}
   774  			}
   775  			for _, a := range v.Args {
   776  				if !s.values[a.ID].needReg {
   777  					continue
   778  				}
   779  				s.addUse(a.ID, int32(i), v.Pos)
   780  				regValLiveSet.add(a.ID)
   781  			}
   782  		}
   783  		if s.f.pass.debug > regDebug {
   784  			fmt.Printf("uses for %s:%s\n", s.f.Name, b)
   785  			for i := range s.values {
   786  				vi := &s.values[i]
   787  				u := vi.uses
   788  				if u == nil {
   789  					continue
   790  				}
   791  				fmt.Printf("  v%d:", i)
   792  				for u != nil {
   793  					fmt.Printf(" %d", u.dist)
   794  					u = u.next
   795  				}
   796  				fmt.Println()
   797  			}
   798  		}
   799  
   800  		// Make a copy of the block schedule so we can generate a new one in place.
   801  		// We make a separate copy for phis and regular values.
   802  		nphi := 0
   803  		for _, v := range b.Values {
   804  			if v.Op != OpPhi {
   805  				break
   806  			}
   807  			nphi++
   808  		}
   809  		phis = append(phis[:0], b.Values[:nphi]...)
   810  		oldSched = append(oldSched[:0], b.Values[nphi:]...)
   811  		b.Values = b.Values[:0]
   812  
   813  		// Initialize start state of block.
   814  		if b == f.Entry {
   815  			// Regalloc state is empty to start.
   816  			if nphi > 0 {
   817  				f.Fatalf("phis in entry block")
   818  			}
   819  		} else if len(b.Preds) == 1 {
   820  			// Start regalloc state with the end state of the previous block.
   821  			s.setState(s.endRegs[b.Preds[0].b.ID])
   822  			if nphi > 0 {
   823  				f.Fatalf("phis in single-predecessor block")
   824  			}
   825  			// Drop any values which are no longer live.
   826  			// This may happen because at the end of p, a value may be
   827  			// live but only used by some other successor of p.
   828  			for r := register(0); r < s.numRegs; r++ {
   829  				v := s.regs[r].v
   830  				if v != nil && !regValLiveSet.contains(v.ID) {
   831  					s.freeReg(r)
   832  				}
   833  			}
   834  		} else {
   835  			// This is the complicated case. We have more than one predecessor,
   836  			// which means we may have Phi ops.
   837  
   838  			// Start with the final register state of the primary predecessor
   839  			idx := s.primary[b.ID]
   840  			if idx < 0 {
   841  				f.Fatalf("block with no primary predecessor %s", b)
   842  			}
   843  			p := b.Preds[idx].b
   844  			s.setState(s.endRegs[p.ID])
   845  
   846  			if s.f.pass.debug > regDebug {
   847  				fmt.Printf("starting merge block %s with end state of %s:\n", b, p)
   848  				for _, x := range s.endRegs[p.ID] {
   849  					fmt.Printf("  %s: orig:%s cache:%s\n", &s.registers[x.r], x.v, x.c)
   850  				}
   851  			}
   852  
   853  			// Decide on registers for phi ops. Use the registers determined
   854  			// by the primary predecessor if we can.
   855  			// TODO: pick best of (already processed) predecessors?
   856  			// Majority vote? Deepest nesting level?
   857  			phiRegs = phiRegs[:0]
   858  			var phiUsed regMask
   859  			for _, v := range phis {
   860  				if !s.values[v.ID].needReg {
   861  					phiRegs = append(phiRegs, noRegister)
   862  					continue
   863  				}
   864  				a := v.Args[idx]
   865  				// Some instructions target not-allocatable registers.
   866  				// They're not suitable for further (phi-function) allocation.
   867  				m := s.values[a.ID].regs &^ phiUsed & s.allocatable
   868  				if m != 0 {
   869  					r := pickReg(m)
   870  					phiUsed |= regMask(1) << r
   871  					phiRegs = append(phiRegs, r)
   872  				} else {
   873  					phiRegs = append(phiRegs, noRegister)
   874  				}
   875  			}
   876  
   877  			// Second pass - deallocate any phi inputs which are now dead.
   878  			for i, v := range phis {
   879  				if !s.values[v.ID].needReg {
   880  					continue
   881  				}
   882  				a := v.Args[idx]
   883  				if !regValLiveSet.contains(a.ID) {
   884  					// Input is dead beyond the phi, deallocate
   885  					// anywhere else it might live.
   886  					s.freeRegs(s.values[a.ID].regs)
   887  				} else {
   888  					// Input is still live.
   889  					// Try to move it around before kicking out, if there is a free register.
   890  					// We generate a Copy in the predecessor block and record it. It will be
   891  					// deleted if never used.
   892  					r := phiRegs[i]
   893  					if r == noRegister {
   894  						continue
   895  					}
   896  					// Pick a free register. At this point some registers used in the predecessor
   897  					// block may have been deallocated. Those are the ones used for Phis. Exclude
   898  					// them (and they are not going to be helpful anyway).
   899  					m := s.compatRegs(a.Type) &^ s.used &^ phiUsed
   900  					if m != 0 && !s.values[a.ID].rematerializeable && countRegs(s.values[a.ID].regs) == 1 {
   901  						r2 := pickReg(m)
   902  						c := p.NewValue1(a.Pos, OpCopy, a.Type, s.regs[r].c)
   903  						s.copies[c] = false
   904  						if s.f.pass.debug > regDebug {
   905  							fmt.Printf("copy %s to %s : %s\n", a, c, &s.registers[r2])
   906  						}
   907  						s.setOrig(c, a)
   908  						s.assignReg(r2, a, c)
   909  						s.endRegs[p.ID] = append(s.endRegs[p.ID], endReg{r2, a, c})
   910  					}
   911  					s.freeReg(r)
   912  				}
   913  			}
   914  
   915  			// Copy phi ops into new schedule.
   916  			b.Values = append(b.Values, phis...)
   917  
   918  			// Third pass - pick registers for phis whose inputs
   919  			// were not in a register.
   920  			for i, v := range phis {
   921  				if !s.values[v.ID].needReg {
   922  					continue
   923  				}
   924  				if phiRegs[i] != noRegister {
   925  					continue
   926  				}
   927  				if s.f.Config.use387 && v.Type.IsFloat() {
   928  					continue // 387 can't handle floats in registers between blocks
   929  				}
   930  				m := s.compatRegs(v.Type) &^ phiUsed &^ s.used
   931  				if m != 0 {
   932  					r := pickReg(m)
   933  					phiRegs[i] = r
   934  					phiUsed |= regMask(1) << r
   935  				}
   936  			}
   937  
   938  			// Set registers for phis. Add phi spill code.
   939  			for i, v := range phis {
   940  				if !s.values[v.ID].needReg {
   941  					continue
   942  				}
   943  				r := phiRegs[i]
   944  				if r == noRegister {
   945  					// stack-based phi
   946  					// Spills will be inserted in all the predecessors below.
   947  					s.values[v.ID].spill = v // v starts life spilled
   948  					continue
   949  				}
   950  				// register-based phi
   951  				s.assignReg(r, v, v)
   952  			}
   953  
   954  			// Deallocate any values which are no longer live. Phis are excluded.
   955  			for r := register(0); r < s.numRegs; r++ {
   956  				if phiUsed>>r&1 != 0 {
   957  					continue
   958  				}
   959  				v := s.regs[r].v
   960  				if v != nil && !regValLiveSet.contains(v.ID) {
   961  					s.freeReg(r)
   962  				}
   963  			}
   964  
   965  			// Save the starting state for use by merge edges.
   966  			var regList []startReg
   967  			for r := register(0); r < s.numRegs; r++ {
   968  				v := s.regs[r].v
   969  				if v == nil {
   970  					continue
   971  				}
   972  				if phiUsed>>r&1 != 0 {
   973  					// Skip registers that phis used, we'll handle those
   974  					// specially during merge edge processing.
   975  					continue
   976  				}
   977  				regList = append(regList, startReg{r, v, s.regs[r].c, s.values[v.ID].uses.pos})
   978  			}
   979  			s.startRegs[b.ID] = regList
   980  
   981  			if s.f.pass.debug > regDebug {
   982  				fmt.Printf("after phis\n")
   983  				for _, x := range s.startRegs[b.ID] {
   984  					fmt.Printf("  %s: v%d\n", &s.registers[x.r], x.v.ID)
   985  				}
   986  			}
   987  		}
   988  
   989  		// Allocate space to record the desired registers for each value.
   990  		dinfo = dinfo[:0]
   991  		for i := 0; i < len(oldSched); i++ {
   992  			dinfo = append(dinfo, dentry{})
   993  		}
   994  
   995  		// Load static desired register info at the end of the block.
   996  		desired.copy(&s.desired[b.ID])
   997  
   998  		// Check actual assigned registers at the start of the next block(s).
   999  		// Dynamically assigned registers will trump the static
  1000  		// desired registers computed during liveness analysis.
  1001  		// Note that we do this phase after startRegs is set above, so that
  1002  		// we get the right behavior for a block which branches to itself.
  1003  		for _, e := range b.Succs {
  1004  			succ := e.b
  1005  			// TODO: prioritize likely successor?
  1006  			for _, x := range s.startRegs[succ.ID] {
  1007  				desired.add(x.v.ID, x.r)
  1008  			}
  1009  			// Process phi ops in succ.
  1010  			pidx := e.i
  1011  			for _, v := range succ.Values {
  1012  				if v.Op != OpPhi {
  1013  					break
  1014  				}
  1015  				if !s.values[v.ID].needReg {
  1016  					continue
  1017  				}
  1018  				rp, ok := s.f.getHome(v.ID).(*Register)
  1019  				if !ok {
  1020  					continue
  1021  				}
  1022  				desired.add(v.Args[pidx].ID, register(rp.num))
  1023  			}
  1024  		}
  1025  		// Walk values backwards computing desired register info.
  1026  		// See computeLive for more comments.
  1027  		for i := len(oldSched) - 1; i >= 0; i-- {
  1028  			v := oldSched[i]
  1029  			prefs := desired.remove(v.ID)
  1030  			desired.clobber(opcodeTable[v.Op].reg.clobbers)
  1031  			for _, j := range opcodeTable[v.Op].reg.inputs {
  1032  				if countRegs(j.regs) != 1 {
  1033  					continue
  1034  				}
  1035  				desired.clobber(j.regs)
  1036  				desired.add(v.Args[j.idx].ID, pickReg(j.regs))
  1037  			}
  1038  			if opcodeTable[v.Op].resultInArg0 {
  1039  				if opcodeTable[v.Op].commutative {
  1040  					desired.addList(v.Args[1].ID, prefs)
  1041  				}
  1042  				desired.addList(v.Args[0].ID, prefs)
  1043  			}
  1044  			// Save desired registers for this value.
  1045  			dinfo[i].out = prefs
  1046  			for j, a := range v.Args {
  1047  				if j >= len(dinfo[i].in) {
  1048  					break
  1049  				}
  1050  				dinfo[i].in[j] = desired.get(a.ID)
  1051  			}
  1052  		}
  1053  
  1054  		// Process all the non-phi values.
  1055  		for idx, v := range oldSched {
  1056  			if s.f.pass.debug > regDebug {
  1057  				fmt.Printf("  processing %s\n", v.LongString())
  1058  			}
  1059  			regspec := opcodeTable[v.Op].reg
  1060  			if v.Op == OpPhi {
  1061  				f.Fatalf("phi %s not at start of block", v)
  1062  			}
  1063  			if v.Op == OpSP {
  1064  				s.assignReg(s.SPReg, v, v)
  1065  				b.Values = append(b.Values, v)
  1066  				s.advanceUses(v)
  1067  				s.sp = v.ID
  1068  				continue
  1069  			}
  1070  			if v.Op == OpSB {
  1071  				s.assignReg(s.SBReg, v, v)
  1072  				b.Values = append(b.Values, v)
  1073  				s.advanceUses(v)
  1074  				s.sb = v.ID
  1075  				continue
  1076  			}
  1077  			if v.Op == OpSelect0 || v.Op == OpSelect1 {
  1078  				if s.values[v.ID].needReg {
  1079  					var i = 0
  1080  					if v.Op == OpSelect1 {
  1081  						i = 1
  1082  					}
  1083  					s.assignReg(register(s.f.getHome(v.Args[0].ID).(LocPair)[i].(*Register).num), v, v)
  1084  				}
  1085  				b.Values = append(b.Values, v)
  1086  				s.advanceUses(v)
  1087  				goto issueSpill
  1088  			}
  1089  			if v.Op == OpGetG && s.f.Config.hasGReg {
  1090  				// use hardware g register
  1091  				if s.regs[s.GReg].v != nil {
  1092  					s.freeReg(s.GReg) // kick out the old value
  1093  				}
  1094  				s.assignReg(s.GReg, v, v)
  1095  				b.Values = append(b.Values, v)
  1096  				s.advanceUses(v)
  1097  				goto issueSpill
  1098  			}
  1099  			if v.Op == OpArg {
  1100  				// Args are "pre-spilled" values. We don't allocate
  1101  				// any register here. We just set up the spill pointer to
  1102  				// point at itself and any later user will restore it to use it.
  1103  				s.values[v.ID].spill = v
  1104  				b.Values = append(b.Values, v)
  1105  				s.advanceUses(v)
  1106  				continue
  1107  			}
  1108  			if v.Op == OpKeepAlive {
  1109  				// Make sure the argument to v is still live here.
  1110  				s.advanceUses(v)
  1111  				a := v.Args[0]
  1112  				vi := &s.values[a.ID]
  1113  				if vi.regs == 0 && !vi.rematerializeable {
  1114  					// Use the spill location.
  1115  					// This forces later liveness analysis to make the
  1116  					// value live at this point.
  1117  					v.SetArg(0, s.makeSpill(a, b))
  1118  				} else {
  1119  					// In-register and rematerializeable values are already live.
  1120  					// These are typically rematerializeable constants like nil,
  1121  					// or values of a variable that were modified since the last call.
  1122  					v.Op = OpCopy
  1123  					v.SetArgs1(v.Args[1])
  1124  				}
  1125  				b.Values = append(b.Values, v)
  1126  				continue
  1127  			}
  1128  			if len(regspec.inputs) == 0 && len(regspec.outputs) == 0 {
  1129  				// No register allocation required (or none specified yet)
  1130  				s.freeRegs(regspec.clobbers)
  1131  				b.Values = append(b.Values, v)
  1132  				s.advanceUses(v)
  1133  				continue
  1134  			}
  1135  
  1136  			if s.values[v.ID].rematerializeable {
  1137  				// Value is rematerializeable, don't issue it here.
  1138  				// It will get issued just before each use (see
  1139  				// allocValueToReg).
  1140  				for _, a := range v.Args {
  1141  					a.Uses--
  1142  				}
  1143  				s.advanceUses(v)
  1144  				continue
  1145  			}
  1146  
  1147  			if s.f.pass.debug > regDebug {
  1148  				fmt.Printf("value %s\n", v.LongString())
  1149  				fmt.Printf("  out:")
  1150  				for _, r := range dinfo[idx].out {
  1151  					if r != noRegister {
  1152  						fmt.Printf(" %s", &s.registers[r])
  1153  					}
  1154  				}
  1155  				fmt.Println()
  1156  				for i := 0; i < len(v.Args) && i < 3; i++ {
  1157  					fmt.Printf("  in%d:", i)
  1158  					for _, r := range dinfo[idx].in[i] {
  1159  						if r != noRegister {
  1160  							fmt.Printf(" %s", &s.registers[r])
  1161  						}
  1162  					}
  1163  					fmt.Println()
  1164  				}
  1165  			}
  1166  
  1167  			// Move arguments to registers. Process in an ordering defined
  1168  			// by the register specification (most constrained first).
  1169  			args = append(args[:0], v.Args...)
  1170  			for _, i := range regspec.inputs {
  1171  				mask := i.regs
  1172  				if mask&s.values[args[i.idx].ID].regs == 0 {
  1173  					// Need a new register for the input.
  1174  					mask &= s.allocatable
  1175  					mask &^= s.nospill
  1176  					// Used desired register if available.
  1177  					if i.idx < 3 {
  1178  						for _, r := range dinfo[idx].in[i.idx] {
  1179  							if r != noRegister && (mask&^s.used)>>r&1 != 0 {
  1180  								// Desired register is allowed and unused.
  1181  								mask = regMask(1) << r
  1182  								break
  1183  							}
  1184  						}
  1185  					}
  1186  					// Avoid registers we're saving for other values.
  1187  					if mask&^desired.avoid != 0 {
  1188  						mask &^= desired.avoid
  1189  					}
  1190  				}
  1191  				args[i.idx] = s.allocValToReg(args[i.idx], mask, true, v.Pos)
  1192  			}
  1193  
  1194  			// If the output clobbers the input register, make sure we have
  1195  			// at least two copies of the input register so we don't
  1196  			// have to reload the value from the spill location.
  1197  			if opcodeTable[v.Op].resultInArg0 {
  1198  				var m regMask
  1199  				if !s.liveAfterCurrentInstruction(v.Args[0]) {
  1200  					// arg0 is dead.  We can clobber its register.
  1201  					goto ok
  1202  				}
  1203  				if s.values[v.Args[0].ID].rematerializeable {
  1204  					// We can rematerialize the input, don't worry about clobbering it.
  1205  					goto ok
  1206  				}
  1207  				if countRegs(s.values[v.Args[0].ID].regs) >= 2 {
  1208  					// we have at least 2 copies of arg0.  We can afford to clobber one.
  1209  					goto ok
  1210  				}
  1211  				if opcodeTable[v.Op].commutative {
  1212  					if !s.liveAfterCurrentInstruction(v.Args[1]) {
  1213  						args[0], args[1] = args[1], args[0]
  1214  						goto ok
  1215  					}
  1216  					if s.values[v.Args[1].ID].rematerializeable {
  1217  						args[0], args[1] = args[1], args[0]
  1218  						goto ok
  1219  					}
  1220  					if countRegs(s.values[v.Args[1].ID].regs) >= 2 {
  1221  						args[0], args[1] = args[1], args[0]
  1222  						goto ok
  1223  					}
  1224  				}
  1225  
  1226  				// We can't overwrite arg0 (or arg1, if commutative).  So we
  1227  				// need to make a copy of an input so we have a register we can modify.
  1228  
  1229  				// Possible new registers to copy into.
  1230  				m = s.compatRegs(v.Args[0].Type) &^ s.used
  1231  				if m == 0 {
  1232  					// No free registers.  In this case we'll just clobber
  1233  					// an input and future uses of that input must use a restore.
  1234  					// TODO(khr): We should really do this like allocReg does it,
  1235  					// spilling the value with the most distant next use.
  1236  					goto ok
  1237  				}
  1238  
  1239  				// Try to move an input to the desired output.
  1240  				for _, r := range dinfo[idx].out {
  1241  					if r != noRegister && m>>r&1 != 0 {
  1242  						m = regMask(1) << r
  1243  						args[0] = s.allocValToReg(v.Args[0], m, true, v.Pos)
  1244  						// Note: we update args[0] so the instruction will
  1245  						// use the register copy we just made.
  1246  						goto ok
  1247  					}
  1248  				}
  1249  				// Try to copy input to its desired location & use its old
  1250  				// location as the result register.
  1251  				for _, r := range dinfo[idx].in[0] {
  1252  					if r != noRegister && m>>r&1 != 0 {
  1253  						m = regMask(1) << r
  1254  						c := s.allocValToReg(v.Args[0], m, true, v.Pos)
  1255  						s.copies[c] = false
  1256  						// Note: no update to args[0] so the instruction will
  1257  						// use the original copy.
  1258  						goto ok
  1259  					}
  1260  				}
  1261  				if opcodeTable[v.Op].commutative {
  1262  					for _, r := range dinfo[idx].in[1] {
  1263  						if r != noRegister && m>>r&1 != 0 {
  1264  							m = regMask(1) << r
  1265  							c := s.allocValToReg(v.Args[1], m, true, v.Pos)
  1266  							s.copies[c] = false
  1267  							args[0], args[1] = args[1], args[0]
  1268  							goto ok
  1269  						}
  1270  					}
  1271  				}
  1272  				// Avoid future fixed uses if we can.
  1273  				if m&^desired.avoid != 0 {
  1274  					m &^= desired.avoid
  1275  				}
  1276  				// Save input 0 to a new register so we can clobber it.
  1277  				c := s.allocValToReg(v.Args[0], m, true, v.Pos)
  1278  				s.copies[c] = false
  1279  			}
  1280  
  1281  		ok:
  1282  			// Now that all args are in regs, we're ready to issue the value itself.
  1283  			// Before we pick a register for the output value, allow input registers
  1284  			// to be deallocated. We do this here so that the output can use the
  1285  			// same register as a dying input.
  1286  			if !opcodeTable[v.Op].resultNotInArgs {
  1287  				s.tmpused = s.nospill
  1288  				s.nospill = 0
  1289  				s.advanceUses(v) // frees any registers holding args that are no longer live
  1290  			}
  1291  
  1292  			// Dump any registers which will be clobbered
  1293  			s.freeRegs(regspec.clobbers)
  1294  			s.tmpused |= regspec.clobbers
  1295  
  1296  			// Pick registers for outputs.
  1297  			{
  1298  				outRegs := [2]register{noRegister, noRegister}
  1299  				var used regMask
  1300  				for _, out := range regspec.outputs {
  1301  					mask := out.regs & s.allocatable &^ used
  1302  					if mask == 0 {
  1303  						continue
  1304  					}
  1305  					if opcodeTable[v.Op].resultInArg0 && out.idx == 0 {
  1306  						if !opcodeTable[v.Op].commutative {
  1307  							// Output must use the same register as input 0.
  1308  							r := register(s.f.getHome(args[0].ID).(*Register).num)
  1309  							mask = regMask(1) << r
  1310  						} else {
  1311  							// Output must use the same register as input 0 or 1.
  1312  							r0 := register(s.f.getHome(args[0].ID).(*Register).num)
  1313  							r1 := register(s.f.getHome(args[1].ID).(*Register).num)
  1314  							// Check r0 and r1 for desired output register.
  1315  							found := false
  1316  							for _, r := range dinfo[idx].out {
  1317  								if (r == r0 || r == r1) && (mask&^s.used)>>r&1 != 0 {
  1318  									mask = regMask(1) << r
  1319  									found = true
  1320  									if r == r1 {
  1321  										args[0], args[1] = args[1], args[0]
  1322  									}
  1323  									break
  1324  								}
  1325  							}
  1326  							if !found {
  1327  								// Neither are desired, pick r0.
  1328  								mask = regMask(1) << r0
  1329  							}
  1330  						}
  1331  					}
  1332  					for _, r := range dinfo[idx].out {
  1333  						if r != noRegister && (mask&^s.used)>>r&1 != 0 {
  1334  							// Desired register is allowed and unused.
  1335  							mask = regMask(1) << r
  1336  							break
  1337  						}
  1338  					}
  1339  					// Avoid registers we're saving for other values.
  1340  					if mask&^desired.avoid != 0 {
  1341  						mask &^= desired.avoid
  1342  					}
  1343  					r := s.allocReg(mask, v)
  1344  					outRegs[out.idx] = r
  1345  					used |= regMask(1) << r
  1346  					s.tmpused |= regMask(1) << r
  1347  				}
  1348  				// Record register choices
  1349  				if v.Type.IsTuple() {
  1350  					var outLocs LocPair
  1351  					if r := outRegs[0]; r != noRegister {
  1352  						outLocs[0] = &s.registers[r]
  1353  					}
  1354  					if r := outRegs[1]; r != noRegister {
  1355  						outLocs[1] = &s.registers[r]
  1356  					}
  1357  					s.f.setHome(v, outLocs)
  1358  					// Note that subsequent SelectX instructions will do the assignReg calls.
  1359  				} else {
  1360  					if r := outRegs[0]; r != noRegister {
  1361  						s.assignReg(r, v, v)
  1362  					}
  1363  				}
  1364  			}
  1365  
  1366  			// deallocate dead args, if we have not done so
  1367  			if opcodeTable[v.Op].resultNotInArgs {
  1368  				s.nospill = 0
  1369  				s.advanceUses(v) // frees any registers holding args that are no longer live
  1370  			}
  1371  			s.tmpused = 0
  1372  
  1373  			// Issue the Value itself.
  1374  			for i, a := range args {
  1375  				v.SetArg(i, a) // use register version of arguments
  1376  			}
  1377  			b.Values = append(b.Values, v)
  1378  
  1379  		issueSpill:
  1380  		}
  1381  
  1382  		// Load control value into reg.
  1383  		if v := b.Control; v != nil && s.values[v.ID].needReg {
  1384  			if s.f.pass.debug > regDebug {
  1385  				fmt.Printf("  processing control %s\n", v.LongString())
  1386  			}
  1387  			// We assume that a control input can be passed in any
  1388  			// type-compatible register. If this turns out not to be true,
  1389  			// we'll need to introduce a regspec for a block's control value.
  1390  			b.Control = s.allocValToReg(v, s.compatRegs(v.Type), false, b.Pos)
  1391  			if b.Control != v {
  1392  				v.Uses--
  1393  				b.Control.Uses++
  1394  			}
  1395  			// Remove this use from the uses list.
  1396  			vi := &s.values[v.ID]
  1397  			u := vi.uses
  1398  			vi.uses = u.next
  1399  			if u.next == nil {
  1400  				s.freeRegs(vi.regs) // value is dead
  1401  			}
  1402  			u.next = s.freeUseRecords
  1403  			s.freeUseRecords = u
  1404  		}
  1405  
  1406  		// Spill any values that can't live across basic block boundaries.
  1407  		if s.f.Config.use387 {
  1408  			s.freeRegs(s.f.Config.fpRegMask)
  1409  		}
  1410  
  1411  		// If we are approaching a merge point and we are the primary
  1412  		// predecessor of it, find live values that we use soon after
  1413  		// the merge point and promote them to registers now.
  1414  		if len(b.Succs) == 1 {
  1415  			// For this to be worthwhile, the loop must have no calls in it.
  1416  			top := b.Succs[0].b
  1417  			loop := s.loopnest.b2l[top.ID]
  1418  			if loop == nil || loop.header != top || loop.containsCall {
  1419  				goto badloop
  1420  			}
  1421  
  1422  			// TODO: sort by distance, pick the closest ones?
  1423  			for _, live := range s.live[b.ID] {
  1424  				if live.dist >= unlikelyDistance {
  1425  					// Don't preload anything live after the loop.
  1426  					continue
  1427  				}
  1428  				vid := live.ID
  1429  				vi := &s.values[vid]
  1430  				if vi.regs != 0 {
  1431  					continue
  1432  				}
  1433  				if vi.rematerializeable {
  1434  					continue
  1435  				}
  1436  				v := s.orig[vid]
  1437  				if s.f.Config.use387 && v.Type.IsFloat() {
  1438  					continue // 387 can't handle floats in registers between blocks
  1439  				}
  1440  				m := s.compatRegs(v.Type) &^ s.used
  1441  				if m&^desired.avoid != 0 {
  1442  					m &^= desired.avoid
  1443  				}
  1444  				if m != 0 {
  1445  					s.allocValToReg(v, m, false, b.Pos)
  1446  				}
  1447  			}
  1448  		}
  1449  	badloop:
  1450  		;
  1451  
  1452  		// Save end-of-block register state.
  1453  		// First count how many, this cuts allocations in half.
  1454  		k := 0
  1455  		for r := register(0); r < s.numRegs; r++ {
  1456  			v := s.regs[r].v
  1457  			if v == nil {
  1458  				continue
  1459  			}
  1460  			k++
  1461  		}
  1462  		regList := make([]endReg, 0, k)
  1463  		for r := register(0); r < s.numRegs; r++ {
  1464  			v := s.regs[r].v
  1465  			if v == nil {
  1466  				continue
  1467  			}
  1468  			regList = append(regList, endReg{r, v, s.regs[r].c})
  1469  		}
  1470  		s.endRegs[b.ID] = regList
  1471  
  1472  		if checkEnabled {
  1473  			regValLiveSet.clear()
  1474  			for _, x := range s.live[b.ID] {
  1475  				regValLiveSet.add(x.ID)
  1476  			}
  1477  			for r := register(0); r < s.numRegs; r++ {
  1478  				v := s.regs[r].v
  1479  				if v == nil {
  1480  					continue
  1481  				}
  1482  				if !regValLiveSet.contains(v.ID) {
  1483  					s.f.Fatalf("val %s is in reg but not live at end of %s", v, b)
  1484  				}
  1485  			}
  1486  		}
  1487  
  1488  		// If a value is live at the end of the block and
  1489  		// isn't in a register, generate a use for the spill location.
  1490  		// We need to remember this information so that
  1491  		// the liveness analysis in stackalloc is correct.
  1492  		for _, e := range s.live[b.ID] {
  1493  			vi := &s.values[e.ID]
  1494  			if vi.regs != 0 {
  1495  				// in a register, we'll use that source for the merge.
  1496  				continue
  1497  			}
  1498  			if vi.rematerializeable {
  1499  				// we'll rematerialize during the merge.
  1500  				continue
  1501  			}
  1502  			//fmt.Printf("live-at-end spill for %s at %s\n", s.orig[e.ID], b)
  1503  			spill := s.makeSpill(s.orig[e.ID], b)
  1504  			s.spillLive[b.ID] = append(s.spillLive[b.ID], spill.ID)
  1505  		}
  1506  
  1507  		// Clear any final uses.
  1508  		// All that is left should be the pseudo-uses added for values which
  1509  		// are live at the end of b.
  1510  		for _, e := range s.live[b.ID] {
  1511  			u := s.values[e.ID].uses
  1512  			if u == nil {
  1513  				f.Fatalf("live at end, no uses v%d", e.ID)
  1514  			}
  1515  			if u.next != nil {
  1516  				f.Fatalf("live at end, too many uses v%d", e.ID)
  1517  			}
  1518  			s.values[e.ID].uses = nil
  1519  			u.next = s.freeUseRecords
  1520  			s.freeUseRecords = u
  1521  		}
  1522  	}
  1523  
  1524  	// Decide where the spills we generated will go.
  1525  	s.placeSpills()
  1526  
  1527  	// Anything that didn't get a register gets a stack location here.
  1528  	// (StoreReg, stack-based phis, inputs, ...)
  1529  	stacklive := stackalloc(s.f, s.spillLive)
  1530  
  1531  	// Fix up all merge edges.
  1532  	s.shuffle(stacklive)
  1533  
  1534  	// Erase any copies we never used.
  1535  	// Also, an unused copy might be the only use of another copy,
  1536  	// so continue erasing until we reach a fixed point.
  1537  	for {
  1538  		progress := false
  1539  		for c, used := range s.copies {
  1540  			if !used && c.Uses == 0 {
  1541  				if s.f.pass.debug > regDebug {
  1542  					fmt.Printf("delete copied value %s\n", c.LongString())
  1543  				}
  1544  				c.RemoveArg(0)
  1545  				f.freeValue(c)
  1546  				delete(s.copies, c)
  1547  				progress = true
  1548  			}
  1549  		}
  1550  		if !progress {
  1551  			break
  1552  		}
  1553  	}
  1554  
  1555  	for _, b := range s.visitOrder {
  1556  		i := 0
  1557  		for _, v := range b.Values {
  1558  			if v.Op == OpInvalid {
  1559  				continue
  1560  			}
  1561  			b.Values[i] = v
  1562  			i++
  1563  		}
  1564  		b.Values = b.Values[:i]
  1565  	}
  1566  }
  1567  
  1568  func (s *regAllocState) placeSpills() {
  1569  	f := s.f
  1570  
  1571  	// Precompute some useful info.
  1572  	phiRegs := make([]regMask, f.NumBlocks())
  1573  	for _, b := range s.visitOrder {
  1574  		var m regMask
  1575  		for _, v := range b.Values {
  1576  			if v.Op != OpPhi {
  1577  				break
  1578  			}
  1579  			if r, ok := f.getHome(v.ID).(*Register); ok {
  1580  				m |= regMask(1) << uint(r.num)
  1581  			}
  1582  		}
  1583  		phiRegs[b.ID] = m
  1584  	}
  1585  
  1586  	// Start maps block IDs to the list of spills
  1587  	// that go at the start of the block (but after any phis).
  1588  	start := map[ID][]*Value{}
  1589  	// After maps value IDs to the list of spills
  1590  	// that go immediately after that value ID.
  1591  	after := map[ID][]*Value{}
  1592  
  1593  	for i := range s.values {
  1594  		vi := s.values[i]
  1595  		spill := vi.spill
  1596  		if spill == nil {
  1597  			continue
  1598  		}
  1599  		if spill.Block != nil {
  1600  			// Some spills are already fully set up,
  1601  			// like OpArgs and stack-based phis.
  1602  			continue
  1603  		}
  1604  		v := s.orig[i]
  1605  
  1606  		// Walk down the dominator tree looking for a good place to
  1607  		// put the spill of v.  At the start "best" is the best place
  1608  		// we have found so far.
  1609  		// TODO: find a way to make this O(1) without arbitrary cutoffs.
  1610  		best := v.Block
  1611  		bestArg := v
  1612  		var bestDepth int16
  1613  		if l := s.loopnest.b2l[best.ID]; l != nil {
  1614  			bestDepth = l.depth
  1615  		}
  1616  		b := best
  1617  		const maxSpillSearch = 100
  1618  		for i := 0; i < maxSpillSearch; i++ {
  1619  			// Find the child of b in the dominator tree which
  1620  			// dominates all restores.
  1621  			p := b
  1622  			b = nil
  1623  			for c := s.sdom.Child(p); c != nil && i < maxSpillSearch; c, i = s.sdom.Sibling(c), i+1 {
  1624  				if s.sdom[c.ID].entry <= vi.restoreMin && s.sdom[c.ID].exit >= vi.restoreMax {
  1625  					// c also dominates all restores.  Walk down into c.
  1626  					b = c
  1627  					break
  1628  				}
  1629  			}
  1630  			if b == nil {
  1631  				// Ran out of blocks which dominate all restores.
  1632  				break
  1633  			}
  1634  
  1635  			var depth int16
  1636  			if l := s.loopnest.b2l[b.ID]; l != nil {
  1637  				depth = l.depth
  1638  			}
  1639  			if depth > bestDepth {
  1640  				// Don't push the spill into a deeper loop.
  1641  				continue
  1642  			}
  1643  
  1644  			// If v is in a register at the start of b, we can
  1645  			// place the spill here (after the phis).
  1646  			if len(b.Preds) == 1 {
  1647  				for _, e := range s.endRegs[b.Preds[0].b.ID] {
  1648  					if e.v == v {
  1649  						// Found a better spot for the spill.
  1650  						best = b
  1651  						bestArg = e.c
  1652  						bestDepth = depth
  1653  						break
  1654  					}
  1655  				}
  1656  			} else {
  1657  				for _, e := range s.startRegs[b.ID] {
  1658  					if e.v == v {
  1659  						// Found a better spot for the spill.
  1660  						best = b
  1661  						bestArg = e.c
  1662  						bestDepth = depth
  1663  						break
  1664  					}
  1665  				}
  1666  			}
  1667  		}
  1668  
  1669  		// Put the spill in the best block we found.
  1670  		spill.Block = best
  1671  		spill.AddArg(bestArg)
  1672  		if best == v.Block && v.Op != OpPhi {
  1673  			// Place immediately after v.
  1674  			after[v.ID] = append(after[v.ID], spill)
  1675  		} else {
  1676  			// Place at the start of best block.
  1677  			start[best.ID] = append(start[best.ID], spill)
  1678  		}
  1679  	}
  1680  
  1681  	// Insert spill instructions into the block schedules.
  1682  	var oldSched []*Value
  1683  	for _, b := range s.visitOrder {
  1684  		nphi := 0
  1685  		for _, v := range b.Values {
  1686  			if v.Op != OpPhi {
  1687  				break
  1688  			}
  1689  			nphi++
  1690  		}
  1691  		oldSched = append(oldSched[:0], b.Values[nphi:]...)
  1692  		b.Values = b.Values[:nphi]
  1693  		b.Values = append(b.Values, start[b.ID]...)
  1694  		for _, v := range oldSched {
  1695  			b.Values = append(b.Values, v)
  1696  			b.Values = append(b.Values, after[v.ID]...)
  1697  		}
  1698  	}
  1699  }
  1700  
  1701  // shuffle fixes up all the merge edges (those going into blocks of indegree > 1).
  1702  func (s *regAllocState) shuffle(stacklive [][]ID) {
  1703  	var e edgeState
  1704  	e.s = s
  1705  	e.cache = map[ID][]*Value{}
  1706  	e.contents = map[Location]contentRecord{}
  1707  	if s.f.pass.debug > regDebug {
  1708  		fmt.Printf("shuffle %s\n", s.f.Name)
  1709  		fmt.Println(s.f.String())
  1710  	}
  1711  
  1712  	for _, b := range s.visitOrder {
  1713  		if len(b.Preds) <= 1 {
  1714  			continue
  1715  		}
  1716  		e.b = b
  1717  		for i, edge := range b.Preds {
  1718  			p := edge.b
  1719  			e.p = p
  1720  			e.setup(i, s.endRegs[p.ID], s.startRegs[b.ID], stacklive[p.ID])
  1721  			e.process()
  1722  		}
  1723  	}
  1724  }
  1725  
  1726  type edgeState struct {
  1727  	s    *regAllocState
  1728  	p, b *Block // edge goes from p->b.
  1729  
  1730  	// for each pre-regalloc value, a list of equivalent cached values
  1731  	cache      map[ID][]*Value
  1732  	cachedVals []ID // (superset of) keys of the above map, for deterministic iteration
  1733  
  1734  	// map from location to the value it contains
  1735  	contents map[Location]contentRecord
  1736  
  1737  	// desired destination locations
  1738  	destinations []dstRecord
  1739  	extra        []dstRecord
  1740  
  1741  	usedRegs   regMask // registers currently holding something
  1742  	uniqueRegs regMask // registers holding the only copy of a value
  1743  	finalRegs  regMask // registers holding final target
  1744  }
  1745  
  1746  type contentRecord struct {
  1747  	vid   ID       // pre-regalloc value
  1748  	c     *Value   // cached value
  1749  	final bool     // this is a satisfied destination
  1750  	pos   src.XPos // source position of use of the value
  1751  }
  1752  
  1753  type dstRecord struct {
  1754  	loc    Location // register or stack slot
  1755  	vid    ID       // pre-regalloc value it should contain
  1756  	splice **Value  // place to store reference to the generating instruction
  1757  	pos    src.XPos // source position of use of this location
  1758  }
  1759  
  1760  // setup initializes the edge state for shuffling.
  1761  func (e *edgeState) setup(idx int, srcReg []endReg, dstReg []startReg, stacklive []ID) {
  1762  	if e.s.f.pass.debug > regDebug {
  1763  		fmt.Printf("edge %s->%s\n", e.p, e.b)
  1764  	}
  1765  
  1766  	// Clear state.
  1767  	for _, vid := range e.cachedVals {
  1768  		delete(e.cache, vid)
  1769  	}
  1770  	e.cachedVals = e.cachedVals[:0]
  1771  	for k := range e.contents {
  1772  		delete(e.contents, k)
  1773  	}
  1774  	e.usedRegs = 0
  1775  	e.uniqueRegs = 0
  1776  	e.finalRegs = 0
  1777  
  1778  	// Live registers can be sources.
  1779  	for _, x := range srcReg {
  1780  		e.set(&e.s.registers[x.r], x.v.ID, x.c, false, src.NoXPos) // don't care the position of the source
  1781  	}
  1782  	// So can all of the spill locations.
  1783  	for _, spillID := range stacklive {
  1784  		v := e.s.orig[spillID]
  1785  		spill := e.s.values[v.ID].spill
  1786  		if !e.s.sdom.isAncestorEq(spill.Block, e.p) {
  1787  			// Spills were placed that only dominate the uses found
  1788  			// during the first regalloc pass. The edge fixup code
  1789  			// can't use a spill location if the spill doesn't dominate
  1790  			// the edge.
  1791  			// We are guaranteed that if the spill doesn't dominate this edge,
  1792  			// then the value is available in a register (because we called
  1793  			// makeSpill for every value not in a register at the start
  1794  			// of an edge).
  1795  			continue
  1796  		}
  1797  		e.set(e.s.f.getHome(spillID), v.ID, spill, false, src.NoXPos) // don't care the position of the source
  1798  	}
  1799  
  1800  	// Figure out all the destinations we need.
  1801  	dsts := e.destinations[:0]
  1802  	for _, x := range dstReg {
  1803  		dsts = append(dsts, dstRecord{&e.s.registers[x.r], x.v.ID, nil, x.pos})
  1804  	}
  1805  	// Phis need their args to end up in a specific location.
  1806  	for _, v := range e.b.Values {
  1807  		if v.Op != OpPhi {
  1808  			break
  1809  		}
  1810  		loc := e.s.f.getHome(v.ID)
  1811  		if loc == nil {
  1812  			continue
  1813  		}
  1814  		dsts = append(dsts, dstRecord{loc, v.Args[idx].ID, &v.Args[idx], v.Pos})
  1815  	}
  1816  	e.destinations = dsts
  1817  
  1818  	if e.s.f.pass.debug > regDebug {
  1819  		for _, vid := range e.cachedVals {
  1820  			a := e.cache[vid]
  1821  			for _, c := range a {
  1822  				fmt.Printf("src %s: v%d cache=%s\n", e.s.f.getHome(c.ID), vid, c)
  1823  			}
  1824  		}
  1825  		for _, d := range e.destinations {
  1826  			fmt.Printf("dst %s: v%d\n", d.loc, d.vid)
  1827  		}
  1828  	}
  1829  }
  1830  
  1831  // process generates code to move all the values to the right destination locations.
  1832  func (e *edgeState) process() {
  1833  	dsts := e.destinations
  1834  
  1835  	// Process the destinations until they are all satisfied.
  1836  	for len(dsts) > 0 {
  1837  		i := 0
  1838  		for _, d := range dsts {
  1839  			if !e.processDest(d.loc, d.vid, d.splice, d.pos) {
  1840  				// Failed - save for next iteration.
  1841  				dsts[i] = d
  1842  				i++
  1843  			}
  1844  		}
  1845  		if i < len(dsts) {
  1846  			// Made some progress. Go around again.
  1847  			dsts = dsts[:i]
  1848  
  1849  			// Append any extras destinations we generated.
  1850  			dsts = append(dsts, e.extra...)
  1851  			e.extra = e.extra[:0]
  1852  			continue
  1853  		}
  1854  
  1855  		// We made no progress. That means that any
  1856  		// remaining unsatisfied moves are in simple cycles.
  1857  		// For example, A -> B -> C -> D -> A.
  1858  		//   A ----> B
  1859  		//   ^       |
  1860  		//   |       |
  1861  		//   |       v
  1862  		//   D <---- C
  1863  
  1864  		// To break the cycle, we pick an unused register, say R,
  1865  		// and put a copy of B there.
  1866  		//   A ----> B
  1867  		//   ^       |
  1868  		//   |       |
  1869  		//   |       v
  1870  		//   D <---- C <---- R=copyofB
  1871  		// When we resume the outer loop, the A->B move can now proceed,
  1872  		// and eventually the whole cycle completes.
  1873  
  1874  		// Copy any cycle location to a temp register. This duplicates
  1875  		// one of the cycle entries, allowing the just duplicated value
  1876  		// to be overwritten and the cycle to proceed.
  1877  		d := dsts[0]
  1878  		loc := d.loc
  1879  		vid := e.contents[loc].vid
  1880  		c := e.contents[loc].c
  1881  		r := e.findRegFor(c.Type)
  1882  		if e.s.f.pass.debug > regDebug {
  1883  			fmt.Printf("breaking cycle with v%d in %s:%s\n", vid, loc, c)
  1884  		}
  1885  		e.erase(r)
  1886  		if _, isReg := loc.(*Register); isReg {
  1887  			c = e.p.NewValue1(d.pos, OpCopy, c.Type, c)
  1888  		} else {
  1889  			c = e.p.NewValue1(d.pos, OpLoadReg, c.Type, c)
  1890  		}
  1891  		e.set(r, vid, c, false, d.pos)
  1892  	}
  1893  }
  1894  
  1895  // processDest generates code to put value vid into location loc. Returns true
  1896  // if progress was made.
  1897  func (e *edgeState) processDest(loc Location, vid ID, splice **Value, pos src.XPos) bool {
  1898  	occupant := e.contents[loc]
  1899  	if occupant.vid == vid {
  1900  		// Value is already in the correct place.
  1901  		e.contents[loc] = contentRecord{vid, occupant.c, true, pos}
  1902  		if splice != nil {
  1903  			(*splice).Uses--
  1904  			*splice = occupant.c
  1905  			occupant.c.Uses++
  1906  		}
  1907  		// Note: if splice==nil then c will appear dead. This is
  1908  		// non-SSA formed code, so be careful after this pass not to run
  1909  		// deadcode elimination.
  1910  		if _, ok := e.s.copies[occupant.c]; ok {
  1911  			// The copy at occupant.c was used to avoid spill.
  1912  			e.s.copies[occupant.c] = true
  1913  		}
  1914  		return true
  1915  	}
  1916  
  1917  	// Check if we're allowed to clobber the destination location.
  1918  	if len(e.cache[occupant.vid]) == 1 && !e.s.values[occupant.vid].rematerializeable {
  1919  		// We can't overwrite the last copy
  1920  		// of a value that needs to survive.
  1921  		return false
  1922  	}
  1923  
  1924  	// Copy from a source of v, register preferred.
  1925  	v := e.s.orig[vid]
  1926  	var c *Value
  1927  	var src Location
  1928  	if e.s.f.pass.debug > regDebug {
  1929  		fmt.Printf("moving v%d to %s\n", vid, loc)
  1930  		fmt.Printf("sources of v%d:", vid)
  1931  	}
  1932  	for _, w := range e.cache[vid] {
  1933  		h := e.s.f.getHome(w.ID)
  1934  		if e.s.f.pass.debug > regDebug {
  1935  			fmt.Printf(" %s:%s", h, w)
  1936  		}
  1937  		_, isreg := h.(*Register)
  1938  		if src == nil || isreg {
  1939  			c = w
  1940  			src = h
  1941  		}
  1942  	}
  1943  	if e.s.f.pass.debug > regDebug {
  1944  		if src != nil {
  1945  			fmt.Printf(" [use %s]\n", src)
  1946  		} else {
  1947  			fmt.Printf(" [no source]\n")
  1948  		}
  1949  	}
  1950  	_, dstReg := loc.(*Register)
  1951  
  1952  	// Pre-clobber destination. This avoids the
  1953  	// following situation:
  1954  	//   - v is currently held in R0 and stacktmp0.
  1955  	//   - We want to copy stacktmp1 to stacktmp0.
  1956  	//   - We choose R0 as the temporary register.
  1957  	// During the copy, both R0 and stacktmp0 are
  1958  	// clobbered, losing both copies of v. Oops!
  1959  	// Erasing the destination early means R0 will not
  1960  	// be chosen as the temp register, as it will then
  1961  	// be the last copy of v.
  1962  	e.erase(loc)
  1963  	var x *Value
  1964  	if c == nil {
  1965  		if !e.s.values[vid].rematerializeable {
  1966  			e.s.f.Fatalf("can't find source for %s->%s: %s\n", e.p, e.b, v.LongString())
  1967  		}
  1968  		if dstReg {
  1969  			x = v.copyIntoNoXPos(e.p)
  1970  		} else {
  1971  			// Rematerialize into stack slot. Need a free
  1972  			// register to accomplish this.
  1973  			r := e.findRegFor(v.Type)
  1974  			e.erase(r)
  1975  			x = v.copyIntoWithXPos(e.p, pos)
  1976  			e.set(r, vid, x, false, pos)
  1977  			// Make sure we spill with the size of the slot, not the
  1978  			// size of x (which might be wider due to our dropping
  1979  			// of narrowing conversions).
  1980  			x = e.p.NewValue1(pos, OpStoreReg, loc.(LocalSlot).Type, x)
  1981  		}
  1982  	} else {
  1983  		// Emit move from src to dst.
  1984  		_, srcReg := src.(*Register)
  1985  		if srcReg {
  1986  			if dstReg {
  1987  				x = e.p.NewValue1(pos, OpCopy, c.Type, c)
  1988  			} else {
  1989  				x = e.p.NewValue1(pos, OpStoreReg, loc.(LocalSlot).Type, c)
  1990  			}
  1991  		} else {
  1992  			if dstReg {
  1993  				x = e.p.NewValue1(pos, OpLoadReg, c.Type, c)
  1994  			} else {
  1995  				// mem->mem. Use temp register.
  1996  				r := e.findRegFor(c.Type)
  1997  				e.erase(r)
  1998  				t := e.p.NewValue1(pos, OpLoadReg, c.Type, c)
  1999  				e.set(r, vid, t, false, pos)
  2000  				x = e.p.NewValue1(pos, OpStoreReg, loc.(LocalSlot).Type, t)
  2001  			}
  2002  		}
  2003  	}
  2004  	e.set(loc, vid, x, true, pos)
  2005  	if splice != nil {
  2006  		(*splice).Uses--
  2007  		*splice = x
  2008  		x.Uses++
  2009  	}
  2010  	return true
  2011  }
  2012  
  2013  // set changes the contents of location loc to hold the given value and its cached representative.
  2014  func (e *edgeState) set(loc Location, vid ID, c *Value, final bool, pos src.XPos) {
  2015  	e.s.f.setHome(c, loc)
  2016  	e.contents[loc] = contentRecord{vid, c, final, pos}
  2017  	a := e.cache[vid]
  2018  	if len(a) == 0 {
  2019  		e.cachedVals = append(e.cachedVals, vid)
  2020  	}
  2021  	a = append(a, c)
  2022  	e.cache[vid] = a
  2023  	if r, ok := loc.(*Register); ok {
  2024  		e.usedRegs |= regMask(1) << uint(r.num)
  2025  		if final {
  2026  			e.finalRegs |= regMask(1) << uint(r.num)
  2027  		}
  2028  		if len(a) == 1 {
  2029  			e.uniqueRegs |= regMask(1) << uint(r.num)
  2030  		}
  2031  		if len(a) == 2 {
  2032  			if t, ok := e.s.f.getHome(a[0].ID).(*Register); ok {
  2033  				e.uniqueRegs &^= regMask(1) << uint(t.num)
  2034  			}
  2035  		}
  2036  	}
  2037  	if e.s.f.pass.debug > regDebug {
  2038  		fmt.Printf("%s\n", c.LongString())
  2039  		fmt.Printf("v%d now available in %s:%s\n", vid, loc, c)
  2040  	}
  2041  }
  2042  
  2043  // erase removes any user of loc.
  2044  func (e *edgeState) erase(loc Location) {
  2045  	cr := e.contents[loc]
  2046  	if cr.c == nil {
  2047  		return
  2048  	}
  2049  	vid := cr.vid
  2050  
  2051  	if cr.final {
  2052  		// Add a destination to move this value back into place.
  2053  		// Make sure it gets added to the tail of the destination queue
  2054  		// so we make progress on other moves first.
  2055  		e.extra = append(e.extra, dstRecord{loc, cr.vid, nil, cr.pos})
  2056  	}
  2057  
  2058  	// Remove c from the list of cached values.
  2059  	a := e.cache[vid]
  2060  	for i, c := range a {
  2061  		if e.s.f.getHome(c.ID) == loc {
  2062  			if e.s.f.pass.debug > regDebug {
  2063  				fmt.Printf("v%d no longer available in %s:%s\n", vid, loc, c)
  2064  			}
  2065  			a[i], a = a[len(a)-1], a[:len(a)-1]
  2066  			break
  2067  		}
  2068  	}
  2069  	e.cache[vid] = a
  2070  
  2071  	// Update register masks.
  2072  	if r, ok := loc.(*Register); ok {
  2073  		e.usedRegs &^= regMask(1) << uint(r.num)
  2074  		if cr.final {
  2075  			e.finalRegs &^= regMask(1) << uint(r.num)
  2076  		}
  2077  	}
  2078  	if len(a) == 1 {
  2079  		if r, ok := e.s.f.getHome(a[0].ID).(*Register); ok {
  2080  			e.uniqueRegs |= regMask(1) << uint(r.num)
  2081  		}
  2082  	}
  2083  }
  2084  
  2085  // findRegFor finds a register we can use to make a temp copy of type typ.
  2086  func (e *edgeState) findRegFor(typ *types.Type) Location {
  2087  	// Which registers are possibilities.
  2088  	var m regMask
  2089  	types := &e.s.f.Config.Types
  2090  	if typ.IsFloat() {
  2091  		m = e.s.compatRegs(types.Float64)
  2092  	} else {
  2093  		m = e.s.compatRegs(types.Int64)
  2094  	}
  2095  
  2096  	// Pick a register. In priority order:
  2097  	// 1) an unused register
  2098  	// 2) a non-unique register not holding a final value
  2099  	// 3) a non-unique register
  2100  	// 4) TODO: a register holding a rematerializeable value
  2101  	x := m &^ e.usedRegs
  2102  	if x != 0 {
  2103  		return &e.s.registers[pickReg(x)]
  2104  	}
  2105  	x = m &^ e.uniqueRegs &^ e.finalRegs
  2106  	if x != 0 {
  2107  		return &e.s.registers[pickReg(x)]
  2108  	}
  2109  	x = m &^ e.uniqueRegs
  2110  	if x != 0 {
  2111  		return &e.s.registers[pickReg(x)]
  2112  	}
  2113  
  2114  	// No register is available.
  2115  	// Pick a register to spill.
  2116  	for _, vid := range e.cachedVals {
  2117  		a := e.cache[vid]
  2118  		for _, c := range a {
  2119  			if r, ok := e.s.f.getHome(c.ID).(*Register); ok && m>>uint(r.num)&1 != 0 {
  2120  				if !c.rematerializeable() {
  2121  					x := e.p.NewValue1(c.Pos, OpStoreReg, c.Type, c)
  2122  					// Allocate a temp location to spill a register to.
  2123  					// The type of the slot is immaterial - it will not be live across
  2124  					// any safepoint. Just use a type big enough to hold any register.
  2125  					t := LocalSlot{N: e.s.f.fe.Auto(c.Pos, types.Int64), Type: types.Int64}
  2126  					// TODO: reuse these slots. They'll need to be erased first.
  2127  					e.set(t, vid, x, false, c.Pos)
  2128  					if e.s.f.pass.debug > regDebug {
  2129  						fmt.Printf("  SPILL %s->%s %s\n", r, t, x.LongString())
  2130  					}
  2131  				}
  2132  				// r will now be overwritten by the caller. At some point
  2133  				// later, the newly saved value will be moved back to its
  2134  				// final destination in processDest.
  2135  				return r
  2136  			}
  2137  		}
  2138  	}
  2139  
  2140  	fmt.Printf("m:%d unique:%d final:%d\n", m, e.uniqueRegs, e.finalRegs)
  2141  	for _, vid := range e.cachedVals {
  2142  		a := e.cache[vid]
  2143  		for _, c := range a {
  2144  			fmt.Printf("v%d: %s %s\n", vid, c, e.s.f.getHome(c.ID))
  2145  		}
  2146  	}
  2147  	e.s.f.Fatalf("can't find empty register on edge %s->%s", e.p, e.b)
  2148  	return nil
  2149  }
  2150  
  2151  // rematerializeable reports whether the register allocator should recompute
  2152  // a value instead of spilling/restoring it.
  2153  func (v *Value) rematerializeable() bool {
  2154  	if !opcodeTable[v.Op].rematerializeable {
  2155  		return false
  2156  	}
  2157  	for _, a := range v.Args {
  2158  		// SP and SB (generated by OpSP and OpSB) are always available.
  2159  		if a.Op != OpSP && a.Op != OpSB {
  2160  			return false
  2161  		}
  2162  	}
  2163  	return true
  2164  }
  2165  
  2166  type liveInfo struct {
  2167  	ID   ID       // ID of value
  2168  	dist int32    // # of instructions before next use
  2169  	pos  src.XPos // source position of next use
  2170  }
  2171  
  2172  // computeLive computes a map from block ID to a list of value IDs live at the end
  2173  // of that block. Together with the value ID is a count of how many instructions
  2174  // to the next use of that value. The resulting map is stored in s.live.
  2175  // computeLive also computes the desired register information at the end of each block.
  2176  // This desired register information is stored in s.desired.
  2177  // TODO: this could be quadratic if lots of variables are live across lots of
  2178  // basic blocks. Figure out a way to make this function (or, more precisely, the user
  2179  // of this function) require only linear size & time.
  2180  func (s *regAllocState) computeLive() {
  2181  	f := s.f
  2182  	s.live = make([][]liveInfo, f.NumBlocks())
  2183  	s.desired = make([]desiredState, f.NumBlocks())
  2184  	var phis []*Value
  2185  
  2186  	live := newSparseMap(f.NumValues())
  2187  	t := newSparseMap(f.NumValues())
  2188  
  2189  	// Keep track of which value we want in each register.
  2190  	var desired desiredState
  2191  
  2192  	// Instead of iterating over f.Blocks, iterate over their postordering.
  2193  	// Liveness information flows backward, so starting at the end
  2194  	// increases the probability that we will stabilize quickly.
  2195  	// TODO: Do a better job yet. Here's one possibility:
  2196  	// Calculate the dominator tree and locate all strongly connected components.
  2197  	// If a value is live in one block of an SCC, it is live in all.
  2198  	// Walk the dominator tree from end to beginning, just once, treating SCC
  2199  	// components as single blocks, duplicated calculated liveness information
  2200  	// out to all of them.
  2201  	po := f.postorder()
  2202  	s.loopnest = f.loopnest()
  2203  	s.loopnest.calculateDepths()
  2204  	for {
  2205  		changed := false
  2206  
  2207  		for _, b := range po {
  2208  			// Start with known live values at the end of the block.
  2209  			// Add len(b.Values) to adjust from end-of-block distance
  2210  			// to beginning-of-block distance.
  2211  			live.clear()
  2212  			for _, e := range s.live[b.ID] {
  2213  				live.set(e.ID, e.dist+int32(len(b.Values)), e.pos)
  2214  			}
  2215  
  2216  			// Mark control value as live
  2217  			if b.Control != nil && s.values[b.Control.ID].needReg {
  2218  				live.set(b.Control.ID, int32(len(b.Values)), b.Pos)
  2219  			}
  2220  
  2221  			// Propagate backwards to the start of the block
  2222  			// Assumes Values have been scheduled.
  2223  			phis = phis[:0]
  2224  			for i := len(b.Values) - 1; i >= 0; i-- {
  2225  				v := b.Values[i]
  2226  				live.remove(v.ID)
  2227  				if v.Op == OpPhi {
  2228  					// save phi ops for later
  2229  					phis = append(phis, v)
  2230  					continue
  2231  				}
  2232  				if opcodeTable[v.Op].call {
  2233  					c := live.contents()
  2234  					for i := range c {
  2235  						c[i].val += unlikelyDistance
  2236  					}
  2237  				}
  2238  				for _, a := range v.Args {
  2239  					if s.values[a.ID].needReg {
  2240  						live.set(a.ID, int32(i), v.Pos)
  2241  					}
  2242  				}
  2243  			}
  2244  			// Propagate desired registers backwards.
  2245  			desired.copy(&s.desired[b.ID])
  2246  			for i := len(b.Values) - 1; i >= 0; i-- {
  2247  				v := b.Values[i]
  2248  				prefs := desired.remove(v.ID)
  2249  				if v.Op == OpPhi {
  2250  					// TODO: if v is a phi, save desired register for phi inputs.
  2251  					// For now, we just drop it and don't propagate
  2252  					// desired registers back though phi nodes.
  2253  					continue
  2254  				}
  2255  				// Cancel desired registers if they get clobbered.
  2256  				desired.clobber(opcodeTable[v.Op].reg.clobbers)
  2257  				// Update desired registers if there are any fixed register inputs.
  2258  				for _, j := range opcodeTable[v.Op].reg.inputs {
  2259  					if countRegs(j.regs) != 1 {
  2260  						continue
  2261  					}
  2262  					desired.clobber(j.regs)
  2263  					desired.add(v.Args[j.idx].ID, pickReg(j.regs))
  2264  				}
  2265  				// Set desired register of input 0 if this is a 2-operand instruction.
  2266  				if opcodeTable[v.Op].resultInArg0 {
  2267  					if opcodeTable[v.Op].commutative {
  2268  						desired.addList(v.Args[1].ID, prefs)
  2269  					}
  2270  					desired.addList(v.Args[0].ID, prefs)
  2271  				}
  2272  			}
  2273  
  2274  			// For each predecessor of b, expand its list of live-at-end values.
  2275  			// invariant: live contains the values live at the start of b (excluding phi inputs)
  2276  			for i, e := range b.Preds {
  2277  				p := e.b
  2278  				// Compute additional distance for the edge.
  2279  				// Note: delta must be at least 1 to distinguish the control
  2280  				// value use from the first user in a successor block.
  2281  				delta := int32(normalDistance)
  2282  				if len(p.Succs) == 2 {
  2283  					if p.Succs[0].b == b && p.Likely == BranchLikely ||
  2284  						p.Succs[1].b == b && p.Likely == BranchUnlikely {
  2285  						delta = likelyDistance
  2286  					}
  2287  					if p.Succs[0].b == b && p.Likely == BranchUnlikely ||
  2288  						p.Succs[1].b == b && p.Likely == BranchLikely {
  2289  						delta = unlikelyDistance
  2290  					}
  2291  				}
  2292  
  2293  				// Update any desired registers at the end of p.
  2294  				s.desired[p.ID].merge(&desired)
  2295  
  2296  				// Start t off with the previously known live values at the end of p.
  2297  				t.clear()
  2298  				for _, e := range s.live[p.ID] {
  2299  					t.set(e.ID, e.dist, e.pos)
  2300  				}
  2301  				update := false
  2302  
  2303  				// Add new live values from scanning this block.
  2304  				for _, e := range live.contents() {
  2305  					d := e.val + delta
  2306  					if !t.contains(e.key) || d < t.get(e.key) {
  2307  						update = true
  2308  						t.set(e.key, d, e.aux)
  2309  					}
  2310  				}
  2311  				// Also add the correct arg from the saved phi values.
  2312  				// All phis are at distance delta (we consider them
  2313  				// simultaneously happening at the start of the block).
  2314  				for _, v := range phis {
  2315  					id := v.Args[i].ID
  2316  					if s.values[id].needReg && (!t.contains(id) || delta < t.get(id)) {
  2317  						update = true
  2318  						t.set(id, delta, v.Pos)
  2319  					}
  2320  				}
  2321  
  2322  				if !update {
  2323  					continue
  2324  				}
  2325  				// The live set has changed, update it.
  2326  				l := s.live[p.ID][:0]
  2327  				if cap(l) < t.size() {
  2328  					l = make([]liveInfo, 0, t.size())
  2329  				}
  2330  				for _, e := range t.contents() {
  2331  					l = append(l, liveInfo{e.key, e.val, e.aux})
  2332  				}
  2333  				s.live[p.ID] = l
  2334  				changed = true
  2335  			}
  2336  		}
  2337  
  2338  		if !changed {
  2339  			break
  2340  		}
  2341  	}
  2342  	if f.pass.debug > regDebug {
  2343  		fmt.Println("live values at end of each block")
  2344  		for _, b := range f.Blocks {
  2345  			fmt.Printf("  %s:", b)
  2346  			for _, x := range s.live[b.ID] {
  2347  				fmt.Printf(" v%d", x.ID)
  2348  				for _, e := range s.desired[b.ID].entries {
  2349  					if e.ID != x.ID {
  2350  						continue
  2351  					}
  2352  					fmt.Printf("[")
  2353  					first := true
  2354  					for _, r := range e.regs {
  2355  						if r == noRegister {
  2356  							continue
  2357  						}
  2358  						if !first {
  2359  							fmt.Printf(",")
  2360  						}
  2361  						fmt.Print(&s.registers[r])
  2362  						first = false
  2363  					}
  2364  					fmt.Printf("]")
  2365  				}
  2366  			}
  2367  			fmt.Printf(" avoid=%x", int64(s.desired[b.ID].avoid))
  2368  			fmt.Println()
  2369  		}
  2370  	}
  2371  }
  2372  
  2373  // A desiredState represents desired register assignments.
  2374  type desiredState struct {
  2375  	// Desired assignments will be small, so we just use a list
  2376  	// of valueID+registers entries.
  2377  	entries []desiredStateEntry
  2378  	// Registers that other values want to be in.  This value will
  2379  	// contain at least the union of the regs fields of entries, but
  2380  	// may contain additional entries for values that were once in
  2381  	// this data structure but are no longer.
  2382  	avoid regMask
  2383  }
  2384  type desiredStateEntry struct {
  2385  	// (pre-regalloc) value
  2386  	ID ID
  2387  	// Registers it would like to be in, in priority order.
  2388  	// Unused slots are filled with noRegister.
  2389  	regs [4]register
  2390  }
  2391  
  2392  func (d *desiredState) clear() {
  2393  	d.entries = d.entries[:0]
  2394  	d.avoid = 0
  2395  }
  2396  
  2397  // get returns a list of desired registers for value vid.
  2398  func (d *desiredState) get(vid ID) [4]register {
  2399  	for _, e := range d.entries {
  2400  		if e.ID == vid {
  2401  			return e.regs
  2402  		}
  2403  	}
  2404  	return [4]register{noRegister, noRegister, noRegister, noRegister}
  2405  }
  2406  
  2407  // add records that we'd like value vid to be in register r.
  2408  func (d *desiredState) add(vid ID, r register) {
  2409  	d.avoid |= regMask(1) << r
  2410  	for i := range d.entries {
  2411  		e := &d.entries[i]
  2412  		if e.ID != vid {
  2413  			continue
  2414  		}
  2415  		if e.regs[0] == r {
  2416  			// Already known and highest priority
  2417  			return
  2418  		}
  2419  		for j := 1; j < len(e.regs); j++ {
  2420  			if e.regs[j] == r {
  2421  				// Move from lower priority to top priority
  2422  				copy(e.regs[1:], e.regs[:j])
  2423  				e.regs[0] = r
  2424  				return
  2425  			}
  2426  		}
  2427  		copy(e.regs[1:], e.regs[:])
  2428  		e.regs[0] = r
  2429  		return
  2430  	}
  2431  	d.entries = append(d.entries, desiredStateEntry{vid, [4]register{r, noRegister, noRegister, noRegister}})
  2432  }
  2433  
  2434  func (d *desiredState) addList(vid ID, regs [4]register) {
  2435  	// regs is in priority order, so iterate in reverse order.
  2436  	for i := len(regs) - 1; i >= 0; i-- {
  2437  		r := regs[i]
  2438  		if r != noRegister {
  2439  			d.add(vid, r)
  2440  		}
  2441  	}
  2442  }
  2443  
  2444  // clobber erases any desired registers in the set m.
  2445  func (d *desiredState) clobber(m regMask) {
  2446  	for i := 0; i < len(d.entries); {
  2447  		e := &d.entries[i]
  2448  		j := 0
  2449  		for _, r := range e.regs {
  2450  			if r != noRegister && m>>r&1 == 0 {
  2451  				e.regs[j] = r
  2452  				j++
  2453  			}
  2454  		}
  2455  		if j == 0 {
  2456  			// No more desired registers for this value.
  2457  			d.entries[i] = d.entries[len(d.entries)-1]
  2458  			d.entries = d.entries[:len(d.entries)-1]
  2459  			continue
  2460  		}
  2461  		for ; j < len(e.regs); j++ {
  2462  			e.regs[j] = noRegister
  2463  		}
  2464  		i++
  2465  	}
  2466  	d.avoid &^= m
  2467  }
  2468  
  2469  // copy copies a desired state from another desiredState x.
  2470  func (d *desiredState) copy(x *desiredState) {
  2471  	d.entries = append(d.entries[:0], x.entries...)
  2472  	d.avoid = x.avoid
  2473  }
  2474  
  2475  // remove removes the desired registers for vid and returns them.
  2476  func (d *desiredState) remove(vid ID) [4]register {
  2477  	for i := range d.entries {
  2478  		if d.entries[i].ID == vid {
  2479  			regs := d.entries[i].regs
  2480  			d.entries[i] = d.entries[len(d.entries)-1]
  2481  			d.entries = d.entries[:len(d.entries)-1]
  2482  			return regs
  2483  		}
  2484  	}
  2485  	return [4]register{noRegister, noRegister, noRegister, noRegister}
  2486  }
  2487  
  2488  // merge merges another desired state x into d.
  2489  func (d *desiredState) merge(x *desiredState) {
  2490  	d.avoid |= x.avoid
  2491  	// There should only be a few desired registers, so
  2492  	// linear insert is ok.
  2493  	for _, e := range x.entries {
  2494  		d.addList(e.ID, e.regs)
  2495  	}
  2496  }
  2497  
  2498  func min32(x, y int32) int32 {
  2499  	if x < y {
  2500  		return x
  2501  	}
  2502  	return y
  2503  }
  2504  func max32(x, y int32) int32 {
  2505  	if x > y {
  2506  		return x
  2507  	}
  2508  	return y
  2509  }