github.com/corona10/go@v0.0.0-20180224231303-7a218942be57/src/crypto/cipher/gcm.go (about)

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package cipher
     6  
     7  import (
     8  	"crypto/subtle"
     9  	"errors"
    10  )
    11  
    12  // AEAD is a cipher mode providing authenticated encryption with associated
    13  // data. For a description of the methodology, see
    14  //	https://en.wikipedia.org/wiki/Authenticated_encryption
    15  type AEAD interface {
    16  	// NonceSize returns the size of the nonce that must be passed to Seal
    17  	// and Open.
    18  	NonceSize() int
    19  
    20  	// Overhead returns the maximum difference between the lengths of a
    21  	// plaintext and its ciphertext.
    22  	Overhead() int
    23  
    24  	// Seal encrypts and authenticates plaintext, authenticates the
    25  	// additional data and appends the result to dst, returning the updated
    26  	// slice. The nonce must be NonceSize() bytes long and unique for all
    27  	// time, for a given key.
    28  	//
    29  	// The plaintext and dst must overlap exactly or not at all. To reuse
    30  	// plaintext's storage for the encrypted output, use plaintext[:0] as dst.
    31  	Seal(dst, nonce, plaintext, additionalData []byte) []byte
    32  
    33  	// Open decrypts and authenticates ciphertext, authenticates the
    34  	// additional data and, if successful, appends the resulting plaintext
    35  	// to dst, returning the updated slice. The nonce must be NonceSize()
    36  	// bytes long and both it and the additional data must match the
    37  	// value passed to Seal.
    38  	//
    39  	// The ciphertext and dst must overlap exactly or not at all. To reuse
    40  	// ciphertext's storage for the decrypted output, use ciphertext[:0] as dst.
    41  	//
    42  	// Even if the function fails, the contents of dst, up to its capacity,
    43  	// may be overwritten.
    44  	Open(dst, nonce, ciphertext, additionalData []byte) ([]byte, error)
    45  }
    46  
    47  // gcmAble is an interface implemented by ciphers that have a specific optimized
    48  // implementation of GCM, like crypto/aes. NewGCM will check for this interface
    49  // and return the specific AEAD if found.
    50  type gcmAble interface {
    51  	NewGCM(nonceSize, tagSize int) (AEAD, error)
    52  }
    53  
    54  // gcmFieldElement represents a value in GF(2¹²⁸). In order to reflect the GCM
    55  // standard and make getUint64 suitable for marshaling these values, the bits
    56  // are stored backwards. For example:
    57  //   the coefficient of x⁰ can be obtained by v.low >> 63.
    58  //   the coefficient of x⁶³ can be obtained by v.low & 1.
    59  //   the coefficient of x⁶⁴ can be obtained by v.high >> 63.
    60  //   the coefficient of x¹²⁷ can be obtained by v.high & 1.
    61  type gcmFieldElement struct {
    62  	low, high uint64
    63  }
    64  
    65  // gcm represents a Galois Counter Mode with a specific key. See
    66  // http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf
    67  type gcm struct {
    68  	cipher    Block
    69  	nonceSize int
    70  	tagSize   int
    71  	// productTable contains the first sixteen powers of the key, H.
    72  	// However, they are in bit reversed order. See NewGCMWithNonceSize.
    73  	productTable [16]gcmFieldElement
    74  }
    75  
    76  // NewGCM returns the given 128-bit, block cipher wrapped in Galois Counter Mode
    77  // with the standard nonce length.
    78  //
    79  // In general, the GHASH operation performed by this implementation of GCM is not constant-time.
    80  // An exception is when the underlying Block was created by aes.NewCipher
    81  // on systems with hardware support for AES. See the crypto/aes package documentation for details.
    82  func NewGCM(cipher Block) (AEAD, error) {
    83  	return NewGCMWithNonceAndTagSize(cipher, gcmStandardNonceSize, gcmTagSize)
    84  }
    85  
    86  // NewGCMWithNonceSize returns the given 128-bit, block cipher wrapped in Galois
    87  // Counter Mode, which accepts nonces of the given length.
    88  //
    89  // Only use this function if you require compatibility with an existing
    90  // cryptosystem that uses non-standard nonce lengths. All other users should use
    91  // NewGCM, which is faster and more resistant to misuse.
    92  func NewGCMWithNonceSize(cipher Block, size int) (AEAD, error) {
    93  	return NewGCMWithNonceAndTagSize(cipher, size, gcmTagSize)
    94  }
    95  
    96  // NewGCMWithNonceAndTagSize returns the given 128-bit, block cipher wrapped in Galois
    97  // Counter Mode, which accepts nonces of the given length and generates tags with the given length.
    98  //
    99  // Tag sizes between 12 and 16 bytes are allowed.
   100  //
   101  // Only use this function if you require compatibility with an existing
   102  // cryptosystem that uses non-standard tag lengths. All other users should use
   103  // NewGCM, which is more resistant to misuse.
   104  func NewGCMWithNonceAndTagSize(cipher Block, nonceSize, tagSize int) (AEAD, error) {
   105  	if tagSize < gcmMinimumTagSize || tagSize > gcmBlockSize {
   106  		return nil, errors.New("cipher: incorrect tag size given to GCM")
   107  	}
   108  
   109  	if cipher, ok := cipher.(gcmAble); ok {
   110  		return cipher.NewGCM(nonceSize, tagSize)
   111  	}
   112  
   113  	if cipher.BlockSize() != gcmBlockSize {
   114  		return nil, errors.New("cipher: NewGCM requires 128-bit block cipher")
   115  	}
   116  
   117  	var key [gcmBlockSize]byte
   118  	cipher.Encrypt(key[:], key[:])
   119  
   120  	g := &gcm{cipher: cipher, nonceSize: nonceSize, tagSize: tagSize}
   121  
   122  	// We precompute 16 multiples of |key|. However, when we do lookups
   123  	// into this table we'll be using bits from a field element and
   124  	// therefore the bits will be in the reverse order. So normally one
   125  	// would expect, say, 4*key to be in index 4 of the table but due to
   126  	// this bit ordering it will actually be in index 0010 (base 2) = 2.
   127  	x := gcmFieldElement{
   128  		getUint64(key[:8]),
   129  		getUint64(key[8:]),
   130  	}
   131  	g.productTable[reverseBits(1)] = x
   132  
   133  	for i := 2; i < 16; i += 2 {
   134  		g.productTable[reverseBits(i)] = gcmDouble(&g.productTable[reverseBits(i/2)])
   135  		g.productTable[reverseBits(i+1)] = gcmAdd(&g.productTable[reverseBits(i)], &x)
   136  	}
   137  
   138  	return g, nil
   139  }
   140  
   141  const (
   142  	gcmBlockSize         = 16
   143  	gcmTagSize           = 16
   144  	gcmMinimumTagSize    = 12 // NIST SP 800-38D recommends tags with 12 or more bytes.
   145  	gcmStandardNonceSize = 12
   146  )
   147  
   148  func (g *gcm) NonceSize() int {
   149  	return g.nonceSize
   150  }
   151  
   152  func (g *gcm) Overhead() int {
   153  	return g.tagSize
   154  }
   155  
   156  func (g *gcm) Seal(dst, nonce, plaintext, data []byte) []byte {
   157  	if len(nonce) != g.nonceSize {
   158  		panic("cipher: incorrect nonce length given to GCM")
   159  	}
   160  	if uint64(len(plaintext)) > ((1<<32)-2)*uint64(g.cipher.BlockSize()) {
   161  		panic("cipher: message too large for GCM")
   162  	}
   163  
   164  	ret, out := sliceForAppend(dst, len(plaintext)+g.tagSize)
   165  
   166  	var counter, tagMask [gcmBlockSize]byte
   167  	g.deriveCounter(&counter, nonce)
   168  
   169  	g.cipher.Encrypt(tagMask[:], counter[:])
   170  	gcmInc32(&counter)
   171  
   172  	g.counterCrypt(out, plaintext, &counter)
   173  
   174  	var tag [gcmTagSize]byte
   175  	g.auth(tag[:], out[:len(plaintext)], data, &tagMask)
   176  	copy(out[len(plaintext):], tag[:])
   177  
   178  	return ret
   179  }
   180  
   181  var errOpen = errors.New("cipher: message authentication failed")
   182  
   183  func (g *gcm) Open(dst, nonce, ciphertext, data []byte) ([]byte, error) {
   184  	if len(nonce) != g.nonceSize {
   185  		panic("cipher: incorrect nonce length given to GCM")
   186  	}
   187  	// Sanity check to prevent the authentication from always succeeding if an implementation
   188  	// leaves tagSize uninitialized, for example.
   189  	if g.tagSize < gcmMinimumTagSize {
   190  		panic("cipher: incorrect GCM tag size")
   191  	}
   192  
   193  	if len(ciphertext) < g.tagSize {
   194  		return nil, errOpen
   195  	}
   196  	if uint64(len(ciphertext)) > ((1<<32)-2)*uint64(g.cipher.BlockSize())+uint64(g.tagSize) {
   197  		return nil, errOpen
   198  	}
   199  
   200  	tag := ciphertext[len(ciphertext)-g.tagSize:]
   201  	ciphertext = ciphertext[:len(ciphertext)-g.tagSize]
   202  
   203  	var counter, tagMask [gcmBlockSize]byte
   204  	g.deriveCounter(&counter, nonce)
   205  
   206  	g.cipher.Encrypt(tagMask[:], counter[:])
   207  	gcmInc32(&counter)
   208  
   209  	var expectedTag [gcmTagSize]byte
   210  	g.auth(expectedTag[:], ciphertext, data, &tagMask)
   211  
   212  	ret, out := sliceForAppend(dst, len(ciphertext))
   213  
   214  	if subtle.ConstantTimeCompare(expectedTag[:g.tagSize], tag) != 1 {
   215  		// The AESNI code decrypts and authenticates concurrently, and
   216  		// so overwrites dst in the event of a tag mismatch. That
   217  		// behavior is mimicked here in order to be consistent across
   218  		// platforms.
   219  		for i := range out {
   220  			out[i] = 0
   221  		}
   222  		return nil, errOpen
   223  	}
   224  
   225  	g.counterCrypt(out, ciphertext, &counter)
   226  
   227  	return ret, nil
   228  }
   229  
   230  // reverseBits reverses the order of the bits of 4-bit number in i.
   231  func reverseBits(i int) int {
   232  	i = ((i << 2) & 0xc) | ((i >> 2) & 0x3)
   233  	i = ((i << 1) & 0xa) | ((i >> 1) & 0x5)
   234  	return i
   235  }
   236  
   237  // gcmAdd adds two elements of GF(2¹²⁸) and returns the sum.
   238  func gcmAdd(x, y *gcmFieldElement) gcmFieldElement {
   239  	// Addition in a characteristic 2 field is just XOR.
   240  	return gcmFieldElement{x.low ^ y.low, x.high ^ y.high}
   241  }
   242  
   243  // gcmDouble returns the result of doubling an element of GF(2¹²⁸).
   244  func gcmDouble(x *gcmFieldElement) (double gcmFieldElement) {
   245  	msbSet := x.high&1 == 1
   246  
   247  	// Because of the bit-ordering, doubling is actually a right shift.
   248  	double.high = x.high >> 1
   249  	double.high |= x.low << 63
   250  	double.low = x.low >> 1
   251  
   252  	// If the most-significant bit was set before shifting then it,
   253  	// conceptually, becomes a term of x^128. This is greater than the
   254  	// irreducible polynomial so the result has to be reduced. The
   255  	// irreducible polynomial is 1+x+x^2+x^7+x^128. We can subtract that to
   256  	// eliminate the term at x^128 which also means subtracting the other
   257  	// four terms. In characteristic 2 fields, subtraction == addition ==
   258  	// XOR.
   259  	if msbSet {
   260  		double.low ^= 0xe100000000000000
   261  	}
   262  
   263  	return
   264  }
   265  
   266  var gcmReductionTable = []uint16{
   267  	0x0000, 0x1c20, 0x3840, 0x2460, 0x7080, 0x6ca0, 0x48c0, 0x54e0,
   268  	0xe100, 0xfd20, 0xd940, 0xc560, 0x9180, 0x8da0, 0xa9c0, 0xb5e0,
   269  }
   270  
   271  // mul sets y to y*H, where H is the GCM key, fixed during NewGCMWithNonceSize.
   272  func (g *gcm) mul(y *gcmFieldElement) {
   273  	var z gcmFieldElement
   274  
   275  	for i := 0; i < 2; i++ {
   276  		word := y.high
   277  		if i == 1 {
   278  			word = y.low
   279  		}
   280  
   281  		// Multiplication works by multiplying z by 16 and adding in
   282  		// one of the precomputed multiples of H.
   283  		for j := 0; j < 64; j += 4 {
   284  			msw := z.high & 0xf
   285  			z.high >>= 4
   286  			z.high |= z.low << 60
   287  			z.low >>= 4
   288  			z.low ^= uint64(gcmReductionTable[msw]) << 48
   289  
   290  			// the values in |table| are ordered for
   291  			// little-endian bit positions. See the comment
   292  			// in NewGCMWithNonceSize.
   293  			t := &g.productTable[word&0xf]
   294  
   295  			z.low ^= t.low
   296  			z.high ^= t.high
   297  			word >>= 4
   298  		}
   299  	}
   300  
   301  	*y = z
   302  }
   303  
   304  // updateBlocks extends y with more polynomial terms from blocks, based on
   305  // Horner's rule. There must be a multiple of gcmBlockSize bytes in blocks.
   306  func (g *gcm) updateBlocks(y *gcmFieldElement, blocks []byte) {
   307  	for len(blocks) > 0 {
   308  		y.low ^= getUint64(blocks)
   309  		y.high ^= getUint64(blocks[8:])
   310  		g.mul(y)
   311  		blocks = blocks[gcmBlockSize:]
   312  	}
   313  }
   314  
   315  // update extends y with more polynomial terms from data. If data is not a
   316  // multiple of gcmBlockSize bytes long then the remainder is zero padded.
   317  func (g *gcm) update(y *gcmFieldElement, data []byte) {
   318  	fullBlocks := (len(data) >> 4) << 4
   319  	g.updateBlocks(y, data[:fullBlocks])
   320  
   321  	if len(data) != fullBlocks {
   322  		var partialBlock [gcmBlockSize]byte
   323  		copy(partialBlock[:], data[fullBlocks:])
   324  		g.updateBlocks(y, partialBlock[:])
   325  	}
   326  }
   327  
   328  // gcmInc32 treats the final four bytes of counterBlock as a big-endian value
   329  // and increments it.
   330  func gcmInc32(counterBlock *[16]byte) {
   331  	for i := gcmBlockSize - 1; i >= gcmBlockSize-4; i-- {
   332  		counterBlock[i]++
   333  		if counterBlock[i] != 0 {
   334  			break
   335  		}
   336  	}
   337  }
   338  
   339  // sliceForAppend takes a slice and a requested number of bytes. It returns a
   340  // slice with the contents of the given slice followed by that many bytes and a
   341  // second slice that aliases into it and contains only the extra bytes. If the
   342  // original slice has sufficient capacity then no allocation is performed.
   343  func sliceForAppend(in []byte, n int) (head, tail []byte) {
   344  	if total := len(in) + n; cap(in) >= total {
   345  		head = in[:total]
   346  	} else {
   347  		head = make([]byte, total)
   348  		copy(head, in)
   349  	}
   350  	tail = head[len(in):]
   351  	return
   352  }
   353  
   354  // counterCrypt crypts in to out using g.cipher in counter mode.
   355  func (g *gcm) counterCrypt(out, in []byte, counter *[gcmBlockSize]byte) {
   356  	var mask [gcmBlockSize]byte
   357  
   358  	for len(in) >= gcmBlockSize {
   359  		g.cipher.Encrypt(mask[:], counter[:])
   360  		gcmInc32(counter)
   361  
   362  		xorWords(out, in, mask[:])
   363  		out = out[gcmBlockSize:]
   364  		in = in[gcmBlockSize:]
   365  	}
   366  
   367  	if len(in) > 0 {
   368  		g.cipher.Encrypt(mask[:], counter[:])
   369  		gcmInc32(counter)
   370  		xorBytes(out, in, mask[:])
   371  	}
   372  }
   373  
   374  // deriveCounter computes the initial GCM counter state from the given nonce.
   375  // See NIST SP 800-38D, section 7.1. This assumes that counter is filled with
   376  // zeros on entry.
   377  func (g *gcm) deriveCounter(counter *[gcmBlockSize]byte, nonce []byte) {
   378  	// GCM has two modes of operation with respect to the initial counter
   379  	// state: a "fast path" for 96-bit (12-byte) nonces, and a "slow path"
   380  	// for nonces of other lengths. For a 96-bit nonce, the nonce, along
   381  	// with a four-byte big-endian counter starting at one, is used
   382  	// directly as the starting counter. For other nonce sizes, the counter
   383  	// is computed by passing it through the GHASH function.
   384  	if len(nonce) == gcmStandardNonceSize {
   385  		copy(counter[:], nonce)
   386  		counter[gcmBlockSize-1] = 1
   387  	} else {
   388  		var y gcmFieldElement
   389  		g.update(&y, nonce)
   390  		y.high ^= uint64(len(nonce)) * 8
   391  		g.mul(&y)
   392  		putUint64(counter[:8], y.low)
   393  		putUint64(counter[8:], y.high)
   394  	}
   395  }
   396  
   397  // auth calculates GHASH(ciphertext, additionalData), masks the result with
   398  // tagMask and writes the result to out.
   399  func (g *gcm) auth(out, ciphertext, additionalData []byte, tagMask *[gcmTagSize]byte) {
   400  	var y gcmFieldElement
   401  	g.update(&y, additionalData)
   402  	g.update(&y, ciphertext)
   403  
   404  	y.low ^= uint64(len(additionalData)) * 8
   405  	y.high ^= uint64(len(ciphertext)) * 8
   406  
   407  	g.mul(&y)
   408  
   409  	putUint64(out, y.low)
   410  	putUint64(out[8:], y.high)
   411  
   412  	xorWords(out, out, tagMask[:])
   413  }
   414  
   415  func getUint64(data []byte) uint64 {
   416  	r := uint64(data[0])<<56 |
   417  		uint64(data[1])<<48 |
   418  		uint64(data[2])<<40 |
   419  		uint64(data[3])<<32 |
   420  		uint64(data[4])<<24 |
   421  		uint64(data[5])<<16 |
   422  		uint64(data[6])<<8 |
   423  		uint64(data[7])
   424  	return r
   425  }
   426  
   427  func putUint64(out []byte, v uint64) {
   428  	out[0] = byte(v >> 56)
   429  	out[1] = byte(v >> 48)
   430  	out[2] = byte(v >> 40)
   431  	out[3] = byte(v >> 32)
   432  	out[4] = byte(v >> 24)
   433  	out[5] = byte(v >> 16)
   434  	out[6] = byte(v >> 8)
   435  	out[7] = byte(v)
   436  }