github.com/corona10/go@v0.0.0-20180224231303-7a218942be57/src/encoding/gob/encode.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 //go:generate go run encgen.go -output enc_helpers.go 6 7 package gob 8 9 import ( 10 "encoding" 11 "encoding/binary" 12 "math" 13 "math/bits" 14 "reflect" 15 "sync" 16 ) 17 18 const uint64Size = 8 19 20 type encHelper func(state *encoderState, v reflect.Value) bool 21 22 // encoderState is the global execution state of an instance of the encoder. 23 // Field numbers are delta encoded and always increase. The field 24 // number is initialized to -1 so 0 comes out as delta(1). A delta of 25 // 0 terminates the structure. 26 type encoderState struct { 27 enc *Encoder 28 b *encBuffer 29 sendZero bool // encoding an array element or map key/value pair; send zero values 30 fieldnum int // the last field number written. 31 buf [1 + uint64Size]byte // buffer used by the encoder; here to avoid allocation. 32 next *encoderState // for free list 33 } 34 35 // encBuffer is an extremely simple, fast implementation of a write-only byte buffer. 36 // It never returns a non-nil error, but Write returns an error value so it matches io.Writer. 37 type encBuffer struct { 38 data []byte 39 scratch [64]byte 40 } 41 42 var encBufferPool = sync.Pool{ 43 New: func() interface{} { 44 e := new(encBuffer) 45 e.data = e.scratch[0:0] 46 return e 47 }, 48 } 49 50 func (e *encBuffer) WriteByte(c byte) { 51 e.data = append(e.data, c) 52 } 53 54 func (e *encBuffer) Write(p []byte) (int, error) { 55 e.data = append(e.data, p...) 56 return len(p), nil 57 } 58 59 func (e *encBuffer) WriteString(s string) { 60 e.data = append(e.data, s...) 61 } 62 63 func (e *encBuffer) Len() int { 64 return len(e.data) 65 } 66 67 func (e *encBuffer) Bytes() []byte { 68 return e.data 69 } 70 71 func (e *encBuffer) Reset() { 72 if len(e.data) >= tooBig { 73 e.data = e.scratch[0:0] 74 } else { 75 e.data = e.data[0:0] 76 } 77 } 78 79 func (enc *Encoder) newEncoderState(b *encBuffer) *encoderState { 80 e := enc.freeList 81 if e == nil { 82 e = new(encoderState) 83 e.enc = enc 84 } else { 85 enc.freeList = e.next 86 } 87 e.sendZero = false 88 e.fieldnum = 0 89 e.b = b 90 if len(b.data) == 0 { 91 b.data = b.scratch[0:0] 92 } 93 return e 94 } 95 96 func (enc *Encoder) freeEncoderState(e *encoderState) { 97 e.next = enc.freeList 98 enc.freeList = e 99 } 100 101 // Unsigned integers have a two-state encoding. If the number is less 102 // than 128 (0 through 0x7F), its value is written directly. 103 // Otherwise the value is written in big-endian byte order preceded 104 // by the byte length, negated. 105 106 // encodeUint writes an encoded unsigned integer to state.b. 107 func (state *encoderState) encodeUint(x uint64) { 108 if x <= 0x7F { 109 state.b.WriteByte(uint8(x)) 110 return 111 } 112 113 binary.BigEndian.PutUint64(state.buf[1:], x) 114 bc := bits.LeadingZeros64(x) >> 3 // 8 - bytelen(x) 115 state.buf[bc] = uint8(bc - uint64Size) // and then we subtract 8 to get -bytelen(x) 116 117 state.b.Write(state.buf[bc : uint64Size+1]) 118 } 119 120 // encodeInt writes an encoded signed integer to state.w. 121 // The low bit of the encoding says whether to bit complement the (other bits of the) 122 // uint to recover the int. 123 func (state *encoderState) encodeInt(i int64) { 124 var x uint64 125 if i < 0 { 126 x = uint64(^i<<1) | 1 127 } else { 128 x = uint64(i << 1) 129 } 130 state.encodeUint(x) 131 } 132 133 // encOp is the signature of an encoding operator for a given type. 134 type encOp func(i *encInstr, state *encoderState, v reflect.Value) 135 136 // The 'instructions' of the encoding machine 137 type encInstr struct { 138 op encOp 139 field int // field number in input 140 index []int // struct index 141 indir int // how many pointer indirections to reach the value in the struct 142 } 143 144 // update emits a field number and updates the state to record its value for delta encoding. 145 // If the instruction pointer is nil, it does nothing 146 func (state *encoderState) update(instr *encInstr) { 147 if instr != nil { 148 state.encodeUint(uint64(instr.field - state.fieldnum)) 149 state.fieldnum = instr.field 150 } 151 } 152 153 // Each encoder for a composite is responsible for handling any 154 // indirections associated with the elements of the data structure. 155 // If any pointer so reached is nil, no bytes are written. If the 156 // data item is zero, no bytes are written. Single values - ints, 157 // strings etc. - are indirected before calling their encoders. 158 // Otherwise, the output (for a scalar) is the field number, as an 159 // encoded integer, followed by the field data in its appropriate 160 // format. 161 162 // encIndirect dereferences pv indir times and returns the result. 163 func encIndirect(pv reflect.Value, indir int) reflect.Value { 164 for ; indir > 0; indir-- { 165 if pv.IsNil() { 166 break 167 } 168 pv = pv.Elem() 169 } 170 return pv 171 } 172 173 // encBool encodes the bool referenced by v as an unsigned 0 or 1. 174 func encBool(i *encInstr, state *encoderState, v reflect.Value) { 175 b := v.Bool() 176 if b || state.sendZero { 177 state.update(i) 178 if b { 179 state.encodeUint(1) 180 } else { 181 state.encodeUint(0) 182 } 183 } 184 } 185 186 // encInt encodes the signed integer (int int8 int16 int32 int64) referenced by v. 187 func encInt(i *encInstr, state *encoderState, v reflect.Value) { 188 value := v.Int() 189 if value != 0 || state.sendZero { 190 state.update(i) 191 state.encodeInt(value) 192 } 193 } 194 195 // encUint encodes the unsigned integer (uint uint8 uint16 uint32 uint64 uintptr) referenced by v. 196 func encUint(i *encInstr, state *encoderState, v reflect.Value) { 197 value := v.Uint() 198 if value != 0 || state.sendZero { 199 state.update(i) 200 state.encodeUint(value) 201 } 202 } 203 204 // floatBits returns a uint64 holding the bits of a floating-point number. 205 // Floating-point numbers are transmitted as uint64s holding the bits 206 // of the underlying representation. They are sent byte-reversed, with 207 // the exponent end coming out first, so integer floating point numbers 208 // (for example) transmit more compactly. This routine does the 209 // swizzling. 210 func floatBits(f float64) uint64 { 211 u := math.Float64bits(f) 212 return bits.ReverseBytes64(u) 213 } 214 215 // encFloat encodes the floating point value (float32 float64) referenced by v. 216 func encFloat(i *encInstr, state *encoderState, v reflect.Value) { 217 f := v.Float() 218 if f != 0 || state.sendZero { 219 bits := floatBits(f) 220 state.update(i) 221 state.encodeUint(bits) 222 } 223 } 224 225 // encComplex encodes the complex value (complex64 complex128) referenced by v. 226 // Complex numbers are just a pair of floating-point numbers, real part first. 227 func encComplex(i *encInstr, state *encoderState, v reflect.Value) { 228 c := v.Complex() 229 if c != 0+0i || state.sendZero { 230 rpart := floatBits(real(c)) 231 ipart := floatBits(imag(c)) 232 state.update(i) 233 state.encodeUint(rpart) 234 state.encodeUint(ipart) 235 } 236 } 237 238 // encUint8Array encodes the byte array referenced by v. 239 // Byte arrays are encoded as an unsigned count followed by the raw bytes. 240 func encUint8Array(i *encInstr, state *encoderState, v reflect.Value) { 241 b := v.Bytes() 242 if len(b) > 0 || state.sendZero { 243 state.update(i) 244 state.encodeUint(uint64(len(b))) 245 state.b.Write(b) 246 } 247 } 248 249 // encString encodes the string referenced by v. 250 // Strings are encoded as an unsigned count followed by the raw bytes. 251 func encString(i *encInstr, state *encoderState, v reflect.Value) { 252 s := v.String() 253 if len(s) > 0 || state.sendZero { 254 state.update(i) 255 state.encodeUint(uint64(len(s))) 256 state.b.WriteString(s) 257 } 258 } 259 260 // encStructTerminator encodes the end of an encoded struct 261 // as delta field number of 0. 262 func encStructTerminator(i *encInstr, state *encoderState, v reflect.Value) { 263 state.encodeUint(0) 264 } 265 266 // Execution engine 267 268 // encEngine an array of instructions indexed by field number of the encoding 269 // data, typically a struct. It is executed top to bottom, walking the struct. 270 type encEngine struct { 271 instr []encInstr 272 } 273 274 const singletonField = 0 275 276 // valid reports whether the value is valid and a non-nil pointer. 277 // (Slices, maps, and chans take care of themselves.) 278 func valid(v reflect.Value) bool { 279 switch v.Kind() { 280 case reflect.Invalid: 281 return false 282 case reflect.Ptr: 283 return !v.IsNil() 284 } 285 return true 286 } 287 288 // encodeSingle encodes a single top-level non-struct value. 289 func (enc *Encoder) encodeSingle(b *encBuffer, engine *encEngine, value reflect.Value) { 290 state := enc.newEncoderState(b) 291 defer enc.freeEncoderState(state) 292 state.fieldnum = singletonField 293 // There is no surrounding struct to frame the transmission, so we must 294 // generate data even if the item is zero. To do this, set sendZero. 295 state.sendZero = true 296 instr := &engine.instr[singletonField] 297 if instr.indir > 0 { 298 value = encIndirect(value, instr.indir) 299 } 300 if valid(value) { 301 instr.op(instr, state, value) 302 } 303 } 304 305 // encodeStruct encodes a single struct value. 306 func (enc *Encoder) encodeStruct(b *encBuffer, engine *encEngine, value reflect.Value) { 307 if !valid(value) { 308 return 309 } 310 state := enc.newEncoderState(b) 311 defer enc.freeEncoderState(state) 312 state.fieldnum = -1 313 for i := 0; i < len(engine.instr); i++ { 314 instr := &engine.instr[i] 315 if i >= value.NumField() { 316 // encStructTerminator 317 instr.op(instr, state, reflect.Value{}) 318 break 319 } 320 field := value.FieldByIndex(instr.index) 321 if instr.indir > 0 { 322 field = encIndirect(field, instr.indir) 323 // TODO: Is field guaranteed valid? If so we could avoid this check. 324 if !valid(field) { 325 continue 326 } 327 } 328 instr.op(instr, state, field) 329 } 330 } 331 332 // encodeArray encodes an array. 333 func (enc *Encoder) encodeArray(b *encBuffer, value reflect.Value, op encOp, elemIndir int, length int, helper encHelper) { 334 state := enc.newEncoderState(b) 335 defer enc.freeEncoderState(state) 336 state.fieldnum = -1 337 state.sendZero = true 338 state.encodeUint(uint64(length)) 339 if helper != nil && helper(state, value) { 340 return 341 } 342 for i := 0; i < length; i++ { 343 elem := value.Index(i) 344 if elemIndir > 0 { 345 elem = encIndirect(elem, elemIndir) 346 // TODO: Is elem guaranteed valid? If so we could avoid this check. 347 if !valid(elem) { 348 errorf("encodeArray: nil element") 349 } 350 } 351 op(nil, state, elem) 352 } 353 } 354 355 // encodeReflectValue is a helper for maps. It encodes the value v. 356 func encodeReflectValue(state *encoderState, v reflect.Value, op encOp, indir int) { 357 for i := 0; i < indir && v.IsValid(); i++ { 358 v = reflect.Indirect(v) 359 } 360 if !v.IsValid() { 361 errorf("encodeReflectValue: nil element") 362 } 363 op(nil, state, v) 364 } 365 366 // encodeMap encodes a map as unsigned count followed by key:value pairs. 367 func (enc *Encoder) encodeMap(b *encBuffer, mv reflect.Value, keyOp, elemOp encOp, keyIndir, elemIndir int) { 368 state := enc.newEncoderState(b) 369 state.fieldnum = -1 370 state.sendZero = true 371 keys := mv.MapKeys() 372 state.encodeUint(uint64(len(keys))) 373 for _, key := range keys { 374 encodeReflectValue(state, key, keyOp, keyIndir) 375 encodeReflectValue(state, mv.MapIndex(key), elemOp, elemIndir) 376 } 377 enc.freeEncoderState(state) 378 } 379 380 // encodeInterface encodes the interface value iv. 381 // To send an interface, we send a string identifying the concrete type, followed 382 // by the type identifier (which might require defining that type right now), followed 383 // by the concrete value. A nil value gets sent as the empty string for the name, 384 // followed by no value. 385 func (enc *Encoder) encodeInterface(b *encBuffer, iv reflect.Value) { 386 // Gobs can encode nil interface values but not typed interface 387 // values holding nil pointers, since nil pointers point to no value. 388 elem := iv.Elem() 389 if elem.Kind() == reflect.Ptr && elem.IsNil() { 390 errorf("gob: cannot encode nil pointer of type %s inside interface", iv.Elem().Type()) 391 } 392 state := enc.newEncoderState(b) 393 state.fieldnum = -1 394 state.sendZero = true 395 if iv.IsNil() { 396 state.encodeUint(0) 397 return 398 } 399 400 ut := userType(iv.Elem().Type()) 401 namei, ok := concreteTypeToName.Load(ut.base) 402 if !ok { 403 errorf("type not registered for interface: %s", ut.base) 404 } 405 name := namei.(string) 406 407 // Send the name. 408 state.encodeUint(uint64(len(name))) 409 state.b.WriteString(name) 410 // Define the type id if necessary. 411 enc.sendTypeDescriptor(enc.writer(), state, ut) 412 // Send the type id. 413 enc.sendTypeId(state, ut) 414 // Encode the value into a new buffer. Any nested type definitions 415 // should be written to b, before the encoded value. 416 enc.pushWriter(b) 417 data := encBufferPool.Get().(*encBuffer) 418 data.Write(spaceForLength) 419 enc.encode(data, elem, ut) 420 if enc.err != nil { 421 error_(enc.err) 422 } 423 enc.popWriter() 424 enc.writeMessage(b, data) 425 data.Reset() 426 encBufferPool.Put(data) 427 if enc.err != nil { 428 error_(enc.err) 429 } 430 enc.freeEncoderState(state) 431 } 432 433 // isZero reports whether the value is the zero of its type. 434 func isZero(val reflect.Value) bool { 435 switch val.Kind() { 436 case reflect.Array: 437 for i := 0; i < val.Len(); i++ { 438 if !isZero(val.Index(i)) { 439 return false 440 } 441 } 442 return true 443 case reflect.Map, reflect.Slice, reflect.String: 444 return val.Len() == 0 445 case reflect.Bool: 446 return !val.Bool() 447 case reflect.Complex64, reflect.Complex128: 448 return val.Complex() == 0 449 case reflect.Chan, reflect.Func, reflect.Interface, reflect.Ptr: 450 return val.IsNil() 451 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 452 return val.Int() == 0 453 case reflect.Float32, reflect.Float64: 454 return val.Float() == 0 455 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 456 return val.Uint() == 0 457 case reflect.Struct: 458 for i := 0; i < val.NumField(); i++ { 459 if !isZero(val.Field(i)) { 460 return false 461 } 462 } 463 return true 464 } 465 panic("unknown type in isZero " + val.Type().String()) 466 } 467 468 // encGobEncoder encodes a value that implements the GobEncoder interface. 469 // The data is sent as a byte array. 470 func (enc *Encoder) encodeGobEncoder(b *encBuffer, ut *userTypeInfo, v reflect.Value) { 471 // TODO: should we catch panics from the called method? 472 473 var data []byte 474 var err error 475 // We know it's one of these. 476 switch ut.externalEnc { 477 case xGob: 478 data, err = v.Interface().(GobEncoder).GobEncode() 479 case xBinary: 480 data, err = v.Interface().(encoding.BinaryMarshaler).MarshalBinary() 481 case xText: 482 data, err = v.Interface().(encoding.TextMarshaler).MarshalText() 483 } 484 if err != nil { 485 error_(err) 486 } 487 state := enc.newEncoderState(b) 488 state.fieldnum = -1 489 state.encodeUint(uint64(len(data))) 490 state.b.Write(data) 491 enc.freeEncoderState(state) 492 } 493 494 var encOpTable = [...]encOp{ 495 reflect.Bool: encBool, 496 reflect.Int: encInt, 497 reflect.Int8: encInt, 498 reflect.Int16: encInt, 499 reflect.Int32: encInt, 500 reflect.Int64: encInt, 501 reflect.Uint: encUint, 502 reflect.Uint8: encUint, 503 reflect.Uint16: encUint, 504 reflect.Uint32: encUint, 505 reflect.Uint64: encUint, 506 reflect.Uintptr: encUint, 507 reflect.Float32: encFloat, 508 reflect.Float64: encFloat, 509 reflect.Complex64: encComplex, 510 reflect.Complex128: encComplex, 511 reflect.String: encString, 512 } 513 514 // encOpFor returns (a pointer to) the encoding op for the base type under rt and 515 // the indirection count to reach it. 516 func encOpFor(rt reflect.Type, inProgress map[reflect.Type]*encOp, building map[*typeInfo]bool) (*encOp, int) { 517 ut := userType(rt) 518 // If the type implements GobEncoder, we handle it without further processing. 519 if ut.externalEnc != 0 { 520 return gobEncodeOpFor(ut) 521 } 522 // If this type is already in progress, it's a recursive type (e.g. map[string]*T). 523 // Return the pointer to the op we're already building. 524 if opPtr := inProgress[rt]; opPtr != nil { 525 return opPtr, ut.indir 526 } 527 typ := ut.base 528 indir := ut.indir 529 k := typ.Kind() 530 var op encOp 531 if int(k) < len(encOpTable) { 532 op = encOpTable[k] 533 } 534 if op == nil { 535 inProgress[rt] = &op 536 // Special cases 537 switch t := typ; t.Kind() { 538 case reflect.Slice: 539 if t.Elem().Kind() == reflect.Uint8 { 540 op = encUint8Array 541 break 542 } 543 // Slices have a header; we decode it to find the underlying array. 544 elemOp, elemIndir := encOpFor(t.Elem(), inProgress, building) 545 helper := encSliceHelper[t.Elem().Kind()] 546 op = func(i *encInstr, state *encoderState, slice reflect.Value) { 547 if !state.sendZero && slice.Len() == 0 { 548 return 549 } 550 state.update(i) 551 state.enc.encodeArray(state.b, slice, *elemOp, elemIndir, slice.Len(), helper) 552 } 553 case reflect.Array: 554 // True arrays have size in the type. 555 elemOp, elemIndir := encOpFor(t.Elem(), inProgress, building) 556 helper := encArrayHelper[t.Elem().Kind()] 557 op = func(i *encInstr, state *encoderState, array reflect.Value) { 558 state.update(i) 559 state.enc.encodeArray(state.b, array, *elemOp, elemIndir, array.Len(), helper) 560 } 561 case reflect.Map: 562 keyOp, keyIndir := encOpFor(t.Key(), inProgress, building) 563 elemOp, elemIndir := encOpFor(t.Elem(), inProgress, building) 564 op = func(i *encInstr, state *encoderState, mv reflect.Value) { 565 // We send zero-length (but non-nil) maps because the 566 // receiver might want to use the map. (Maps don't use append.) 567 if !state.sendZero && mv.IsNil() { 568 return 569 } 570 state.update(i) 571 state.enc.encodeMap(state.b, mv, *keyOp, *elemOp, keyIndir, elemIndir) 572 } 573 case reflect.Struct: 574 // Generate a closure that calls out to the engine for the nested type. 575 getEncEngine(userType(typ), building) 576 info := mustGetTypeInfo(typ) 577 op = func(i *encInstr, state *encoderState, sv reflect.Value) { 578 state.update(i) 579 // indirect through info to delay evaluation for recursive structs 580 enc := info.encoder.Load().(*encEngine) 581 state.enc.encodeStruct(state.b, enc, sv) 582 } 583 case reflect.Interface: 584 op = func(i *encInstr, state *encoderState, iv reflect.Value) { 585 if !state.sendZero && (!iv.IsValid() || iv.IsNil()) { 586 return 587 } 588 state.update(i) 589 state.enc.encodeInterface(state.b, iv) 590 } 591 } 592 } 593 if op == nil { 594 errorf("can't happen: encode type %s", rt) 595 } 596 return &op, indir 597 } 598 599 // gobEncodeOpFor returns the op for a type that is known to implement GobEncoder. 600 func gobEncodeOpFor(ut *userTypeInfo) (*encOp, int) { 601 rt := ut.user 602 if ut.encIndir == -1 { 603 rt = reflect.PtrTo(rt) 604 } else if ut.encIndir > 0 { 605 for i := int8(0); i < ut.encIndir; i++ { 606 rt = rt.Elem() 607 } 608 } 609 var op encOp 610 op = func(i *encInstr, state *encoderState, v reflect.Value) { 611 if ut.encIndir == -1 { 612 // Need to climb up one level to turn value into pointer. 613 if !v.CanAddr() { 614 errorf("unaddressable value of type %s", rt) 615 } 616 v = v.Addr() 617 } 618 if !state.sendZero && isZero(v) { 619 return 620 } 621 state.update(i) 622 state.enc.encodeGobEncoder(state.b, ut, v) 623 } 624 return &op, int(ut.encIndir) // encIndir: op will get called with p == address of receiver. 625 } 626 627 // compileEnc returns the engine to compile the type. 628 func compileEnc(ut *userTypeInfo, building map[*typeInfo]bool) *encEngine { 629 srt := ut.base 630 engine := new(encEngine) 631 seen := make(map[reflect.Type]*encOp) 632 rt := ut.base 633 if ut.externalEnc != 0 { 634 rt = ut.user 635 } 636 if ut.externalEnc == 0 && srt.Kind() == reflect.Struct { 637 for fieldNum, wireFieldNum := 0, 0; fieldNum < srt.NumField(); fieldNum++ { 638 f := srt.Field(fieldNum) 639 if !isSent(&f) { 640 continue 641 } 642 op, indir := encOpFor(f.Type, seen, building) 643 engine.instr = append(engine.instr, encInstr{*op, wireFieldNum, f.Index, indir}) 644 wireFieldNum++ 645 } 646 if srt.NumField() > 0 && len(engine.instr) == 0 { 647 errorf("type %s has no exported fields", rt) 648 } 649 engine.instr = append(engine.instr, encInstr{encStructTerminator, 0, nil, 0}) 650 } else { 651 engine.instr = make([]encInstr, 1) 652 op, indir := encOpFor(rt, seen, building) 653 engine.instr[0] = encInstr{*op, singletonField, nil, indir} 654 } 655 return engine 656 } 657 658 // getEncEngine returns the engine to compile the type. 659 func getEncEngine(ut *userTypeInfo, building map[*typeInfo]bool) *encEngine { 660 info, err := getTypeInfo(ut) 661 if err != nil { 662 error_(err) 663 } 664 enc, ok := info.encoder.Load().(*encEngine) 665 if !ok { 666 enc = buildEncEngine(info, ut, building) 667 } 668 return enc 669 } 670 671 func buildEncEngine(info *typeInfo, ut *userTypeInfo, building map[*typeInfo]bool) *encEngine { 672 // Check for recursive types. 673 if building != nil && building[info] { 674 return nil 675 } 676 info.encInit.Lock() 677 defer info.encInit.Unlock() 678 enc, ok := info.encoder.Load().(*encEngine) 679 if !ok { 680 if building == nil { 681 building = make(map[*typeInfo]bool) 682 } 683 building[info] = true 684 enc = compileEnc(ut, building) 685 info.encoder.Store(enc) 686 } 687 return enc 688 } 689 690 func (enc *Encoder) encode(b *encBuffer, value reflect.Value, ut *userTypeInfo) { 691 defer catchError(&enc.err) 692 engine := getEncEngine(ut, nil) 693 indir := ut.indir 694 if ut.externalEnc != 0 { 695 indir = int(ut.encIndir) 696 } 697 for i := 0; i < indir; i++ { 698 value = reflect.Indirect(value) 699 } 700 if ut.externalEnc == 0 && value.Type().Kind() == reflect.Struct { 701 enc.encodeStruct(b, engine, value) 702 } else { 703 enc.encodeSingle(b, engine, value) 704 } 705 }