github.com/corona10/go@v0.0.0-20180224231303-7a218942be57/src/encoding/json/encode.go (about)

     1  // Copyright 2010 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package json implements encoding and decoding of JSON as defined in
     6  // RFC 7159. The mapping between JSON and Go values is described
     7  // in the documentation for the Marshal and Unmarshal functions.
     8  //
     9  // See "JSON and Go" for an introduction to this package:
    10  // https://golang.org/doc/articles/json_and_go.html
    11  package json
    12  
    13  import (
    14  	"bytes"
    15  	"encoding"
    16  	"encoding/base64"
    17  	"fmt"
    18  	"math"
    19  	"reflect"
    20  	"sort"
    21  	"strconv"
    22  	"strings"
    23  	"sync"
    24  	"sync/atomic"
    25  	"unicode"
    26  	"unicode/utf8"
    27  )
    28  
    29  // Marshal returns the JSON encoding of v.
    30  //
    31  // Marshal traverses the value v recursively.
    32  // If an encountered value implements the Marshaler interface
    33  // and is not a nil pointer, Marshal calls its MarshalJSON method
    34  // to produce JSON. If no MarshalJSON method is present but the
    35  // value implements encoding.TextMarshaler instead, Marshal calls
    36  // its MarshalText method and encodes the result as a JSON string.
    37  // The nil pointer exception is not strictly necessary
    38  // but mimics a similar, necessary exception in the behavior of
    39  // UnmarshalJSON.
    40  //
    41  // Otherwise, Marshal uses the following type-dependent default encodings:
    42  //
    43  // Boolean values encode as JSON booleans.
    44  //
    45  // Floating point, integer, and Number values encode as JSON numbers.
    46  //
    47  // String values encode as JSON strings coerced to valid UTF-8,
    48  // replacing invalid bytes with the Unicode replacement rune.
    49  // The angle brackets "<" and ">" are escaped to "\u003c" and "\u003e"
    50  // to keep some browsers from misinterpreting JSON output as HTML.
    51  // Ampersand "&" is also escaped to "\u0026" for the same reason.
    52  // This escaping can be disabled using an Encoder that had SetEscapeHTML(false)
    53  // called on it.
    54  //
    55  // Array and slice values encode as JSON arrays, except that
    56  // []byte encodes as a base64-encoded string, and a nil slice
    57  // encodes as the null JSON value.
    58  //
    59  // Struct values encode as JSON objects.
    60  // Each exported struct field becomes a member of the object, using the
    61  // field name as the object key, unless the field is omitted for one of the
    62  // reasons given below.
    63  //
    64  // The encoding of each struct field can be customized by the format string
    65  // stored under the "json" key in the struct field's tag.
    66  // The format string gives the name of the field, possibly followed by a
    67  // comma-separated list of options. The name may be empty in order to
    68  // specify options without overriding the default field name.
    69  //
    70  // The "omitempty" option specifies that the field should be omitted
    71  // from the encoding if the field has an empty value, defined as
    72  // false, 0, a nil pointer, a nil interface value, and any empty array,
    73  // slice, map, or string.
    74  //
    75  // As a special case, if the field tag is "-", the field is always omitted.
    76  // Note that a field with name "-" can still be generated using the tag "-,".
    77  //
    78  // Examples of struct field tags and their meanings:
    79  //
    80  //   // Field appears in JSON as key "myName".
    81  //   Field int `json:"myName"`
    82  //
    83  //   // Field appears in JSON as key "myName" and
    84  //   // the field is omitted from the object if its value is empty,
    85  //   // as defined above.
    86  //   Field int `json:"myName,omitempty"`
    87  //
    88  //   // Field appears in JSON as key "Field" (the default), but
    89  //   // the field is skipped if empty.
    90  //   // Note the leading comma.
    91  //   Field int `json:",omitempty"`
    92  //
    93  //   // Field is ignored by this package.
    94  //   Field int `json:"-"`
    95  //
    96  //   // Field appears in JSON as key "-".
    97  //   Field int `json:"-,"`
    98  //
    99  // The "string" option signals that a field is stored as JSON inside a
   100  // JSON-encoded string. It applies only to fields of string, floating point,
   101  // integer, or boolean types. This extra level of encoding is sometimes used
   102  // when communicating with JavaScript programs:
   103  //
   104  //    Int64String int64 `json:",string"`
   105  //
   106  // The key name will be used if it's a non-empty string consisting of
   107  // only Unicode letters, digits, and ASCII punctuation except quotation
   108  // marks, backslash, and comma.
   109  //
   110  // Anonymous struct fields are usually marshaled as if their inner exported fields
   111  // were fields in the outer struct, subject to the usual Go visibility rules amended
   112  // as described in the next paragraph.
   113  // An anonymous struct field with a name given in its JSON tag is treated as
   114  // having that name, rather than being anonymous.
   115  // An anonymous struct field of interface type is treated the same as having
   116  // that type as its name, rather than being anonymous.
   117  //
   118  // The Go visibility rules for struct fields are amended for JSON when
   119  // deciding which field to marshal or unmarshal. If there are
   120  // multiple fields at the same level, and that level is the least
   121  // nested (and would therefore be the nesting level selected by the
   122  // usual Go rules), the following extra rules apply:
   123  //
   124  // 1) Of those fields, if any are JSON-tagged, only tagged fields are considered,
   125  // even if there are multiple untagged fields that would otherwise conflict.
   126  //
   127  // 2) If there is exactly one field (tagged or not according to the first rule), that is selected.
   128  //
   129  // 3) Otherwise there are multiple fields, and all are ignored; no error occurs.
   130  //
   131  // Handling of anonymous struct fields is new in Go 1.1.
   132  // Prior to Go 1.1, anonymous struct fields were ignored. To force ignoring of
   133  // an anonymous struct field in both current and earlier versions, give the field
   134  // a JSON tag of "-".
   135  //
   136  // Map values encode as JSON objects. The map's key type must either be a
   137  // string, an integer type, or implement encoding.TextMarshaler. The map keys
   138  // are sorted and used as JSON object keys by applying the following rules,
   139  // subject to the UTF-8 coercion described for string values above:
   140  //   - string keys are used directly
   141  //   - encoding.TextMarshalers are marshaled
   142  //   - integer keys are converted to strings
   143  //
   144  // Pointer values encode as the value pointed to.
   145  // A nil pointer encodes as the null JSON value.
   146  //
   147  // Interface values encode as the value contained in the interface.
   148  // A nil interface value encodes as the null JSON value.
   149  //
   150  // Channel, complex, and function values cannot be encoded in JSON.
   151  // Attempting to encode such a value causes Marshal to return
   152  // an UnsupportedTypeError.
   153  //
   154  // JSON cannot represent cyclic data structures and Marshal does not
   155  // handle them. Passing cyclic structures to Marshal will result in
   156  // an infinite recursion.
   157  //
   158  func Marshal(v interface{}) ([]byte, error) {
   159  	e := &encodeState{}
   160  	err := e.marshal(v, encOpts{escapeHTML: true})
   161  	if err != nil {
   162  		return nil, err
   163  	}
   164  	return e.Bytes(), nil
   165  }
   166  
   167  // MarshalIndent is like Marshal but applies Indent to format the output.
   168  // Each JSON element in the output will begin on a new line beginning with prefix
   169  // followed by one or more copies of indent according to the indentation nesting.
   170  func MarshalIndent(v interface{}, prefix, indent string) ([]byte, error) {
   171  	b, err := Marshal(v)
   172  	if err != nil {
   173  		return nil, err
   174  	}
   175  	var buf bytes.Buffer
   176  	err = Indent(&buf, b, prefix, indent)
   177  	if err != nil {
   178  		return nil, err
   179  	}
   180  	return buf.Bytes(), nil
   181  }
   182  
   183  // HTMLEscape appends to dst the JSON-encoded src with <, >, &, U+2028 and U+2029
   184  // characters inside string literals changed to \u003c, \u003e, \u0026, \u2028, \u2029
   185  // so that the JSON will be safe to embed inside HTML <script> tags.
   186  // For historical reasons, web browsers don't honor standard HTML
   187  // escaping within <script> tags, so an alternative JSON encoding must
   188  // be used.
   189  func HTMLEscape(dst *bytes.Buffer, src []byte) {
   190  	// The characters can only appear in string literals,
   191  	// so just scan the string one byte at a time.
   192  	start := 0
   193  	for i, c := range src {
   194  		if c == '<' || c == '>' || c == '&' {
   195  			if start < i {
   196  				dst.Write(src[start:i])
   197  			}
   198  			dst.WriteString(`\u00`)
   199  			dst.WriteByte(hex[c>>4])
   200  			dst.WriteByte(hex[c&0xF])
   201  			start = i + 1
   202  		}
   203  		// Convert U+2028 and U+2029 (E2 80 A8 and E2 80 A9).
   204  		if c == 0xE2 && i+2 < len(src) && src[i+1] == 0x80 && src[i+2]&^1 == 0xA8 {
   205  			if start < i {
   206  				dst.Write(src[start:i])
   207  			}
   208  			dst.WriteString(`\u202`)
   209  			dst.WriteByte(hex[src[i+2]&0xF])
   210  			start = i + 3
   211  		}
   212  	}
   213  	if start < len(src) {
   214  		dst.Write(src[start:])
   215  	}
   216  }
   217  
   218  // Marshaler is the interface implemented by types that
   219  // can marshal themselves into valid JSON.
   220  type Marshaler interface {
   221  	MarshalJSON() ([]byte, error)
   222  }
   223  
   224  // An UnsupportedTypeError is returned by Marshal when attempting
   225  // to encode an unsupported value type.
   226  type UnsupportedTypeError struct {
   227  	Type reflect.Type
   228  }
   229  
   230  func (e *UnsupportedTypeError) Error() string {
   231  	return "json: unsupported type: " + e.Type.String()
   232  }
   233  
   234  type UnsupportedValueError struct {
   235  	Value reflect.Value
   236  	Str   string
   237  }
   238  
   239  func (e *UnsupportedValueError) Error() string {
   240  	return "json: unsupported value: " + e.Str
   241  }
   242  
   243  // Before Go 1.2, an InvalidUTF8Error was returned by Marshal when
   244  // attempting to encode a string value with invalid UTF-8 sequences.
   245  // As of Go 1.2, Marshal instead coerces the string to valid UTF-8 by
   246  // replacing invalid bytes with the Unicode replacement rune U+FFFD.
   247  //
   248  // Deprecated: No longer used; kept for compatibility.
   249  type InvalidUTF8Error struct {
   250  	S string // the whole string value that caused the error
   251  }
   252  
   253  func (e *InvalidUTF8Error) Error() string {
   254  	return "json: invalid UTF-8 in string: " + strconv.Quote(e.S)
   255  }
   256  
   257  type MarshalerError struct {
   258  	Type reflect.Type
   259  	Err  error
   260  }
   261  
   262  func (e *MarshalerError) Error() string {
   263  	return "json: error calling MarshalJSON for type " + e.Type.String() + ": " + e.Err.Error()
   264  }
   265  
   266  var hex = "0123456789abcdef"
   267  
   268  // An encodeState encodes JSON into a bytes.Buffer.
   269  type encodeState struct {
   270  	bytes.Buffer // accumulated output
   271  	scratch      [64]byte
   272  }
   273  
   274  var encodeStatePool sync.Pool
   275  
   276  func newEncodeState() *encodeState {
   277  	if v := encodeStatePool.Get(); v != nil {
   278  		e := v.(*encodeState)
   279  		e.Reset()
   280  		return e
   281  	}
   282  	return new(encodeState)
   283  }
   284  
   285  func (e *encodeState) marshal(v interface{}, opts encOpts) (err error) {
   286  	defer func() {
   287  		if r := recover(); r != nil {
   288  			if je, ok := r.(jsonError); ok {
   289  				err = je.error
   290  			} else {
   291  				panic(r)
   292  			}
   293  		}
   294  	}()
   295  	e.reflectValue(reflect.ValueOf(v), opts)
   296  	return nil
   297  }
   298  
   299  // error aborts the encoding by panicking with err wrapped in jsonError.
   300  func (e *encodeState) error(err error) {
   301  	panic(jsonError{err})
   302  }
   303  
   304  func isEmptyValue(v reflect.Value) bool {
   305  	switch v.Kind() {
   306  	case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
   307  		return v.Len() == 0
   308  	case reflect.Bool:
   309  		return !v.Bool()
   310  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   311  		return v.Int() == 0
   312  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   313  		return v.Uint() == 0
   314  	case reflect.Float32, reflect.Float64:
   315  		return v.Float() == 0
   316  	case reflect.Interface, reflect.Ptr:
   317  		return v.IsNil()
   318  	}
   319  	return false
   320  }
   321  
   322  func (e *encodeState) reflectValue(v reflect.Value, opts encOpts) {
   323  	valueEncoder(v)(e, v, opts)
   324  }
   325  
   326  type encOpts struct {
   327  	// quoted causes primitive fields to be encoded inside JSON strings.
   328  	quoted bool
   329  	// escapeHTML causes '<', '>', and '&' to be escaped in JSON strings.
   330  	escapeHTML bool
   331  }
   332  
   333  type encoderFunc func(e *encodeState, v reflect.Value, opts encOpts)
   334  
   335  var encoderCache sync.Map // map[reflect.Type]encoderFunc
   336  
   337  func valueEncoder(v reflect.Value) encoderFunc {
   338  	if !v.IsValid() {
   339  		return invalidValueEncoder
   340  	}
   341  	return typeEncoder(v.Type())
   342  }
   343  
   344  func typeEncoder(t reflect.Type) encoderFunc {
   345  	if fi, ok := encoderCache.Load(t); ok {
   346  		return fi.(encoderFunc)
   347  	}
   348  
   349  	// To deal with recursive types, populate the map with an
   350  	// indirect func before we build it. This type waits on the
   351  	// real func (f) to be ready and then calls it. This indirect
   352  	// func is only used for recursive types.
   353  	var (
   354  		wg sync.WaitGroup
   355  		f  encoderFunc
   356  	)
   357  	wg.Add(1)
   358  	fi, loaded := encoderCache.LoadOrStore(t, encoderFunc(func(e *encodeState, v reflect.Value, opts encOpts) {
   359  		wg.Wait()
   360  		f(e, v, opts)
   361  	}))
   362  	if loaded {
   363  		return fi.(encoderFunc)
   364  	}
   365  
   366  	// Compute the real encoder and replace the indirect func with it.
   367  	f = newTypeEncoder(t, true)
   368  	wg.Done()
   369  	encoderCache.Store(t, f)
   370  	return f
   371  }
   372  
   373  var (
   374  	marshalerType     = reflect.TypeOf(new(Marshaler)).Elem()
   375  	textMarshalerType = reflect.TypeOf(new(encoding.TextMarshaler)).Elem()
   376  )
   377  
   378  // newTypeEncoder constructs an encoderFunc for a type.
   379  // The returned encoder only checks CanAddr when allowAddr is true.
   380  func newTypeEncoder(t reflect.Type, allowAddr bool) encoderFunc {
   381  	if t.Implements(marshalerType) {
   382  		return marshalerEncoder
   383  	}
   384  	if t.Kind() != reflect.Ptr && allowAddr {
   385  		if reflect.PtrTo(t).Implements(marshalerType) {
   386  			return newCondAddrEncoder(addrMarshalerEncoder, newTypeEncoder(t, false))
   387  		}
   388  	}
   389  
   390  	if t.Implements(textMarshalerType) {
   391  		return textMarshalerEncoder
   392  	}
   393  	if t.Kind() != reflect.Ptr && allowAddr {
   394  		if reflect.PtrTo(t).Implements(textMarshalerType) {
   395  			return newCondAddrEncoder(addrTextMarshalerEncoder, newTypeEncoder(t, false))
   396  		}
   397  	}
   398  
   399  	switch t.Kind() {
   400  	case reflect.Bool:
   401  		return boolEncoder
   402  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   403  		return intEncoder
   404  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   405  		return uintEncoder
   406  	case reflect.Float32:
   407  		return float32Encoder
   408  	case reflect.Float64:
   409  		return float64Encoder
   410  	case reflect.String:
   411  		return stringEncoder
   412  	case reflect.Interface:
   413  		return interfaceEncoder
   414  	case reflect.Struct:
   415  		return newStructEncoder(t)
   416  	case reflect.Map:
   417  		return newMapEncoder(t)
   418  	case reflect.Slice:
   419  		return newSliceEncoder(t)
   420  	case reflect.Array:
   421  		return newArrayEncoder(t)
   422  	case reflect.Ptr:
   423  		return newPtrEncoder(t)
   424  	default:
   425  		return unsupportedTypeEncoder
   426  	}
   427  }
   428  
   429  func invalidValueEncoder(e *encodeState, v reflect.Value, _ encOpts) {
   430  	e.WriteString("null")
   431  }
   432  
   433  func marshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   434  	if v.Kind() == reflect.Ptr && v.IsNil() {
   435  		e.WriteString("null")
   436  		return
   437  	}
   438  	m, ok := v.Interface().(Marshaler)
   439  	if !ok {
   440  		e.WriteString("null")
   441  		return
   442  	}
   443  	b, err := m.MarshalJSON()
   444  	if err == nil {
   445  		// copy JSON into buffer, checking validity.
   446  		err = compact(&e.Buffer, b, opts.escapeHTML)
   447  	}
   448  	if err != nil {
   449  		e.error(&MarshalerError{v.Type(), err})
   450  	}
   451  }
   452  
   453  func addrMarshalerEncoder(e *encodeState, v reflect.Value, _ encOpts) {
   454  	va := v.Addr()
   455  	if va.IsNil() {
   456  		e.WriteString("null")
   457  		return
   458  	}
   459  	m := va.Interface().(Marshaler)
   460  	b, err := m.MarshalJSON()
   461  	if err == nil {
   462  		// copy JSON into buffer, checking validity.
   463  		err = compact(&e.Buffer, b, true)
   464  	}
   465  	if err != nil {
   466  		e.error(&MarshalerError{v.Type(), err})
   467  	}
   468  }
   469  
   470  func textMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   471  	if v.Kind() == reflect.Ptr && v.IsNil() {
   472  		e.WriteString("null")
   473  		return
   474  	}
   475  	m := v.Interface().(encoding.TextMarshaler)
   476  	b, err := m.MarshalText()
   477  	if err != nil {
   478  		e.error(&MarshalerError{v.Type(), err})
   479  	}
   480  	e.stringBytes(b, opts.escapeHTML)
   481  }
   482  
   483  func addrTextMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   484  	va := v.Addr()
   485  	if va.IsNil() {
   486  		e.WriteString("null")
   487  		return
   488  	}
   489  	m := va.Interface().(encoding.TextMarshaler)
   490  	b, err := m.MarshalText()
   491  	if err != nil {
   492  		e.error(&MarshalerError{v.Type(), err})
   493  	}
   494  	e.stringBytes(b, opts.escapeHTML)
   495  }
   496  
   497  func boolEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   498  	if opts.quoted {
   499  		e.WriteByte('"')
   500  	}
   501  	if v.Bool() {
   502  		e.WriteString("true")
   503  	} else {
   504  		e.WriteString("false")
   505  	}
   506  	if opts.quoted {
   507  		e.WriteByte('"')
   508  	}
   509  }
   510  
   511  func intEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   512  	b := strconv.AppendInt(e.scratch[:0], v.Int(), 10)
   513  	if opts.quoted {
   514  		e.WriteByte('"')
   515  	}
   516  	e.Write(b)
   517  	if opts.quoted {
   518  		e.WriteByte('"')
   519  	}
   520  }
   521  
   522  func uintEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   523  	b := strconv.AppendUint(e.scratch[:0], v.Uint(), 10)
   524  	if opts.quoted {
   525  		e.WriteByte('"')
   526  	}
   527  	e.Write(b)
   528  	if opts.quoted {
   529  		e.WriteByte('"')
   530  	}
   531  }
   532  
   533  type floatEncoder int // number of bits
   534  
   535  func (bits floatEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   536  	f := v.Float()
   537  	if math.IsInf(f, 0) || math.IsNaN(f) {
   538  		e.error(&UnsupportedValueError{v, strconv.FormatFloat(f, 'g', -1, int(bits))})
   539  	}
   540  
   541  	// Convert as if by ES6 number to string conversion.
   542  	// This matches most other JSON generators.
   543  	// See golang.org/issue/6384 and golang.org/issue/14135.
   544  	// Like fmt %g, but the exponent cutoffs are different
   545  	// and exponents themselves are not padded to two digits.
   546  	b := e.scratch[:0]
   547  	abs := math.Abs(f)
   548  	fmt := byte('f')
   549  	// Note: Must use float32 comparisons for underlying float32 value to get precise cutoffs right.
   550  	if abs != 0 {
   551  		if bits == 64 && (abs < 1e-6 || abs >= 1e21) || bits == 32 && (float32(abs) < 1e-6 || float32(abs) >= 1e21) {
   552  			fmt = 'e'
   553  		}
   554  	}
   555  	b = strconv.AppendFloat(b, f, fmt, -1, int(bits))
   556  	if fmt == 'e' {
   557  		// clean up e-09 to e-9
   558  		n := len(b)
   559  		if n >= 4 && b[n-4] == 'e' && b[n-3] == '-' && b[n-2] == '0' {
   560  			b[n-2] = b[n-1]
   561  			b = b[:n-1]
   562  		}
   563  	}
   564  
   565  	if opts.quoted {
   566  		e.WriteByte('"')
   567  	}
   568  	e.Write(b)
   569  	if opts.quoted {
   570  		e.WriteByte('"')
   571  	}
   572  }
   573  
   574  var (
   575  	float32Encoder = (floatEncoder(32)).encode
   576  	float64Encoder = (floatEncoder(64)).encode
   577  )
   578  
   579  func stringEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   580  	if v.Type() == numberType {
   581  		numStr := v.String()
   582  		// In Go1.5 the empty string encodes to "0", while this is not a valid number literal
   583  		// we keep compatibility so check validity after this.
   584  		if numStr == "" {
   585  			numStr = "0" // Number's zero-val
   586  		}
   587  		if !isValidNumber(numStr) {
   588  			e.error(fmt.Errorf("json: invalid number literal %q", numStr))
   589  		}
   590  		e.WriteString(numStr)
   591  		return
   592  	}
   593  	if opts.quoted {
   594  		sb, err := Marshal(v.String())
   595  		if err != nil {
   596  			e.error(err)
   597  		}
   598  		e.string(string(sb), opts.escapeHTML)
   599  	} else {
   600  		e.string(v.String(), opts.escapeHTML)
   601  	}
   602  }
   603  
   604  func interfaceEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   605  	if v.IsNil() {
   606  		e.WriteString("null")
   607  		return
   608  	}
   609  	e.reflectValue(v.Elem(), opts)
   610  }
   611  
   612  func unsupportedTypeEncoder(e *encodeState, v reflect.Value, _ encOpts) {
   613  	e.error(&UnsupportedTypeError{v.Type()})
   614  }
   615  
   616  type structEncoder struct {
   617  	fields    []field
   618  	fieldEncs []encoderFunc
   619  }
   620  
   621  func (se *structEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   622  	e.WriteByte('{')
   623  	first := true
   624  	for i, f := range se.fields {
   625  		fv := fieldByIndex(v, f.index)
   626  		if !fv.IsValid() || f.omitEmpty && isEmptyValue(fv) {
   627  			continue
   628  		}
   629  		if first {
   630  			first = false
   631  		} else {
   632  			e.WriteByte(',')
   633  		}
   634  		e.string(f.name, opts.escapeHTML)
   635  		e.WriteByte(':')
   636  		opts.quoted = f.quoted
   637  		se.fieldEncs[i](e, fv, opts)
   638  	}
   639  	e.WriteByte('}')
   640  }
   641  
   642  func newStructEncoder(t reflect.Type) encoderFunc {
   643  	fields := cachedTypeFields(t)
   644  	se := &structEncoder{
   645  		fields:    fields,
   646  		fieldEncs: make([]encoderFunc, len(fields)),
   647  	}
   648  	for i, f := range fields {
   649  		se.fieldEncs[i] = typeEncoder(typeByIndex(t, f.index))
   650  	}
   651  	return se.encode
   652  }
   653  
   654  type mapEncoder struct {
   655  	elemEnc encoderFunc
   656  }
   657  
   658  func (me *mapEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   659  	if v.IsNil() {
   660  		e.WriteString("null")
   661  		return
   662  	}
   663  	e.WriteByte('{')
   664  
   665  	// Extract and sort the keys.
   666  	keys := v.MapKeys()
   667  	sv := make([]reflectWithString, len(keys))
   668  	for i, v := range keys {
   669  		sv[i].v = v
   670  		if err := sv[i].resolve(); err != nil {
   671  			e.error(&MarshalerError{v.Type(), err})
   672  		}
   673  	}
   674  	sort.Slice(sv, func(i, j int) bool { return sv[i].s < sv[j].s })
   675  
   676  	for i, kv := range sv {
   677  		if i > 0 {
   678  			e.WriteByte(',')
   679  		}
   680  		e.string(kv.s, opts.escapeHTML)
   681  		e.WriteByte(':')
   682  		me.elemEnc(e, v.MapIndex(kv.v), opts)
   683  	}
   684  	e.WriteByte('}')
   685  }
   686  
   687  func newMapEncoder(t reflect.Type) encoderFunc {
   688  	switch t.Key().Kind() {
   689  	case reflect.String,
   690  		reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
   691  		reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   692  	default:
   693  		if !t.Key().Implements(textMarshalerType) {
   694  			return unsupportedTypeEncoder
   695  		}
   696  	}
   697  	me := &mapEncoder{typeEncoder(t.Elem())}
   698  	return me.encode
   699  }
   700  
   701  func encodeByteSlice(e *encodeState, v reflect.Value, _ encOpts) {
   702  	if v.IsNil() {
   703  		e.WriteString("null")
   704  		return
   705  	}
   706  	s := v.Bytes()
   707  	e.WriteByte('"')
   708  	if len(s) < 1024 {
   709  		// for small buffers, using Encode directly is much faster.
   710  		dst := make([]byte, base64.StdEncoding.EncodedLen(len(s)))
   711  		base64.StdEncoding.Encode(dst, s)
   712  		e.Write(dst)
   713  	} else {
   714  		// for large buffers, avoid unnecessary extra temporary
   715  		// buffer space.
   716  		enc := base64.NewEncoder(base64.StdEncoding, e)
   717  		enc.Write(s)
   718  		enc.Close()
   719  	}
   720  	e.WriteByte('"')
   721  }
   722  
   723  // sliceEncoder just wraps an arrayEncoder, checking to make sure the value isn't nil.
   724  type sliceEncoder struct {
   725  	arrayEnc encoderFunc
   726  }
   727  
   728  func (se *sliceEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   729  	if v.IsNil() {
   730  		e.WriteString("null")
   731  		return
   732  	}
   733  	se.arrayEnc(e, v, opts)
   734  }
   735  
   736  func newSliceEncoder(t reflect.Type) encoderFunc {
   737  	// Byte slices get special treatment; arrays don't.
   738  	if t.Elem().Kind() == reflect.Uint8 {
   739  		p := reflect.PtrTo(t.Elem())
   740  		if !p.Implements(marshalerType) && !p.Implements(textMarshalerType) {
   741  			return encodeByteSlice
   742  		}
   743  	}
   744  	enc := &sliceEncoder{newArrayEncoder(t)}
   745  	return enc.encode
   746  }
   747  
   748  type arrayEncoder struct {
   749  	elemEnc encoderFunc
   750  }
   751  
   752  func (ae *arrayEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   753  	e.WriteByte('[')
   754  	n := v.Len()
   755  	for i := 0; i < n; i++ {
   756  		if i > 0 {
   757  			e.WriteByte(',')
   758  		}
   759  		ae.elemEnc(e, v.Index(i), opts)
   760  	}
   761  	e.WriteByte(']')
   762  }
   763  
   764  func newArrayEncoder(t reflect.Type) encoderFunc {
   765  	enc := &arrayEncoder{typeEncoder(t.Elem())}
   766  	return enc.encode
   767  }
   768  
   769  type ptrEncoder struct {
   770  	elemEnc encoderFunc
   771  }
   772  
   773  func (pe *ptrEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   774  	if v.IsNil() {
   775  		e.WriteString("null")
   776  		return
   777  	}
   778  	pe.elemEnc(e, v.Elem(), opts)
   779  }
   780  
   781  func newPtrEncoder(t reflect.Type) encoderFunc {
   782  	enc := &ptrEncoder{typeEncoder(t.Elem())}
   783  	return enc.encode
   784  }
   785  
   786  type condAddrEncoder struct {
   787  	canAddrEnc, elseEnc encoderFunc
   788  }
   789  
   790  func (ce *condAddrEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   791  	if v.CanAddr() {
   792  		ce.canAddrEnc(e, v, opts)
   793  	} else {
   794  		ce.elseEnc(e, v, opts)
   795  	}
   796  }
   797  
   798  // newCondAddrEncoder returns an encoder that checks whether its value
   799  // CanAddr and delegates to canAddrEnc if so, else to elseEnc.
   800  func newCondAddrEncoder(canAddrEnc, elseEnc encoderFunc) encoderFunc {
   801  	enc := &condAddrEncoder{canAddrEnc: canAddrEnc, elseEnc: elseEnc}
   802  	return enc.encode
   803  }
   804  
   805  func isValidTag(s string) bool {
   806  	if s == "" {
   807  		return false
   808  	}
   809  	for _, c := range s {
   810  		switch {
   811  		case strings.ContainsRune("!#$%&()*+-./:<=>?@[]^_{|}~ ", c):
   812  			// Backslash and quote chars are reserved, but
   813  			// otherwise any punctuation chars are allowed
   814  			// in a tag name.
   815  		default:
   816  			if !unicode.IsLetter(c) && !unicode.IsDigit(c) {
   817  				return false
   818  			}
   819  		}
   820  	}
   821  	return true
   822  }
   823  
   824  func fieldByIndex(v reflect.Value, index []int) reflect.Value {
   825  	for _, i := range index {
   826  		if v.Kind() == reflect.Ptr {
   827  			if v.IsNil() {
   828  				return reflect.Value{}
   829  			}
   830  			v = v.Elem()
   831  		}
   832  		v = v.Field(i)
   833  	}
   834  	return v
   835  }
   836  
   837  func typeByIndex(t reflect.Type, index []int) reflect.Type {
   838  	for _, i := range index {
   839  		if t.Kind() == reflect.Ptr {
   840  			t = t.Elem()
   841  		}
   842  		t = t.Field(i).Type
   843  	}
   844  	return t
   845  }
   846  
   847  type reflectWithString struct {
   848  	v reflect.Value
   849  	s string
   850  }
   851  
   852  func (w *reflectWithString) resolve() error {
   853  	if w.v.Kind() == reflect.String {
   854  		w.s = w.v.String()
   855  		return nil
   856  	}
   857  	if tm, ok := w.v.Interface().(encoding.TextMarshaler); ok {
   858  		buf, err := tm.MarshalText()
   859  		w.s = string(buf)
   860  		return err
   861  	}
   862  	switch w.v.Kind() {
   863  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   864  		w.s = strconv.FormatInt(w.v.Int(), 10)
   865  		return nil
   866  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   867  		w.s = strconv.FormatUint(w.v.Uint(), 10)
   868  		return nil
   869  	}
   870  	panic("unexpected map key type")
   871  }
   872  
   873  // NOTE: keep in sync with stringBytes below.
   874  func (e *encodeState) string(s string, escapeHTML bool) {
   875  	e.WriteByte('"')
   876  	start := 0
   877  	for i := 0; i < len(s); {
   878  		if b := s[i]; b < utf8.RuneSelf {
   879  			if htmlSafeSet[b] || (!escapeHTML && safeSet[b]) {
   880  				i++
   881  				continue
   882  			}
   883  			if start < i {
   884  				e.WriteString(s[start:i])
   885  			}
   886  			switch b {
   887  			case '\\', '"':
   888  				e.WriteByte('\\')
   889  				e.WriteByte(b)
   890  			case '\n':
   891  				e.WriteByte('\\')
   892  				e.WriteByte('n')
   893  			case '\r':
   894  				e.WriteByte('\\')
   895  				e.WriteByte('r')
   896  			case '\t':
   897  				e.WriteByte('\\')
   898  				e.WriteByte('t')
   899  			default:
   900  				// This encodes bytes < 0x20 except for \t, \n and \r.
   901  				// If escapeHTML is set, it also escapes <, >, and &
   902  				// because they can lead to security holes when
   903  				// user-controlled strings are rendered into JSON
   904  				// and served to some browsers.
   905  				e.WriteString(`\u00`)
   906  				e.WriteByte(hex[b>>4])
   907  				e.WriteByte(hex[b&0xF])
   908  			}
   909  			i++
   910  			start = i
   911  			continue
   912  		}
   913  		c, size := utf8.DecodeRuneInString(s[i:])
   914  		if c == utf8.RuneError && size == 1 {
   915  			if start < i {
   916  				e.WriteString(s[start:i])
   917  			}
   918  			e.WriteString(`\ufffd`)
   919  			i += size
   920  			start = i
   921  			continue
   922  		}
   923  		// U+2028 is LINE SEPARATOR.
   924  		// U+2029 is PARAGRAPH SEPARATOR.
   925  		// They are both technically valid characters in JSON strings,
   926  		// but don't work in JSONP, which has to be evaluated as JavaScript,
   927  		// and can lead to security holes there. It is valid JSON to
   928  		// escape them, so we do so unconditionally.
   929  		// See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
   930  		if c == '\u2028' || c == '\u2029' {
   931  			if start < i {
   932  				e.WriteString(s[start:i])
   933  			}
   934  			e.WriteString(`\u202`)
   935  			e.WriteByte(hex[c&0xF])
   936  			i += size
   937  			start = i
   938  			continue
   939  		}
   940  		i += size
   941  	}
   942  	if start < len(s) {
   943  		e.WriteString(s[start:])
   944  	}
   945  	e.WriteByte('"')
   946  }
   947  
   948  // NOTE: keep in sync with string above.
   949  func (e *encodeState) stringBytes(s []byte, escapeHTML bool) {
   950  	e.WriteByte('"')
   951  	start := 0
   952  	for i := 0; i < len(s); {
   953  		if b := s[i]; b < utf8.RuneSelf {
   954  			if htmlSafeSet[b] || (!escapeHTML && safeSet[b]) {
   955  				i++
   956  				continue
   957  			}
   958  			if start < i {
   959  				e.Write(s[start:i])
   960  			}
   961  			switch b {
   962  			case '\\', '"':
   963  				e.WriteByte('\\')
   964  				e.WriteByte(b)
   965  			case '\n':
   966  				e.WriteByte('\\')
   967  				e.WriteByte('n')
   968  			case '\r':
   969  				e.WriteByte('\\')
   970  				e.WriteByte('r')
   971  			case '\t':
   972  				e.WriteByte('\\')
   973  				e.WriteByte('t')
   974  			default:
   975  				// This encodes bytes < 0x20 except for \t, \n and \r.
   976  				// If escapeHTML is set, it also escapes <, >, and &
   977  				// because they can lead to security holes when
   978  				// user-controlled strings are rendered into JSON
   979  				// and served to some browsers.
   980  				e.WriteString(`\u00`)
   981  				e.WriteByte(hex[b>>4])
   982  				e.WriteByte(hex[b&0xF])
   983  			}
   984  			i++
   985  			start = i
   986  			continue
   987  		}
   988  		c, size := utf8.DecodeRune(s[i:])
   989  		if c == utf8.RuneError && size == 1 {
   990  			if start < i {
   991  				e.Write(s[start:i])
   992  			}
   993  			e.WriteString(`\ufffd`)
   994  			i += size
   995  			start = i
   996  			continue
   997  		}
   998  		// U+2028 is LINE SEPARATOR.
   999  		// U+2029 is PARAGRAPH SEPARATOR.
  1000  		// They are both technically valid characters in JSON strings,
  1001  		// but don't work in JSONP, which has to be evaluated as JavaScript,
  1002  		// and can lead to security holes there. It is valid JSON to
  1003  		// escape them, so we do so unconditionally.
  1004  		// See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
  1005  		if c == '\u2028' || c == '\u2029' {
  1006  			if start < i {
  1007  				e.Write(s[start:i])
  1008  			}
  1009  			e.WriteString(`\u202`)
  1010  			e.WriteByte(hex[c&0xF])
  1011  			i += size
  1012  			start = i
  1013  			continue
  1014  		}
  1015  		i += size
  1016  	}
  1017  	if start < len(s) {
  1018  		e.Write(s[start:])
  1019  	}
  1020  	e.WriteByte('"')
  1021  }
  1022  
  1023  // A field represents a single field found in a struct.
  1024  type field struct {
  1025  	name      string
  1026  	nameBytes []byte                 // []byte(name)
  1027  	equalFold func(s, t []byte) bool // bytes.EqualFold or equivalent
  1028  
  1029  	tag       bool
  1030  	index     []int
  1031  	typ       reflect.Type
  1032  	omitEmpty bool
  1033  	quoted    bool
  1034  }
  1035  
  1036  func fillField(f field) field {
  1037  	f.nameBytes = []byte(f.name)
  1038  	f.equalFold = foldFunc(f.nameBytes)
  1039  	return f
  1040  }
  1041  
  1042  // byIndex sorts field by index sequence.
  1043  type byIndex []field
  1044  
  1045  func (x byIndex) Len() int { return len(x) }
  1046  
  1047  func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
  1048  
  1049  func (x byIndex) Less(i, j int) bool {
  1050  	for k, xik := range x[i].index {
  1051  		if k >= len(x[j].index) {
  1052  			return false
  1053  		}
  1054  		if xik != x[j].index[k] {
  1055  			return xik < x[j].index[k]
  1056  		}
  1057  	}
  1058  	return len(x[i].index) < len(x[j].index)
  1059  }
  1060  
  1061  // typeFields returns a list of fields that JSON should recognize for the given type.
  1062  // The algorithm is breadth-first search over the set of structs to include - the top struct
  1063  // and then any reachable anonymous structs.
  1064  func typeFields(t reflect.Type) []field {
  1065  	// Anonymous fields to explore at the current level and the next.
  1066  	current := []field{}
  1067  	next := []field{{typ: t}}
  1068  
  1069  	// Count of queued names for current level and the next.
  1070  	count := map[reflect.Type]int{}
  1071  	nextCount := map[reflect.Type]int{}
  1072  
  1073  	// Types already visited at an earlier level.
  1074  	visited := map[reflect.Type]bool{}
  1075  
  1076  	// Fields found.
  1077  	var fields []field
  1078  
  1079  	for len(next) > 0 {
  1080  		current, next = next, current[:0]
  1081  		count, nextCount = nextCount, map[reflect.Type]int{}
  1082  
  1083  		for _, f := range current {
  1084  			if visited[f.typ] {
  1085  				continue
  1086  			}
  1087  			visited[f.typ] = true
  1088  
  1089  			// Scan f.typ for fields to include.
  1090  			for i := 0; i < f.typ.NumField(); i++ {
  1091  				sf := f.typ.Field(i)
  1092  				isUnexported := sf.PkgPath != ""
  1093  				if sf.Anonymous {
  1094  					t := sf.Type
  1095  					if t.Kind() == reflect.Ptr {
  1096  						t = t.Elem()
  1097  					}
  1098  					if isUnexported && t.Kind() != reflect.Struct {
  1099  						// Ignore embedded fields of unexported non-struct types.
  1100  						continue
  1101  					}
  1102  					// Do not ignore embedded fields of unexported struct types
  1103  					// since they may have exported fields.
  1104  				} else if isUnexported {
  1105  					// Ignore unexported non-embedded fields.
  1106  					continue
  1107  				}
  1108  				tag := sf.Tag.Get("json")
  1109  				if tag == "-" {
  1110  					continue
  1111  				}
  1112  				name, opts := parseTag(tag)
  1113  				if !isValidTag(name) {
  1114  					name = ""
  1115  				}
  1116  				index := make([]int, len(f.index)+1)
  1117  				copy(index, f.index)
  1118  				index[len(f.index)] = i
  1119  
  1120  				ft := sf.Type
  1121  				if ft.Name() == "" && ft.Kind() == reflect.Ptr {
  1122  					// Follow pointer.
  1123  					ft = ft.Elem()
  1124  				}
  1125  
  1126  				// Only strings, floats, integers, and booleans can be quoted.
  1127  				quoted := false
  1128  				if opts.Contains("string") {
  1129  					switch ft.Kind() {
  1130  					case reflect.Bool,
  1131  						reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
  1132  						reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr,
  1133  						reflect.Float32, reflect.Float64,
  1134  						reflect.String:
  1135  						quoted = true
  1136  					}
  1137  				}
  1138  
  1139  				// Record found field and index sequence.
  1140  				if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct {
  1141  					tagged := name != ""
  1142  					if name == "" {
  1143  						name = sf.Name
  1144  					}
  1145  					fields = append(fields, fillField(field{
  1146  						name:      name,
  1147  						tag:       tagged,
  1148  						index:     index,
  1149  						typ:       ft,
  1150  						omitEmpty: opts.Contains("omitempty"),
  1151  						quoted:    quoted,
  1152  					}))
  1153  					if count[f.typ] > 1 {
  1154  						// If there were multiple instances, add a second,
  1155  						// so that the annihilation code will see a duplicate.
  1156  						// It only cares about the distinction between 1 or 2,
  1157  						// so don't bother generating any more copies.
  1158  						fields = append(fields, fields[len(fields)-1])
  1159  					}
  1160  					continue
  1161  				}
  1162  
  1163  				// Record new anonymous struct to explore in next round.
  1164  				nextCount[ft]++
  1165  				if nextCount[ft] == 1 {
  1166  					next = append(next, fillField(field{name: ft.Name(), index: index, typ: ft}))
  1167  				}
  1168  			}
  1169  		}
  1170  	}
  1171  
  1172  	sort.Slice(fields, func(i, j int) bool {
  1173  		x := fields
  1174  		// sort field by name, breaking ties with depth, then
  1175  		// breaking ties with "name came from json tag", then
  1176  		// breaking ties with index sequence.
  1177  		if x[i].name != x[j].name {
  1178  			return x[i].name < x[j].name
  1179  		}
  1180  		if len(x[i].index) != len(x[j].index) {
  1181  			return len(x[i].index) < len(x[j].index)
  1182  		}
  1183  		if x[i].tag != x[j].tag {
  1184  			return x[i].tag
  1185  		}
  1186  		return byIndex(x).Less(i, j)
  1187  	})
  1188  
  1189  	// Delete all fields that are hidden by the Go rules for embedded fields,
  1190  	// except that fields with JSON tags are promoted.
  1191  
  1192  	// The fields are sorted in primary order of name, secondary order
  1193  	// of field index length. Loop over names; for each name, delete
  1194  	// hidden fields by choosing the one dominant field that survives.
  1195  	out := fields[:0]
  1196  	for advance, i := 0, 0; i < len(fields); i += advance {
  1197  		// One iteration per name.
  1198  		// Find the sequence of fields with the name of this first field.
  1199  		fi := fields[i]
  1200  		name := fi.name
  1201  		for advance = 1; i+advance < len(fields); advance++ {
  1202  			fj := fields[i+advance]
  1203  			if fj.name != name {
  1204  				break
  1205  			}
  1206  		}
  1207  		if advance == 1 { // Only one field with this name
  1208  			out = append(out, fi)
  1209  			continue
  1210  		}
  1211  		dominant, ok := dominantField(fields[i : i+advance])
  1212  		if ok {
  1213  			out = append(out, dominant)
  1214  		}
  1215  	}
  1216  
  1217  	fields = out
  1218  	sort.Sort(byIndex(fields))
  1219  
  1220  	return fields
  1221  }
  1222  
  1223  // dominantField looks through the fields, all of which are known to
  1224  // have the same name, to find the single field that dominates the
  1225  // others using Go's embedding rules, modified by the presence of
  1226  // JSON tags. If there are multiple top-level fields, the boolean
  1227  // will be false: This condition is an error in Go and we skip all
  1228  // the fields.
  1229  func dominantField(fields []field) (field, bool) {
  1230  	// The fields are sorted in increasing index-length order. The winner
  1231  	// must therefore be one with the shortest index length. Drop all
  1232  	// longer entries, which is easy: just truncate the slice.
  1233  	length := len(fields[0].index)
  1234  	tagged := -1 // Index of first tagged field.
  1235  	for i, f := range fields {
  1236  		if len(f.index) > length {
  1237  			fields = fields[:i]
  1238  			break
  1239  		}
  1240  		if f.tag {
  1241  			if tagged >= 0 {
  1242  				// Multiple tagged fields at the same level: conflict.
  1243  				// Return no field.
  1244  				return field{}, false
  1245  			}
  1246  			tagged = i
  1247  		}
  1248  	}
  1249  	if tagged >= 0 {
  1250  		return fields[tagged], true
  1251  	}
  1252  	// All remaining fields have the same length. If there's more than one,
  1253  	// we have a conflict (two fields named "X" at the same level) and we
  1254  	// return no field.
  1255  	if len(fields) > 1 {
  1256  		return field{}, false
  1257  	}
  1258  	return fields[0], true
  1259  }
  1260  
  1261  var fieldCache struct {
  1262  	value atomic.Value // map[reflect.Type][]field
  1263  	mu    sync.Mutex   // used only by writers
  1264  }
  1265  
  1266  // cachedTypeFields is like typeFields but uses a cache to avoid repeated work.
  1267  func cachedTypeFields(t reflect.Type) []field {
  1268  	m, _ := fieldCache.value.Load().(map[reflect.Type][]field)
  1269  	f := m[t]
  1270  	if f != nil {
  1271  		return f
  1272  	}
  1273  
  1274  	// Compute fields without lock.
  1275  	// Might duplicate effort but won't hold other computations back.
  1276  	f = typeFields(t)
  1277  	if f == nil {
  1278  		f = []field{}
  1279  	}
  1280  
  1281  	fieldCache.mu.Lock()
  1282  	m, _ = fieldCache.value.Load().(map[reflect.Type][]field)
  1283  	newM := make(map[reflect.Type][]field, len(m)+1)
  1284  	for k, v := range m {
  1285  		newM[k] = v
  1286  	}
  1287  	newM[t] = f
  1288  	fieldCache.value.Store(newM)
  1289  	fieldCache.mu.Unlock()
  1290  	return f
  1291  }