github.com/corona10/go@v0.0.0-20180224231303-7a218942be57/src/regexp/backtrack.go (about) 1 // Copyright 2015 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // backtrack is a regular expression search with submatch 6 // tracking for small regular expressions and texts. It allocates 7 // a bit vector with (length of input) * (length of prog) bits, 8 // to make sure it never explores the same (character position, instruction) 9 // state multiple times. This limits the search to run in time linear in 10 // the length of the test. 11 // 12 // backtrack is a fast replacement for the NFA code on small 13 // regexps when onepass cannot be used. 14 15 package regexp 16 17 import "regexp/syntax" 18 19 // A job is an entry on the backtracker's job stack. It holds 20 // the instruction pc and the position in the input. 21 type job struct { 22 pc uint32 23 arg bool 24 pos int 25 } 26 27 const ( 28 visitedBits = 32 29 maxBacktrackProg = 500 // len(prog.Inst) <= max 30 maxBacktrackVector = 256 * 1024 // bit vector size <= max (bits) 31 ) 32 33 // bitState holds state for the backtracker. 34 type bitState struct { 35 prog *syntax.Prog 36 37 end int 38 cap []int 39 jobs []job 40 visited []uint32 41 } 42 43 var notBacktrack *bitState = nil 44 45 // maxBitStateLen returns the maximum length of a string to search with 46 // the backtracker using prog. 47 func maxBitStateLen(prog *syntax.Prog) int { 48 if !shouldBacktrack(prog) { 49 return 0 50 } 51 return maxBacktrackVector / len(prog.Inst) 52 } 53 54 // newBitState returns a new bitState for the given prog, 55 // or notBacktrack if the size of the prog exceeds the maximum size that 56 // the backtracker will be run for. 57 func newBitState(prog *syntax.Prog) *bitState { 58 if !shouldBacktrack(prog) { 59 return notBacktrack 60 } 61 return &bitState{ 62 prog: prog, 63 } 64 } 65 66 // shouldBacktrack reports whether the program is too 67 // long for the backtracker to run. 68 func shouldBacktrack(prog *syntax.Prog) bool { 69 return len(prog.Inst) <= maxBacktrackProg 70 } 71 72 // reset resets the state of the backtracker. 73 // end is the end position in the input. 74 // ncap is the number of captures. 75 func (b *bitState) reset(end int, ncap int) { 76 b.end = end 77 78 if cap(b.jobs) == 0 { 79 b.jobs = make([]job, 0, 256) 80 } else { 81 b.jobs = b.jobs[:0] 82 } 83 84 visitedSize := (len(b.prog.Inst)*(end+1) + visitedBits - 1) / visitedBits 85 if cap(b.visited) < visitedSize { 86 b.visited = make([]uint32, visitedSize, maxBacktrackVector/visitedBits) 87 } else { 88 b.visited = b.visited[:visitedSize] 89 for i := range b.visited { 90 b.visited[i] = 0 91 } 92 } 93 94 if cap(b.cap) < ncap { 95 b.cap = make([]int, ncap) 96 } else { 97 b.cap = b.cap[:ncap] 98 } 99 for i := range b.cap { 100 b.cap[i] = -1 101 } 102 } 103 104 // shouldVisit reports whether the combination of (pc, pos) has not 105 // been visited yet. 106 func (b *bitState) shouldVisit(pc uint32, pos int) bool { 107 n := uint(int(pc)*(b.end+1) + pos) 108 if b.visited[n/visitedBits]&(1<<(n&(visitedBits-1))) != 0 { 109 return false 110 } 111 b.visited[n/visitedBits] |= 1 << (n & (visitedBits - 1)) 112 return true 113 } 114 115 // push pushes (pc, pos, arg) onto the job stack if it should be 116 // visited. 117 func (b *bitState) push(pc uint32, pos int, arg bool) { 118 // Only check shouldVisit when arg is false. 119 // When arg is true, we are continuing a previous visit. 120 if b.prog.Inst[pc].Op != syntax.InstFail && (arg || b.shouldVisit(pc, pos)) { 121 b.jobs = append(b.jobs, job{pc: pc, arg: arg, pos: pos}) 122 } 123 } 124 125 // tryBacktrack runs a backtracking search starting at pos. 126 func (m *machine) tryBacktrack(b *bitState, i input, pc uint32, pos int) bool { 127 longest := m.re.longest 128 m.matched = false 129 130 b.push(pc, pos, false) 131 for len(b.jobs) > 0 { 132 l := len(b.jobs) - 1 133 // Pop job off the stack. 134 pc := b.jobs[l].pc 135 pos := b.jobs[l].pos 136 arg := b.jobs[l].arg 137 b.jobs = b.jobs[:l] 138 139 // Optimization: rather than push and pop, 140 // code that is going to Push and continue 141 // the loop simply updates ip, p, and arg 142 // and jumps to CheckAndLoop. We have to 143 // do the ShouldVisit check that Push 144 // would have, but we avoid the stack 145 // manipulation. 146 goto Skip 147 CheckAndLoop: 148 if !b.shouldVisit(pc, pos) { 149 continue 150 } 151 Skip: 152 153 inst := b.prog.Inst[pc] 154 155 switch inst.Op { 156 default: 157 panic("bad inst") 158 case syntax.InstFail: 159 panic("unexpected InstFail") 160 case syntax.InstAlt: 161 // Cannot just 162 // b.push(inst.Out, pos, false) 163 // b.push(inst.Arg, pos, false) 164 // If during the processing of inst.Out, we encounter 165 // inst.Arg via another path, we want to process it then. 166 // Pushing it here will inhibit that. Instead, re-push 167 // inst with arg==true as a reminder to push inst.Arg out 168 // later. 169 if arg { 170 // Finished inst.Out; try inst.Arg. 171 arg = false 172 pc = inst.Arg 173 goto CheckAndLoop 174 } else { 175 b.push(pc, pos, true) 176 pc = inst.Out 177 goto CheckAndLoop 178 } 179 180 case syntax.InstAltMatch: 181 // One opcode consumes runes; the other leads to match. 182 switch b.prog.Inst[inst.Out].Op { 183 case syntax.InstRune, syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL: 184 // inst.Arg is the match. 185 b.push(inst.Arg, pos, false) 186 pc = inst.Arg 187 pos = b.end 188 goto CheckAndLoop 189 } 190 // inst.Out is the match - non-greedy 191 b.push(inst.Out, b.end, false) 192 pc = inst.Out 193 goto CheckAndLoop 194 195 case syntax.InstRune: 196 r, width := i.step(pos) 197 if !inst.MatchRune(r) { 198 continue 199 } 200 pos += width 201 pc = inst.Out 202 goto CheckAndLoop 203 204 case syntax.InstRune1: 205 r, width := i.step(pos) 206 if r != inst.Rune[0] { 207 continue 208 } 209 pos += width 210 pc = inst.Out 211 goto CheckAndLoop 212 213 case syntax.InstRuneAnyNotNL: 214 r, width := i.step(pos) 215 if r == '\n' || r == endOfText { 216 continue 217 } 218 pos += width 219 pc = inst.Out 220 goto CheckAndLoop 221 222 case syntax.InstRuneAny: 223 r, width := i.step(pos) 224 if r == endOfText { 225 continue 226 } 227 pos += width 228 pc = inst.Out 229 goto CheckAndLoop 230 231 case syntax.InstCapture: 232 if arg { 233 // Finished inst.Out; restore the old value. 234 b.cap[inst.Arg] = pos 235 continue 236 } else { 237 if 0 <= inst.Arg && inst.Arg < uint32(len(b.cap)) { 238 // Capture pos to register, but save old value. 239 b.push(pc, b.cap[inst.Arg], true) // come back when we're done. 240 b.cap[inst.Arg] = pos 241 } 242 pc = inst.Out 243 goto CheckAndLoop 244 } 245 246 case syntax.InstEmptyWidth: 247 if syntax.EmptyOp(inst.Arg)&^i.context(pos) != 0 { 248 continue 249 } 250 pc = inst.Out 251 goto CheckAndLoop 252 253 case syntax.InstNop: 254 pc = inst.Out 255 goto CheckAndLoop 256 257 case syntax.InstMatch: 258 // We found a match. If the caller doesn't care 259 // where the match is, no point going further. 260 if len(b.cap) == 0 { 261 m.matched = true 262 return m.matched 263 } 264 265 // Record best match so far. 266 // Only need to check end point, because this entire 267 // call is only considering one start position. 268 if len(b.cap) > 1 { 269 b.cap[1] = pos 270 } 271 if !m.matched || (longest && pos > 0 && pos > m.matchcap[1]) { 272 copy(m.matchcap, b.cap) 273 } 274 m.matched = true 275 276 // If going for first match, we're done. 277 if !longest { 278 return m.matched 279 } 280 281 // If we used the entire text, no longer match is possible. 282 if pos == b.end { 283 return m.matched 284 } 285 286 // Otherwise, continue on in hope of a longer match. 287 continue 288 } 289 } 290 291 return m.matched 292 } 293 294 // backtrack runs a backtracking search of prog on the input starting at pos. 295 func (m *machine) backtrack(i input, pos int, end int, ncap int) bool { 296 if !i.canCheckPrefix() { 297 panic("backtrack called for a RuneReader") 298 } 299 300 startCond := m.re.cond 301 if startCond == ^syntax.EmptyOp(0) { // impossible 302 return false 303 } 304 if startCond&syntax.EmptyBeginText != 0 && pos != 0 { 305 // Anchored match, past beginning of text. 306 return false 307 } 308 309 b := m.b 310 b.reset(end, ncap) 311 312 m.matchcap = m.matchcap[:ncap] 313 for i := range m.matchcap { 314 m.matchcap[i] = -1 315 } 316 317 // Anchored search must start at the beginning of the input 318 if startCond&syntax.EmptyBeginText != 0 { 319 if len(b.cap) > 0 { 320 b.cap[0] = pos 321 } 322 return m.tryBacktrack(b, i, uint32(m.p.Start), pos) 323 } 324 325 // Unanchored search, starting from each possible text position. 326 // Notice that we have to try the empty string at the end of 327 // the text, so the loop condition is pos <= end, not pos < end. 328 // This looks like it's quadratic in the size of the text, 329 // but we are not clearing visited between calls to TrySearch, 330 // so no work is duplicated and it ends up still being linear. 331 width := -1 332 for ; pos <= end && width != 0; pos += width { 333 if len(m.re.prefix) > 0 { 334 // Match requires literal prefix; fast search for it. 335 advance := i.index(m.re, pos) 336 if advance < 0 { 337 return false 338 } 339 pos += advance 340 } 341 342 if len(b.cap) > 0 { 343 b.cap[0] = pos 344 } 345 if m.tryBacktrack(b, i, uint32(m.p.Start), pos) { 346 // Match must be leftmost; done. 347 return true 348 } 349 _, width = i.step(pos) 350 } 351 return false 352 }