github.com/corona10/go@v0.0.0-20180224231303-7a218942be57/src/runtime/pprof/pprof.go (about) 1 // Copyright 2010 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package pprof writes runtime profiling data in the format expected 6 // by the pprof visualization tool. 7 // 8 // Profiling a Go program 9 // 10 // The first step to profiling a Go program is to enable profiling. 11 // Support for profiling benchmarks built with the standard testing 12 // package is built into go test. For example, the following command 13 // runs benchmarks in the current directory and writes the CPU and 14 // memory profiles to cpu.prof and mem.prof: 15 // 16 // go test -cpuprofile cpu.prof -memprofile mem.prof -bench . 17 // 18 // To add equivalent profiling support to a standalone program, add 19 // code like the following to your main function: 20 // 21 // var cpuprofile = flag.String("cpuprofile", "", "write cpu profile to `file`") 22 // var memprofile = flag.String("memprofile", "", "write memory profile to `file`") 23 // 24 // func main() { 25 // flag.Parse() 26 // if *cpuprofile != "" { 27 // f, err := os.Create(*cpuprofile) 28 // if err != nil { 29 // log.Fatal("could not create CPU profile: ", err) 30 // } 31 // if err := pprof.StartCPUProfile(f); err != nil { 32 // log.Fatal("could not start CPU profile: ", err) 33 // } 34 // defer pprof.StopCPUProfile() 35 // } 36 // 37 // // ... rest of the program ... 38 // 39 // if *memprofile != "" { 40 // f, err := os.Create(*memprofile) 41 // if err != nil { 42 // log.Fatal("could not create memory profile: ", err) 43 // } 44 // runtime.GC() // get up-to-date statistics 45 // if err := pprof.WriteHeapProfile(f); err != nil { 46 // log.Fatal("could not write memory profile: ", err) 47 // } 48 // f.Close() 49 // } 50 // } 51 // 52 // There is also a standard HTTP interface to profiling data. Adding 53 // the following line will install handlers under the /debug/pprof/ 54 // URL to download live profiles: 55 // 56 // import _ "net/http/pprof" 57 // 58 // See the net/http/pprof package for more details. 59 // 60 // Profiles can then be visualized with the pprof tool: 61 // 62 // go tool pprof cpu.prof 63 // 64 // There are many commands available from the pprof command line. 65 // Commonly used commands include "top", which prints a summary of the 66 // top program hot-spots, and "web", which opens an interactive graph 67 // of hot-spots and their call graphs. Use "help" for information on 68 // all pprof commands. 69 // 70 // For more information about pprof, see 71 // https://github.com/google/pprof/blob/master/doc/pprof.md. 72 package pprof 73 74 import ( 75 "bufio" 76 "bytes" 77 "fmt" 78 "io" 79 "runtime" 80 "sort" 81 "strings" 82 "sync" 83 "text/tabwriter" 84 "time" 85 "unsafe" 86 ) 87 88 // BUG(rsc): Profiles are only as good as the kernel support used to generate them. 89 // See https://golang.org/issue/13841 for details about known problems. 90 91 // A Profile is a collection of stack traces showing the call sequences 92 // that led to instances of a particular event, such as allocation. 93 // Packages can create and maintain their own profiles; the most common 94 // use is for tracking resources that must be explicitly closed, such as files 95 // or network connections. 96 // 97 // A Profile's methods can be called from multiple goroutines simultaneously. 98 // 99 // Each Profile has a unique name. A few profiles are predefined: 100 // 101 // goroutine - stack traces of all current goroutines 102 // heap - a sampling of all heap allocations 103 // threadcreate - stack traces that led to the creation of new OS threads 104 // block - stack traces that led to blocking on synchronization primitives 105 // mutex - stack traces of holders of contended mutexes 106 // 107 // These predefined profiles maintain themselves and panic on an explicit 108 // Add or Remove method call. 109 // 110 // The heap profile reports statistics as of the most recently completed 111 // garbage collection; it elides more recent allocation to avoid skewing 112 // the profile away from live data and toward garbage. 113 // If there has been no garbage collection at all, the heap profile reports 114 // all known allocations. This exception helps mainly in programs running 115 // without garbage collection enabled, usually for debugging purposes. 116 // 117 // The CPU profile is not available as a Profile. It has a special API, 118 // the StartCPUProfile and StopCPUProfile functions, because it streams 119 // output to a writer during profiling. 120 // 121 type Profile struct { 122 name string 123 mu sync.Mutex 124 m map[interface{}][]uintptr 125 count func() int 126 write func(io.Writer, int) error 127 } 128 129 // profiles records all registered profiles. 130 var profiles struct { 131 mu sync.Mutex 132 m map[string]*Profile 133 } 134 135 var goroutineProfile = &Profile{ 136 name: "goroutine", 137 count: countGoroutine, 138 write: writeGoroutine, 139 } 140 141 var threadcreateProfile = &Profile{ 142 name: "threadcreate", 143 count: countThreadCreate, 144 write: writeThreadCreate, 145 } 146 147 var heapProfile = &Profile{ 148 name: "heap", 149 count: countHeap, 150 write: writeHeap, 151 } 152 153 var blockProfile = &Profile{ 154 name: "block", 155 count: countBlock, 156 write: writeBlock, 157 } 158 159 var mutexProfile = &Profile{ 160 name: "mutex", 161 count: countMutex, 162 write: writeMutex, 163 } 164 165 func lockProfiles() { 166 profiles.mu.Lock() 167 if profiles.m == nil { 168 // Initial built-in profiles. 169 profiles.m = map[string]*Profile{ 170 "goroutine": goroutineProfile, 171 "threadcreate": threadcreateProfile, 172 "heap": heapProfile, 173 "block": blockProfile, 174 "mutex": mutexProfile, 175 } 176 } 177 } 178 179 func unlockProfiles() { 180 profiles.mu.Unlock() 181 } 182 183 // NewProfile creates a new profile with the given name. 184 // If a profile with that name already exists, NewProfile panics. 185 // The convention is to use a 'import/path.' prefix to create 186 // separate name spaces for each package. 187 // For compatibility with various tools that read pprof data, 188 // profile names should not contain spaces. 189 func NewProfile(name string) *Profile { 190 lockProfiles() 191 defer unlockProfiles() 192 if name == "" { 193 panic("pprof: NewProfile with empty name") 194 } 195 if profiles.m[name] != nil { 196 panic("pprof: NewProfile name already in use: " + name) 197 } 198 p := &Profile{ 199 name: name, 200 m: map[interface{}][]uintptr{}, 201 } 202 profiles.m[name] = p 203 return p 204 } 205 206 // Lookup returns the profile with the given name, or nil if no such profile exists. 207 func Lookup(name string) *Profile { 208 lockProfiles() 209 defer unlockProfiles() 210 return profiles.m[name] 211 } 212 213 // Profiles returns a slice of all the known profiles, sorted by name. 214 func Profiles() []*Profile { 215 lockProfiles() 216 defer unlockProfiles() 217 218 all := make([]*Profile, 0, len(profiles.m)) 219 for _, p := range profiles.m { 220 all = append(all, p) 221 } 222 223 sort.Slice(all, func(i, j int) bool { return all[i].name < all[j].name }) 224 return all 225 } 226 227 // Name returns this profile's name, which can be passed to Lookup to reobtain the profile. 228 func (p *Profile) Name() string { 229 return p.name 230 } 231 232 // Count returns the number of execution stacks currently in the profile. 233 func (p *Profile) Count() int { 234 p.mu.Lock() 235 defer p.mu.Unlock() 236 if p.count != nil { 237 return p.count() 238 } 239 return len(p.m) 240 } 241 242 // Add adds the current execution stack to the profile, associated with value. 243 // Add stores value in an internal map, so value must be suitable for use as 244 // a map key and will not be garbage collected until the corresponding 245 // call to Remove. Add panics if the profile already contains a stack for value. 246 // 247 // The skip parameter has the same meaning as runtime.Caller's skip 248 // and controls where the stack trace begins. Passing skip=0 begins the 249 // trace in the function calling Add. For example, given this 250 // execution stack: 251 // 252 // Add 253 // called from rpc.NewClient 254 // called from mypkg.Run 255 // called from main.main 256 // 257 // Passing skip=0 begins the stack trace at the call to Add inside rpc.NewClient. 258 // Passing skip=1 begins the stack trace at the call to NewClient inside mypkg.Run. 259 // 260 func (p *Profile) Add(value interface{}, skip int) { 261 if p.name == "" { 262 panic("pprof: use of uninitialized Profile") 263 } 264 if p.write != nil { 265 panic("pprof: Add called on built-in Profile " + p.name) 266 } 267 268 stk := make([]uintptr, 32) 269 n := runtime.Callers(skip+1, stk[:]) 270 stk = stk[:n] 271 if len(stk) == 0 { 272 // The value for skip is too large, and there's no stack trace to record. 273 stk = []uintptr{funcPC(lostProfileEvent)} 274 } 275 276 p.mu.Lock() 277 defer p.mu.Unlock() 278 if p.m[value] != nil { 279 panic("pprof: Profile.Add of duplicate value") 280 } 281 p.m[value] = stk 282 } 283 284 // Remove removes the execution stack associated with value from the profile. 285 // It is a no-op if the value is not in the profile. 286 func (p *Profile) Remove(value interface{}) { 287 p.mu.Lock() 288 defer p.mu.Unlock() 289 delete(p.m, value) 290 } 291 292 // WriteTo writes a pprof-formatted snapshot of the profile to w. 293 // If a write to w returns an error, WriteTo returns that error. 294 // Otherwise, WriteTo returns nil. 295 // 296 // The debug parameter enables additional output. 297 // Passing debug=0 prints only the hexadecimal addresses that pprof needs. 298 // Passing debug=1 adds comments translating addresses to function names 299 // and line numbers, so that a programmer can read the profile without tools. 300 // 301 // The predefined profiles may assign meaning to other debug values; 302 // for example, when printing the "goroutine" profile, debug=2 means to 303 // print the goroutine stacks in the same form that a Go program uses 304 // when dying due to an unrecovered panic. 305 func (p *Profile) WriteTo(w io.Writer, debug int) error { 306 if p.name == "" { 307 panic("pprof: use of zero Profile") 308 } 309 if p.write != nil { 310 return p.write(w, debug) 311 } 312 313 // Obtain consistent snapshot under lock; then process without lock. 314 p.mu.Lock() 315 all := make([][]uintptr, 0, len(p.m)) 316 for _, stk := range p.m { 317 all = append(all, stk) 318 } 319 p.mu.Unlock() 320 321 // Map order is non-deterministic; make output deterministic. 322 sort.Slice(all, func(i, j int) bool { 323 t, u := all[i], all[j] 324 for k := 0; k < len(t) && k < len(u); k++ { 325 if t[k] != u[k] { 326 return t[k] < u[k] 327 } 328 } 329 return len(t) < len(u) 330 }) 331 332 return printCountProfile(w, debug, p.name, stackProfile(all)) 333 } 334 335 type stackProfile [][]uintptr 336 337 func (x stackProfile) Len() int { return len(x) } 338 func (x stackProfile) Stack(i int) []uintptr { return x[i] } 339 340 // A countProfile is a set of stack traces to be printed as counts 341 // grouped by stack trace. There are multiple implementations: 342 // all that matters is that we can find out how many traces there are 343 // and obtain each trace in turn. 344 type countProfile interface { 345 Len() int 346 Stack(i int) []uintptr 347 } 348 349 // printCountCycleProfile outputs block profile records (for block or mutex profiles) 350 // as the pprof-proto format output. Translations from cycle count to time duration 351 // are done because The proto expects count and time (nanoseconds) instead of count 352 // and the number of cycles for block, contention profiles. 353 // Possible 'scaler' functions are scaleBlockProfile and scaleMutexProfile. 354 func printCountCycleProfile(w io.Writer, countName, cycleName string, scaler func(int64, float64) (int64, float64), records []runtime.BlockProfileRecord) error { 355 // Output profile in protobuf form. 356 b := newProfileBuilder(w) 357 b.pbValueType(tagProfile_PeriodType, countName, "count") 358 b.pb.int64Opt(tagProfile_Period, 1) 359 b.pbValueType(tagProfile_SampleType, countName, "count") 360 b.pbValueType(tagProfile_SampleType, cycleName, "nanoseconds") 361 362 cpuGHz := float64(runtime_cyclesPerSecond()) / 1e9 363 364 values := []int64{0, 0} 365 var locs []uint64 366 for _, r := range records { 367 count, nanosec := scaler(r.Count, float64(r.Cycles)/cpuGHz) 368 values[0] = count 369 values[1] = int64(nanosec) 370 locs = locs[:0] 371 for _, addr := range r.Stack() { 372 // For count profiles, all stack addresses are 373 // return PCs, which is what locForPC expects. 374 l := b.locForPC(addr) 375 if l == 0 { // runtime.goexit 376 continue 377 } 378 locs = append(locs, l) 379 } 380 b.pbSample(values, locs, nil) 381 } 382 b.build() 383 return nil 384 } 385 386 // printCountProfile prints a countProfile at the specified debug level. 387 // The profile will be in compressed proto format unless debug is nonzero. 388 func printCountProfile(w io.Writer, debug int, name string, p countProfile) error { 389 // Build count of each stack. 390 var buf bytes.Buffer 391 key := func(stk []uintptr) string { 392 buf.Reset() 393 fmt.Fprintf(&buf, "@") 394 for _, pc := range stk { 395 fmt.Fprintf(&buf, " %#x", pc) 396 } 397 return buf.String() 398 } 399 count := map[string]int{} 400 index := map[string]int{} 401 var keys []string 402 n := p.Len() 403 for i := 0; i < n; i++ { 404 k := key(p.Stack(i)) 405 if count[k] == 0 { 406 index[k] = i 407 keys = append(keys, k) 408 } 409 count[k]++ 410 } 411 412 sort.Sort(&keysByCount{keys, count}) 413 414 if debug > 0 { 415 // Print debug profile in legacy format 416 tw := tabwriter.NewWriter(w, 1, 8, 1, '\t', 0) 417 fmt.Fprintf(tw, "%s profile: total %d\n", name, p.Len()) 418 for _, k := range keys { 419 fmt.Fprintf(tw, "%d %s\n", count[k], k) 420 printStackRecord(tw, p.Stack(index[k]), false) 421 } 422 return tw.Flush() 423 } 424 425 // Output profile in protobuf form. 426 b := newProfileBuilder(w) 427 b.pbValueType(tagProfile_PeriodType, name, "count") 428 b.pb.int64Opt(tagProfile_Period, 1) 429 b.pbValueType(tagProfile_SampleType, name, "count") 430 431 values := []int64{0} 432 var locs []uint64 433 for _, k := range keys { 434 values[0] = int64(count[k]) 435 locs = locs[:0] 436 for _, addr := range p.Stack(index[k]) { 437 // For count profiles, all stack addresses are 438 // return PCs, which is what locForPC expects. 439 l := b.locForPC(addr) 440 if l == 0 { // runtime.goexit 441 continue 442 } 443 locs = append(locs, l) 444 } 445 b.pbSample(values, locs, nil) 446 } 447 b.build() 448 return nil 449 } 450 451 // keysByCount sorts keys with higher counts first, breaking ties by key string order. 452 type keysByCount struct { 453 keys []string 454 count map[string]int 455 } 456 457 func (x *keysByCount) Len() int { return len(x.keys) } 458 func (x *keysByCount) Swap(i, j int) { x.keys[i], x.keys[j] = x.keys[j], x.keys[i] } 459 func (x *keysByCount) Less(i, j int) bool { 460 ki, kj := x.keys[i], x.keys[j] 461 ci, cj := x.count[ki], x.count[kj] 462 if ci != cj { 463 return ci > cj 464 } 465 return ki < kj 466 } 467 468 // printStackRecord prints the function + source line information 469 // for a single stack trace. 470 func printStackRecord(w io.Writer, stk []uintptr, allFrames bool) { 471 show := allFrames 472 frames := runtime.CallersFrames(stk) 473 for { 474 frame, more := frames.Next() 475 name := frame.Function 476 if name == "" { 477 show = true 478 fmt.Fprintf(w, "#\t%#x\n", frame.PC) 479 } else if name != "runtime.goexit" && (show || !strings.HasPrefix(name, "runtime.")) { 480 // Hide runtime.goexit and any runtime functions at the beginning. 481 // This is useful mainly for allocation traces. 482 show = true 483 fmt.Fprintf(w, "#\t%#x\t%s+%#x\t%s:%d\n", frame.PC, name, frame.PC-frame.Entry, frame.File, frame.Line) 484 } 485 if !more { 486 break 487 } 488 } 489 if !show { 490 // We didn't print anything; do it again, 491 // and this time include runtime functions. 492 printStackRecord(w, stk, true) 493 return 494 } 495 fmt.Fprintf(w, "\n") 496 } 497 498 // Interface to system profiles. 499 500 // WriteHeapProfile is shorthand for Lookup("heap").WriteTo(w, 0). 501 // It is preserved for backwards compatibility. 502 func WriteHeapProfile(w io.Writer) error { 503 return writeHeap(w, 0) 504 } 505 506 // countHeap returns the number of records in the heap profile. 507 func countHeap() int { 508 n, _ := runtime.MemProfile(nil, true) 509 return n 510 } 511 512 // writeHeap writes the current runtime heap profile to w. 513 func writeHeap(w io.Writer, debug int) error { 514 var memStats *runtime.MemStats 515 if debug != 0 { 516 // Read mem stats first, so that our other allocations 517 // do not appear in the statistics. 518 memStats = new(runtime.MemStats) 519 runtime.ReadMemStats(memStats) 520 } 521 522 // Find out how many records there are (MemProfile(nil, true)), 523 // allocate that many records, and get the data. 524 // There's a race—more records might be added between 525 // the two calls—so allocate a few extra records for safety 526 // and also try again if we're very unlucky. 527 // The loop should only execute one iteration in the common case. 528 var p []runtime.MemProfileRecord 529 n, ok := runtime.MemProfile(nil, true) 530 for { 531 // Allocate room for a slightly bigger profile, 532 // in case a few more entries have been added 533 // since the call to MemProfile. 534 p = make([]runtime.MemProfileRecord, n+50) 535 n, ok = runtime.MemProfile(p, true) 536 if ok { 537 p = p[0:n] 538 break 539 } 540 // Profile grew; try again. 541 } 542 543 if debug == 0 { 544 return writeHeapProto(w, p, int64(runtime.MemProfileRate)) 545 } 546 547 sort.Slice(p, func(i, j int) bool { return p[i].InUseBytes() > p[j].InUseBytes() }) 548 549 b := bufio.NewWriter(w) 550 tw := tabwriter.NewWriter(b, 1, 8, 1, '\t', 0) 551 w = tw 552 553 var total runtime.MemProfileRecord 554 for i := range p { 555 r := &p[i] 556 total.AllocBytes += r.AllocBytes 557 total.AllocObjects += r.AllocObjects 558 total.FreeBytes += r.FreeBytes 559 total.FreeObjects += r.FreeObjects 560 } 561 562 // Technically the rate is MemProfileRate not 2*MemProfileRate, 563 // but early versions of the C++ heap profiler reported 2*MemProfileRate, 564 // so that's what pprof has come to expect. 565 fmt.Fprintf(w, "heap profile: %d: %d [%d: %d] @ heap/%d\n", 566 total.InUseObjects(), total.InUseBytes(), 567 total.AllocObjects, total.AllocBytes, 568 2*runtime.MemProfileRate) 569 570 for i := range p { 571 r := &p[i] 572 fmt.Fprintf(w, "%d: %d [%d: %d] @", 573 r.InUseObjects(), r.InUseBytes(), 574 r.AllocObjects, r.AllocBytes) 575 for _, pc := range r.Stack() { 576 fmt.Fprintf(w, " %#x", pc) 577 } 578 fmt.Fprintf(w, "\n") 579 printStackRecord(w, r.Stack(), false) 580 } 581 582 // Print memstats information too. 583 // Pprof will ignore, but useful for people 584 s := memStats 585 fmt.Fprintf(w, "\n# runtime.MemStats\n") 586 fmt.Fprintf(w, "# Alloc = %d\n", s.Alloc) 587 fmt.Fprintf(w, "# TotalAlloc = %d\n", s.TotalAlloc) 588 fmt.Fprintf(w, "# Sys = %d\n", s.Sys) 589 fmt.Fprintf(w, "# Lookups = %d\n", s.Lookups) 590 fmt.Fprintf(w, "# Mallocs = %d\n", s.Mallocs) 591 fmt.Fprintf(w, "# Frees = %d\n", s.Frees) 592 593 fmt.Fprintf(w, "# HeapAlloc = %d\n", s.HeapAlloc) 594 fmt.Fprintf(w, "# HeapSys = %d\n", s.HeapSys) 595 fmt.Fprintf(w, "# HeapIdle = %d\n", s.HeapIdle) 596 fmt.Fprintf(w, "# HeapInuse = %d\n", s.HeapInuse) 597 fmt.Fprintf(w, "# HeapReleased = %d\n", s.HeapReleased) 598 fmt.Fprintf(w, "# HeapObjects = %d\n", s.HeapObjects) 599 600 fmt.Fprintf(w, "# Stack = %d / %d\n", s.StackInuse, s.StackSys) 601 fmt.Fprintf(w, "# MSpan = %d / %d\n", s.MSpanInuse, s.MSpanSys) 602 fmt.Fprintf(w, "# MCache = %d / %d\n", s.MCacheInuse, s.MCacheSys) 603 fmt.Fprintf(w, "# BuckHashSys = %d\n", s.BuckHashSys) 604 fmt.Fprintf(w, "# GCSys = %d\n", s.GCSys) 605 fmt.Fprintf(w, "# OtherSys = %d\n", s.OtherSys) 606 607 fmt.Fprintf(w, "# NextGC = %d\n", s.NextGC) 608 fmt.Fprintf(w, "# LastGC = %d\n", s.LastGC) 609 fmt.Fprintf(w, "# PauseNs = %d\n", s.PauseNs) 610 fmt.Fprintf(w, "# PauseEnd = %d\n", s.PauseEnd) 611 fmt.Fprintf(w, "# NumGC = %d\n", s.NumGC) 612 fmt.Fprintf(w, "# NumForcedGC = %d\n", s.NumForcedGC) 613 fmt.Fprintf(w, "# GCCPUFraction = %v\n", s.GCCPUFraction) 614 fmt.Fprintf(w, "# DebugGC = %v\n", s.DebugGC) 615 616 tw.Flush() 617 return b.Flush() 618 } 619 620 // countThreadCreate returns the size of the current ThreadCreateProfile. 621 func countThreadCreate() int { 622 n, _ := runtime.ThreadCreateProfile(nil) 623 return n 624 } 625 626 // writeThreadCreate writes the current runtime ThreadCreateProfile to w. 627 func writeThreadCreate(w io.Writer, debug int) error { 628 return writeRuntimeProfile(w, debug, "threadcreate", runtime.ThreadCreateProfile) 629 } 630 631 // countGoroutine returns the number of goroutines. 632 func countGoroutine() int { 633 return runtime.NumGoroutine() 634 } 635 636 // writeGoroutine writes the current runtime GoroutineProfile to w. 637 func writeGoroutine(w io.Writer, debug int) error { 638 if debug >= 2 { 639 return writeGoroutineStacks(w) 640 } 641 return writeRuntimeProfile(w, debug, "goroutine", runtime.GoroutineProfile) 642 } 643 644 func writeGoroutineStacks(w io.Writer) error { 645 // We don't know how big the buffer needs to be to collect 646 // all the goroutines. Start with 1 MB and try a few times, doubling each time. 647 // Give up and use a truncated trace if 64 MB is not enough. 648 buf := make([]byte, 1<<20) 649 for i := 0; ; i++ { 650 n := runtime.Stack(buf, true) 651 if n < len(buf) { 652 buf = buf[:n] 653 break 654 } 655 if len(buf) >= 64<<20 { 656 // Filled 64 MB - stop there. 657 break 658 } 659 buf = make([]byte, 2*len(buf)) 660 } 661 _, err := w.Write(buf) 662 return err 663 } 664 665 func writeRuntimeProfile(w io.Writer, debug int, name string, fetch func([]runtime.StackRecord) (int, bool)) error { 666 // Find out how many records there are (fetch(nil)), 667 // allocate that many records, and get the data. 668 // There's a race—more records might be added between 669 // the two calls—so allocate a few extra records for safety 670 // and also try again if we're very unlucky. 671 // The loop should only execute one iteration in the common case. 672 var p []runtime.StackRecord 673 n, ok := fetch(nil) 674 for { 675 // Allocate room for a slightly bigger profile, 676 // in case a few more entries have been added 677 // since the call to ThreadProfile. 678 p = make([]runtime.StackRecord, n+10) 679 n, ok = fetch(p) 680 if ok { 681 p = p[0:n] 682 break 683 } 684 // Profile grew; try again. 685 } 686 687 return printCountProfile(w, debug, name, runtimeProfile(p)) 688 } 689 690 type runtimeProfile []runtime.StackRecord 691 692 func (p runtimeProfile) Len() int { return len(p) } 693 func (p runtimeProfile) Stack(i int) []uintptr { return p[i].Stack() } 694 695 var cpu struct { 696 sync.Mutex 697 profiling bool 698 done chan bool 699 } 700 701 // StartCPUProfile enables CPU profiling for the current process. 702 // While profiling, the profile will be buffered and written to w. 703 // StartCPUProfile returns an error if profiling is already enabled. 704 // 705 // On Unix-like systems, StartCPUProfile does not work by default for 706 // Go code built with -buildmode=c-archive or -buildmode=c-shared. 707 // StartCPUProfile relies on the SIGPROF signal, but that signal will 708 // be delivered to the main program's SIGPROF signal handler (if any) 709 // not to the one used by Go. To make it work, call os/signal.Notify 710 // for syscall.SIGPROF, but note that doing so may break any profiling 711 // being done by the main program. 712 func StartCPUProfile(w io.Writer) error { 713 // The runtime routines allow a variable profiling rate, 714 // but in practice operating systems cannot trigger signals 715 // at more than about 500 Hz, and our processing of the 716 // signal is not cheap (mostly getting the stack trace). 717 // 100 Hz is a reasonable choice: it is frequent enough to 718 // produce useful data, rare enough not to bog down the 719 // system, and a nice round number to make it easy to 720 // convert sample counts to seconds. Instead of requiring 721 // each client to specify the frequency, we hard code it. 722 const hz = 100 723 724 cpu.Lock() 725 defer cpu.Unlock() 726 if cpu.done == nil { 727 cpu.done = make(chan bool) 728 } 729 // Double-check. 730 if cpu.profiling { 731 return fmt.Errorf("cpu profiling already in use") 732 } 733 cpu.profiling = true 734 runtime.SetCPUProfileRate(hz) 735 go profileWriter(w) 736 return nil 737 } 738 739 // readProfile, provided by the runtime, returns the next chunk of 740 // binary CPU profiling stack trace data, blocking until data is available. 741 // If profiling is turned off and all the profile data accumulated while it was 742 // on has been returned, readProfile returns eof=true. 743 // The caller must save the returned data and tags before calling readProfile again. 744 func readProfile() (data []uint64, tags []unsafe.Pointer, eof bool) 745 746 func profileWriter(w io.Writer) { 747 b := newProfileBuilder(w) 748 var err error 749 for { 750 time.Sleep(100 * time.Millisecond) 751 data, tags, eof := readProfile() 752 if e := b.addCPUData(data, tags); e != nil && err == nil { 753 err = e 754 } 755 if eof { 756 break 757 } 758 } 759 if err != nil { 760 // The runtime should never produce an invalid or truncated profile. 761 // It drops records that can't fit into its log buffers. 762 panic("runtime/pprof: converting profile: " + err.Error()) 763 } 764 b.build() 765 cpu.done <- true 766 } 767 768 // StopCPUProfile stops the current CPU profile, if any. 769 // StopCPUProfile only returns after all the writes for the 770 // profile have completed. 771 func StopCPUProfile() { 772 cpu.Lock() 773 defer cpu.Unlock() 774 775 if !cpu.profiling { 776 return 777 } 778 cpu.profiling = false 779 runtime.SetCPUProfileRate(0) 780 <-cpu.done 781 } 782 783 // countBlock returns the number of records in the blocking profile. 784 func countBlock() int { 785 n, _ := runtime.BlockProfile(nil) 786 return n 787 } 788 789 // countMutex returns the number of records in the mutex profile. 790 func countMutex() int { 791 n, _ := runtime.MutexProfile(nil) 792 return n 793 } 794 795 // writeBlock writes the current blocking profile to w. 796 func writeBlock(w io.Writer, debug int) error { 797 var p []runtime.BlockProfileRecord 798 n, ok := runtime.BlockProfile(nil) 799 for { 800 p = make([]runtime.BlockProfileRecord, n+50) 801 n, ok = runtime.BlockProfile(p) 802 if ok { 803 p = p[:n] 804 break 805 } 806 } 807 808 sort.Slice(p, func(i, j int) bool { return p[i].Cycles > p[j].Cycles }) 809 810 if debug <= 0 { 811 return printCountCycleProfile(w, "contentions", "delay", scaleBlockProfile, p) 812 } 813 814 b := bufio.NewWriter(w) 815 tw := tabwriter.NewWriter(w, 1, 8, 1, '\t', 0) 816 w = tw 817 818 fmt.Fprintf(w, "--- contention:\n") 819 fmt.Fprintf(w, "cycles/second=%v\n", runtime_cyclesPerSecond()) 820 for i := range p { 821 r := &p[i] 822 fmt.Fprintf(w, "%v %v @", r.Cycles, r.Count) 823 for _, pc := range r.Stack() { 824 fmt.Fprintf(w, " %#x", pc) 825 } 826 fmt.Fprint(w, "\n") 827 if debug > 0 { 828 printStackRecord(w, r.Stack(), true) 829 } 830 } 831 832 if tw != nil { 833 tw.Flush() 834 } 835 return b.Flush() 836 } 837 838 func scaleBlockProfile(cnt int64, ns float64) (int64, float64) { 839 // Do nothing. 840 // The current way of block profile sampling makes it 841 // hard to compute the unsampled number. The legacy block 842 // profile parse doesn't attempt to scale or unsample. 843 return cnt, ns 844 } 845 846 // writeMutex writes the current mutex profile to w. 847 func writeMutex(w io.Writer, debug int) error { 848 // TODO(pjw): too much common code with writeBlock. FIX! 849 var p []runtime.BlockProfileRecord 850 n, ok := runtime.MutexProfile(nil) 851 for { 852 p = make([]runtime.BlockProfileRecord, n+50) 853 n, ok = runtime.MutexProfile(p) 854 if ok { 855 p = p[:n] 856 break 857 } 858 } 859 860 sort.Slice(p, func(i, j int) bool { return p[i].Cycles > p[j].Cycles }) 861 862 if debug <= 0 { 863 return printCountCycleProfile(w, "contentions", "delay", scaleMutexProfile, p) 864 } 865 866 b := bufio.NewWriter(w) 867 tw := tabwriter.NewWriter(w, 1, 8, 1, '\t', 0) 868 w = tw 869 870 fmt.Fprintf(w, "--- mutex:\n") 871 fmt.Fprintf(w, "cycles/second=%v\n", runtime_cyclesPerSecond()) 872 fmt.Fprintf(w, "sampling period=%d\n", runtime.SetMutexProfileFraction(-1)) 873 for i := range p { 874 r := &p[i] 875 fmt.Fprintf(w, "%v %v @", r.Cycles, r.Count) 876 for _, pc := range r.Stack() { 877 fmt.Fprintf(w, " %#x", pc) 878 } 879 fmt.Fprint(w, "\n") 880 if debug > 0 { 881 printStackRecord(w, r.Stack(), true) 882 } 883 } 884 885 if tw != nil { 886 tw.Flush() 887 } 888 return b.Flush() 889 } 890 891 func scaleMutexProfile(cnt int64, ns float64) (int64, float64) { 892 period := runtime.SetMutexProfileFraction(-1) 893 return cnt * int64(period), ns * float64(period) 894 } 895 896 func runtime_cyclesPerSecond() int64