github.com/corona10/go@v0.0.0-20180224231303-7a218942be57/src/text/template/exec.go (about)

     1  // Copyright 2011 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package template
     6  
     7  import (
     8  	"bytes"
     9  	"fmt"
    10  	"io"
    11  	"reflect"
    12  	"runtime"
    13  	"sort"
    14  	"strings"
    15  	"text/template/parse"
    16  )
    17  
    18  // maxExecDepth specifies the maximum stack depth of templates within
    19  // templates. This limit is only practically reached by accidentally
    20  // recursive template invocations. This limit allows us to return
    21  // an error instead of triggering a stack overflow.
    22  const maxExecDepth = 100000
    23  
    24  // state represents the state of an execution. It's not part of the
    25  // template so that multiple executions of the same template
    26  // can execute in parallel.
    27  type state struct {
    28  	tmpl  *Template
    29  	wr    io.Writer
    30  	node  parse.Node // current node, for errors
    31  	vars  []variable // push-down stack of variable values.
    32  	depth int        // the height of the stack of executing templates.
    33  }
    34  
    35  // variable holds the dynamic value of a variable such as $, $x etc.
    36  type variable struct {
    37  	name  string
    38  	value reflect.Value
    39  }
    40  
    41  // push pushes a new variable on the stack.
    42  func (s *state) push(name string, value reflect.Value) {
    43  	s.vars = append(s.vars, variable{name, value})
    44  }
    45  
    46  // mark returns the length of the variable stack.
    47  func (s *state) mark() int {
    48  	return len(s.vars)
    49  }
    50  
    51  // pop pops the variable stack up to the mark.
    52  func (s *state) pop(mark int) {
    53  	s.vars = s.vars[0:mark]
    54  }
    55  
    56  // setVar overwrites the top-nth variable on the stack. Used by range iterations.
    57  func (s *state) setVar(n int, value reflect.Value) {
    58  	s.vars[len(s.vars)-n].value = value
    59  }
    60  
    61  // varValue returns the value of the named variable.
    62  func (s *state) varValue(name string) reflect.Value {
    63  	for i := s.mark() - 1; i >= 0; i-- {
    64  		if s.vars[i].name == name {
    65  			return s.vars[i].value
    66  		}
    67  	}
    68  	s.errorf("undefined variable: %s", name)
    69  	return zero
    70  }
    71  
    72  var zero reflect.Value
    73  
    74  type missingValType struct{}
    75  
    76  var missingVal = reflect.ValueOf(missingValType{})
    77  
    78  // at marks the state to be on node n, for error reporting.
    79  func (s *state) at(node parse.Node) {
    80  	s.node = node
    81  }
    82  
    83  // doublePercent returns the string with %'s replaced by %%, if necessary,
    84  // so it can be used safely inside a Printf format string.
    85  func doublePercent(str string) string {
    86  	return strings.Replace(str, "%", "%%", -1)
    87  }
    88  
    89  // TODO: It would be nice if ExecError was more broken down, but
    90  // the way ErrorContext embeds the template name makes the
    91  // processing too clumsy.
    92  
    93  // ExecError is the custom error type returned when Execute has an
    94  // error evaluating its template. (If a write error occurs, the actual
    95  // error is returned; it will not be of type ExecError.)
    96  type ExecError struct {
    97  	Name string // Name of template.
    98  	Err  error  // Pre-formatted error.
    99  }
   100  
   101  func (e ExecError) Error() string {
   102  	return e.Err.Error()
   103  }
   104  
   105  // errorf records an ExecError and terminates processing.
   106  func (s *state) errorf(format string, args ...interface{}) {
   107  	name := doublePercent(s.tmpl.Name())
   108  	if s.node == nil {
   109  		format = fmt.Sprintf("template: %s: %s", name, format)
   110  	} else {
   111  		location, context := s.tmpl.ErrorContext(s.node)
   112  		format = fmt.Sprintf("template: %s: executing %q at <%s>: %s", location, name, doublePercent(context), format)
   113  	}
   114  	panic(ExecError{
   115  		Name: s.tmpl.Name(),
   116  		Err:  fmt.Errorf(format, args...),
   117  	})
   118  }
   119  
   120  // writeError is the wrapper type used internally when Execute has an
   121  // error writing to its output. We strip the wrapper in errRecover.
   122  // Note that this is not an implementation of error, so it cannot escape
   123  // from the package as an error value.
   124  type writeError struct {
   125  	Err error // Original error.
   126  }
   127  
   128  func (s *state) writeError(err error) {
   129  	panic(writeError{
   130  		Err: err,
   131  	})
   132  }
   133  
   134  // errRecover is the handler that turns panics into returns from the top
   135  // level of Parse.
   136  func errRecover(errp *error) {
   137  	e := recover()
   138  	if e != nil {
   139  		switch err := e.(type) {
   140  		case runtime.Error:
   141  			panic(e)
   142  		case writeError:
   143  			*errp = err.Err // Strip the wrapper.
   144  		case ExecError:
   145  			*errp = err // Keep the wrapper.
   146  		default:
   147  			panic(e)
   148  		}
   149  	}
   150  }
   151  
   152  // ExecuteTemplate applies the template associated with t that has the given name
   153  // to the specified data object and writes the output to wr.
   154  // If an error occurs executing the template or writing its output,
   155  // execution stops, but partial results may already have been written to
   156  // the output writer.
   157  // A template may be executed safely in parallel, although if parallel
   158  // executions share a Writer the output may be interleaved.
   159  func (t *Template) ExecuteTemplate(wr io.Writer, name string, data interface{}) error {
   160  	var tmpl *Template
   161  	if t.common != nil {
   162  		tmpl = t.tmpl[name]
   163  	}
   164  	if tmpl == nil {
   165  		return fmt.Errorf("template: no template %q associated with template %q", name, t.name)
   166  	}
   167  	return tmpl.Execute(wr, data)
   168  }
   169  
   170  // Execute applies a parsed template to the specified data object,
   171  // and writes the output to wr.
   172  // If an error occurs executing the template or writing its output,
   173  // execution stops, but partial results may already have been written to
   174  // the output writer.
   175  // A template may be executed safely in parallel, although if parallel
   176  // executions share a Writer the output may be interleaved.
   177  //
   178  // If data is a reflect.Value, the template applies to the concrete
   179  // value that the reflect.Value holds, as in fmt.Print.
   180  func (t *Template) Execute(wr io.Writer, data interface{}) error {
   181  	return t.execute(wr, data)
   182  }
   183  
   184  func (t *Template) execute(wr io.Writer, data interface{}) (err error) {
   185  	defer errRecover(&err)
   186  	value, ok := data.(reflect.Value)
   187  	if !ok {
   188  		value = reflect.ValueOf(data)
   189  	}
   190  	state := &state{
   191  		tmpl: t,
   192  		wr:   wr,
   193  		vars: []variable{{"$", value}},
   194  	}
   195  	if t.Tree == nil || t.Root == nil {
   196  		state.errorf("%q is an incomplete or empty template", t.Name())
   197  	}
   198  	state.walk(value, t.Root)
   199  	return
   200  }
   201  
   202  // DefinedTemplates returns a string listing the defined templates,
   203  // prefixed by the string "; defined templates are: ". If there are none,
   204  // it returns the empty string. For generating an error message here
   205  // and in html/template.
   206  func (t *Template) DefinedTemplates() string {
   207  	if t.common == nil {
   208  		return ""
   209  	}
   210  	var b bytes.Buffer
   211  	for name, tmpl := range t.tmpl {
   212  		if tmpl.Tree == nil || tmpl.Root == nil {
   213  			continue
   214  		}
   215  		if b.Len() > 0 {
   216  			b.WriteString(", ")
   217  		}
   218  		fmt.Fprintf(&b, "%q", name)
   219  	}
   220  	var s string
   221  	if b.Len() > 0 {
   222  		s = "; defined templates are: " + b.String()
   223  	}
   224  	return s
   225  }
   226  
   227  // Walk functions step through the major pieces of the template structure,
   228  // generating output as they go.
   229  func (s *state) walk(dot reflect.Value, node parse.Node) {
   230  	s.at(node)
   231  	switch node := node.(type) {
   232  	case *parse.ActionNode:
   233  		// Do not pop variables so they persist until next end.
   234  		// Also, if the action declares variables, don't print the result.
   235  		val := s.evalPipeline(dot, node.Pipe)
   236  		if len(node.Pipe.Decl) == 0 {
   237  			s.printValue(node, val)
   238  		}
   239  	case *parse.IfNode:
   240  		s.walkIfOrWith(parse.NodeIf, dot, node.Pipe, node.List, node.ElseList)
   241  	case *parse.ListNode:
   242  		for _, node := range node.Nodes {
   243  			s.walk(dot, node)
   244  		}
   245  	case *parse.RangeNode:
   246  		s.walkRange(dot, node)
   247  	case *parse.TemplateNode:
   248  		s.walkTemplate(dot, node)
   249  	case *parse.TextNode:
   250  		if _, err := s.wr.Write(node.Text); err != nil {
   251  			s.writeError(err)
   252  		}
   253  	case *parse.WithNode:
   254  		s.walkIfOrWith(parse.NodeWith, dot, node.Pipe, node.List, node.ElseList)
   255  	default:
   256  		s.errorf("unknown node: %s", node)
   257  	}
   258  }
   259  
   260  // walkIfOrWith walks an 'if' or 'with' node. The two control structures
   261  // are identical in behavior except that 'with' sets dot.
   262  func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) {
   263  	defer s.pop(s.mark())
   264  	val := s.evalPipeline(dot, pipe)
   265  	truth, ok := isTrue(val)
   266  	if !ok {
   267  		s.errorf("if/with can't use %v", val)
   268  	}
   269  	if truth {
   270  		if typ == parse.NodeWith {
   271  			s.walk(val, list)
   272  		} else {
   273  			s.walk(dot, list)
   274  		}
   275  	} else if elseList != nil {
   276  		s.walk(dot, elseList)
   277  	}
   278  }
   279  
   280  // IsTrue reports whether the value is 'true', in the sense of not the zero of its type,
   281  // and whether the value has a meaningful truth value. This is the definition of
   282  // truth used by if and other such actions.
   283  func IsTrue(val interface{}) (truth, ok bool) {
   284  	return isTrue(reflect.ValueOf(val))
   285  }
   286  
   287  func isTrue(val reflect.Value) (truth, ok bool) {
   288  	if !val.IsValid() {
   289  		// Something like var x interface{}, never set. It's a form of nil.
   290  		return false, true
   291  	}
   292  	switch val.Kind() {
   293  	case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
   294  		truth = val.Len() > 0
   295  	case reflect.Bool:
   296  		truth = val.Bool()
   297  	case reflect.Complex64, reflect.Complex128:
   298  		truth = val.Complex() != 0
   299  	case reflect.Chan, reflect.Func, reflect.Ptr, reflect.Interface:
   300  		truth = !val.IsNil()
   301  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   302  		truth = val.Int() != 0
   303  	case reflect.Float32, reflect.Float64:
   304  		truth = val.Float() != 0
   305  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   306  		truth = val.Uint() != 0
   307  	case reflect.Struct:
   308  		truth = true // Struct values are always true.
   309  	default:
   310  		return
   311  	}
   312  	return truth, true
   313  }
   314  
   315  func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) {
   316  	s.at(r)
   317  	defer s.pop(s.mark())
   318  	val, _ := indirect(s.evalPipeline(dot, r.Pipe))
   319  	// mark top of stack before any variables in the body are pushed.
   320  	mark := s.mark()
   321  	oneIteration := func(index, elem reflect.Value) {
   322  		// Set top var (lexically the second if there are two) to the element.
   323  		if len(r.Pipe.Decl) > 0 {
   324  			s.setVar(1, elem)
   325  		}
   326  		// Set next var (lexically the first if there are two) to the index.
   327  		if len(r.Pipe.Decl) > 1 {
   328  			s.setVar(2, index)
   329  		}
   330  		s.walk(elem, r.List)
   331  		s.pop(mark)
   332  	}
   333  	switch val.Kind() {
   334  	case reflect.Array, reflect.Slice:
   335  		if val.Len() == 0 {
   336  			break
   337  		}
   338  		for i := 0; i < val.Len(); i++ {
   339  			oneIteration(reflect.ValueOf(i), val.Index(i))
   340  		}
   341  		return
   342  	case reflect.Map:
   343  		if val.Len() == 0 {
   344  			break
   345  		}
   346  		for _, key := range sortKeys(val.MapKeys()) {
   347  			oneIteration(key, val.MapIndex(key))
   348  		}
   349  		return
   350  	case reflect.Chan:
   351  		if val.IsNil() {
   352  			break
   353  		}
   354  		i := 0
   355  		for ; ; i++ {
   356  			elem, ok := val.Recv()
   357  			if !ok {
   358  				break
   359  			}
   360  			oneIteration(reflect.ValueOf(i), elem)
   361  		}
   362  		if i == 0 {
   363  			break
   364  		}
   365  		return
   366  	case reflect.Invalid:
   367  		break // An invalid value is likely a nil map, etc. and acts like an empty map.
   368  	default:
   369  		s.errorf("range can't iterate over %v", val)
   370  	}
   371  	if r.ElseList != nil {
   372  		s.walk(dot, r.ElseList)
   373  	}
   374  }
   375  
   376  func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) {
   377  	s.at(t)
   378  	tmpl := s.tmpl.tmpl[t.Name]
   379  	if tmpl == nil {
   380  		s.errorf("template %q not defined", t.Name)
   381  	}
   382  	if s.depth == maxExecDepth {
   383  		s.errorf("exceeded maximum template depth (%v)", maxExecDepth)
   384  	}
   385  	// Variables declared by the pipeline persist.
   386  	dot = s.evalPipeline(dot, t.Pipe)
   387  	newState := *s
   388  	newState.depth++
   389  	newState.tmpl = tmpl
   390  	// No dynamic scoping: template invocations inherit no variables.
   391  	newState.vars = []variable{{"$", dot}}
   392  	newState.walk(dot, tmpl.Root)
   393  }
   394  
   395  // Eval functions evaluate pipelines, commands, and their elements and extract
   396  // values from the data structure by examining fields, calling methods, and so on.
   397  // The printing of those values happens only through walk functions.
   398  
   399  // evalPipeline returns the value acquired by evaluating a pipeline. If the
   400  // pipeline has a variable declaration, the variable will be pushed on the
   401  // stack. Callers should therefore pop the stack after they are finished
   402  // executing commands depending on the pipeline value.
   403  func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) {
   404  	if pipe == nil {
   405  		return
   406  	}
   407  	s.at(pipe)
   408  	value = missingVal
   409  	for _, cmd := range pipe.Cmds {
   410  		value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg.
   411  		// If the object has type interface{}, dig down one level to the thing inside.
   412  		if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 {
   413  			value = reflect.ValueOf(value.Interface()) // lovely!
   414  		}
   415  	}
   416  	for _, variable := range pipe.Decl {
   417  		s.push(variable.Ident[0], value)
   418  	}
   419  	return value
   420  }
   421  
   422  func (s *state) notAFunction(args []parse.Node, final reflect.Value) {
   423  	if len(args) > 1 || final != missingVal {
   424  		s.errorf("can't give argument to non-function %s", args[0])
   425  	}
   426  }
   427  
   428  func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value {
   429  	firstWord := cmd.Args[0]
   430  	switch n := firstWord.(type) {
   431  	case *parse.FieldNode:
   432  		return s.evalFieldNode(dot, n, cmd.Args, final)
   433  	case *parse.ChainNode:
   434  		return s.evalChainNode(dot, n, cmd.Args, final)
   435  	case *parse.IdentifierNode:
   436  		// Must be a function.
   437  		return s.evalFunction(dot, n, cmd, cmd.Args, final)
   438  	case *parse.PipeNode:
   439  		// Parenthesized pipeline. The arguments are all inside the pipeline; final is ignored.
   440  		return s.evalPipeline(dot, n)
   441  	case *parse.VariableNode:
   442  		return s.evalVariableNode(dot, n, cmd.Args, final)
   443  	}
   444  	s.at(firstWord)
   445  	s.notAFunction(cmd.Args, final)
   446  	switch word := firstWord.(type) {
   447  	case *parse.BoolNode:
   448  		return reflect.ValueOf(word.True)
   449  	case *parse.DotNode:
   450  		return dot
   451  	case *parse.NilNode:
   452  		s.errorf("nil is not a command")
   453  	case *parse.NumberNode:
   454  		return s.idealConstant(word)
   455  	case *parse.StringNode:
   456  		return reflect.ValueOf(word.Text)
   457  	}
   458  	s.errorf("can't evaluate command %q", firstWord)
   459  	panic("not reached")
   460  }
   461  
   462  // idealConstant is called to return the value of a number in a context where
   463  // we don't know the type. In that case, the syntax of the number tells us
   464  // its type, and we use Go rules to resolve. Note there is no such thing as
   465  // a uint ideal constant in this situation - the value must be of int type.
   466  func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value {
   467  	// These are ideal constants but we don't know the type
   468  	// and we have no context.  (If it was a method argument,
   469  	// we'd know what we need.) The syntax guides us to some extent.
   470  	s.at(constant)
   471  	switch {
   472  	case constant.IsComplex:
   473  		return reflect.ValueOf(constant.Complex128) // incontrovertible.
   474  	case constant.IsFloat && !isHexConstant(constant.Text) && strings.ContainsAny(constant.Text, ".eE"):
   475  		return reflect.ValueOf(constant.Float64)
   476  	case constant.IsInt:
   477  		n := int(constant.Int64)
   478  		if int64(n) != constant.Int64 {
   479  			s.errorf("%s overflows int", constant.Text)
   480  		}
   481  		return reflect.ValueOf(n)
   482  	case constant.IsUint:
   483  		s.errorf("%s overflows int", constant.Text)
   484  	}
   485  	return zero
   486  }
   487  
   488  func isHexConstant(s string) bool {
   489  	return len(s) > 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X')
   490  }
   491  
   492  func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value {
   493  	s.at(field)
   494  	return s.evalFieldChain(dot, dot, field, field.Ident, args, final)
   495  }
   496  
   497  func (s *state) evalChainNode(dot reflect.Value, chain *parse.ChainNode, args []parse.Node, final reflect.Value) reflect.Value {
   498  	s.at(chain)
   499  	if len(chain.Field) == 0 {
   500  		s.errorf("internal error: no fields in evalChainNode")
   501  	}
   502  	if chain.Node.Type() == parse.NodeNil {
   503  		s.errorf("indirection through explicit nil in %s", chain)
   504  	}
   505  	// (pipe).Field1.Field2 has pipe as .Node, fields as .Field. Eval the pipeline, then the fields.
   506  	pipe := s.evalArg(dot, nil, chain.Node)
   507  	return s.evalFieldChain(dot, pipe, chain, chain.Field, args, final)
   508  }
   509  
   510  func (s *state) evalVariableNode(dot reflect.Value, variable *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value {
   511  	// $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields.
   512  	s.at(variable)
   513  	value := s.varValue(variable.Ident[0])
   514  	if len(variable.Ident) == 1 {
   515  		s.notAFunction(args, final)
   516  		return value
   517  	}
   518  	return s.evalFieldChain(dot, value, variable, variable.Ident[1:], args, final)
   519  }
   520  
   521  // evalFieldChain evaluates .X.Y.Z possibly followed by arguments.
   522  // dot is the environment in which to evaluate arguments, while
   523  // receiver is the value being walked along the chain.
   524  func (s *state) evalFieldChain(dot, receiver reflect.Value, node parse.Node, ident []string, args []parse.Node, final reflect.Value) reflect.Value {
   525  	n := len(ident)
   526  	for i := 0; i < n-1; i++ {
   527  		receiver = s.evalField(dot, ident[i], node, nil, missingVal, receiver)
   528  	}
   529  	// Now if it's a method, it gets the arguments.
   530  	return s.evalField(dot, ident[n-1], node, args, final, receiver)
   531  }
   532  
   533  func (s *state) evalFunction(dot reflect.Value, node *parse.IdentifierNode, cmd parse.Node, args []parse.Node, final reflect.Value) reflect.Value {
   534  	s.at(node)
   535  	name := node.Ident
   536  	function, ok := findFunction(name, s.tmpl)
   537  	if !ok {
   538  		s.errorf("%q is not a defined function", name)
   539  	}
   540  	return s.evalCall(dot, function, cmd, name, args, final)
   541  }
   542  
   543  // evalField evaluates an expression like (.Field) or (.Field arg1 arg2).
   544  // The 'final' argument represents the return value from the preceding
   545  // value of the pipeline, if any.
   546  func (s *state) evalField(dot reflect.Value, fieldName string, node parse.Node, args []parse.Node, final, receiver reflect.Value) reflect.Value {
   547  	if !receiver.IsValid() {
   548  		if s.tmpl.option.missingKey == mapError { // Treat invalid value as missing map key.
   549  			s.errorf("nil data; no entry for key %q", fieldName)
   550  		}
   551  		return zero
   552  	}
   553  	typ := receiver.Type()
   554  	receiver, isNil := indirect(receiver)
   555  	// Unless it's an interface, need to get to a value of type *T to guarantee
   556  	// we see all methods of T and *T.
   557  	ptr := receiver
   558  	if ptr.Kind() != reflect.Interface && ptr.Kind() != reflect.Ptr && ptr.CanAddr() {
   559  		ptr = ptr.Addr()
   560  	}
   561  	if method := ptr.MethodByName(fieldName); method.IsValid() {
   562  		return s.evalCall(dot, method, node, fieldName, args, final)
   563  	}
   564  	hasArgs := len(args) > 1 || final != missingVal
   565  	// It's not a method; must be a field of a struct or an element of a map.
   566  	switch receiver.Kind() {
   567  	case reflect.Struct:
   568  		tField, ok := receiver.Type().FieldByName(fieldName)
   569  		if ok {
   570  			if isNil {
   571  				s.errorf("nil pointer evaluating %s.%s", typ, fieldName)
   572  			}
   573  			field := receiver.FieldByIndex(tField.Index)
   574  			if tField.PkgPath != "" { // field is unexported
   575  				s.errorf("%s is an unexported field of struct type %s", fieldName, typ)
   576  			}
   577  			// If it's a function, we must call it.
   578  			if hasArgs {
   579  				s.errorf("%s has arguments but cannot be invoked as function", fieldName)
   580  			}
   581  			return field
   582  		}
   583  	case reflect.Map:
   584  		if isNil {
   585  			s.errorf("nil pointer evaluating %s.%s", typ, fieldName)
   586  		}
   587  		// If it's a map, attempt to use the field name as a key.
   588  		nameVal := reflect.ValueOf(fieldName)
   589  		if nameVal.Type().AssignableTo(receiver.Type().Key()) {
   590  			if hasArgs {
   591  				s.errorf("%s is not a method but has arguments", fieldName)
   592  			}
   593  			result := receiver.MapIndex(nameVal)
   594  			if !result.IsValid() {
   595  				switch s.tmpl.option.missingKey {
   596  				case mapInvalid:
   597  					// Just use the invalid value.
   598  				case mapZeroValue:
   599  					result = reflect.Zero(receiver.Type().Elem())
   600  				case mapError:
   601  					s.errorf("map has no entry for key %q", fieldName)
   602  				}
   603  			}
   604  			return result
   605  		}
   606  	}
   607  	s.errorf("can't evaluate field %s in type %s", fieldName, typ)
   608  	panic("not reached")
   609  }
   610  
   611  var (
   612  	errorType        = reflect.TypeOf((*error)(nil)).Elem()
   613  	fmtStringerType  = reflect.TypeOf((*fmt.Stringer)(nil)).Elem()
   614  	reflectValueType = reflect.TypeOf((*reflect.Value)(nil)).Elem()
   615  )
   616  
   617  // evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so
   618  // it looks just like a function call. The arg list, if non-nil, includes (in the manner of the shell), arg[0]
   619  // as the function itself.
   620  func (s *state) evalCall(dot, fun reflect.Value, node parse.Node, name string, args []parse.Node, final reflect.Value) reflect.Value {
   621  	if args != nil {
   622  		args = args[1:] // Zeroth arg is function name/node; not passed to function.
   623  	}
   624  	typ := fun.Type()
   625  	numIn := len(args)
   626  	if final != missingVal {
   627  		numIn++
   628  	}
   629  	numFixed := len(args)
   630  	if typ.IsVariadic() {
   631  		numFixed = typ.NumIn() - 1 // last arg is the variadic one.
   632  		if numIn < numFixed {
   633  			s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args))
   634  		}
   635  	} else if numIn != typ.NumIn() {
   636  		s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), numIn)
   637  	}
   638  	if !goodFunc(typ) {
   639  		// TODO: This could still be a confusing error; maybe goodFunc should provide info.
   640  		s.errorf("can't call method/function %q with %d results", name, typ.NumOut())
   641  	}
   642  	// Build the arg list.
   643  	argv := make([]reflect.Value, numIn)
   644  	// Args must be evaluated. Fixed args first.
   645  	i := 0
   646  	for ; i < numFixed && i < len(args); i++ {
   647  		argv[i] = s.evalArg(dot, typ.In(i), args[i])
   648  	}
   649  	// Now the ... args.
   650  	if typ.IsVariadic() {
   651  		argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice.
   652  		for ; i < len(args); i++ {
   653  			argv[i] = s.evalArg(dot, argType, args[i])
   654  		}
   655  	}
   656  	// Add final value if necessary.
   657  	if final != missingVal {
   658  		t := typ.In(typ.NumIn() - 1)
   659  		if typ.IsVariadic() {
   660  			if numIn-1 < numFixed {
   661  				// The added final argument corresponds to a fixed parameter of the function.
   662  				// Validate against the type of the actual parameter.
   663  				t = typ.In(numIn - 1)
   664  			} else {
   665  				// The added final argument corresponds to the variadic part.
   666  				// Validate against the type of the elements of the variadic slice.
   667  				t = t.Elem()
   668  			}
   669  		}
   670  		argv[i] = s.validateType(final, t)
   671  	}
   672  	result := fun.Call(argv)
   673  	// If we have an error that is not nil, stop execution and return that error to the caller.
   674  	if len(result) == 2 && !result[1].IsNil() {
   675  		s.at(node)
   676  		s.errorf("error calling %s: %s", name, result[1].Interface().(error))
   677  	}
   678  	v := result[0]
   679  	if v.Type() == reflectValueType {
   680  		v = v.Interface().(reflect.Value)
   681  	}
   682  	return v
   683  }
   684  
   685  // canBeNil reports whether an untyped nil can be assigned to the type. See reflect.Zero.
   686  func canBeNil(typ reflect.Type) bool {
   687  	switch typ.Kind() {
   688  	case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice:
   689  		return true
   690  	case reflect.Struct:
   691  		return typ == reflectValueType
   692  	}
   693  	return false
   694  }
   695  
   696  // validateType guarantees that the value is valid and assignable to the type.
   697  func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value {
   698  	if !value.IsValid() {
   699  		if typ == nil {
   700  			// An untyped nil interface{}. Accept as a proper nil value.
   701  			return reflect.ValueOf(nil)
   702  		}
   703  		if canBeNil(typ) {
   704  			// Like above, but use the zero value of the non-nil type.
   705  			return reflect.Zero(typ)
   706  		}
   707  		s.errorf("invalid value; expected %s", typ)
   708  	}
   709  	if typ == reflectValueType && value.Type() != typ {
   710  		return reflect.ValueOf(value)
   711  	}
   712  	if typ != nil && !value.Type().AssignableTo(typ) {
   713  		if value.Kind() == reflect.Interface && !value.IsNil() {
   714  			value = value.Elem()
   715  			if value.Type().AssignableTo(typ) {
   716  				return value
   717  			}
   718  			// fallthrough
   719  		}
   720  		// Does one dereference or indirection work? We could do more, as we
   721  		// do with method receivers, but that gets messy and method receivers
   722  		// are much more constrained, so it makes more sense there than here.
   723  		// Besides, one is almost always all you need.
   724  		switch {
   725  		case value.Kind() == reflect.Ptr && value.Type().Elem().AssignableTo(typ):
   726  			value = value.Elem()
   727  			if !value.IsValid() {
   728  				s.errorf("dereference of nil pointer of type %s", typ)
   729  			}
   730  		case reflect.PtrTo(value.Type()).AssignableTo(typ) && value.CanAddr():
   731  			value = value.Addr()
   732  		default:
   733  			s.errorf("wrong type for value; expected %s; got %s", typ, value.Type())
   734  		}
   735  	}
   736  	return value
   737  }
   738  
   739  func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value {
   740  	s.at(n)
   741  	switch arg := n.(type) {
   742  	case *parse.DotNode:
   743  		return s.validateType(dot, typ)
   744  	case *parse.NilNode:
   745  		if canBeNil(typ) {
   746  			return reflect.Zero(typ)
   747  		}
   748  		s.errorf("cannot assign nil to %s", typ)
   749  	case *parse.FieldNode:
   750  		return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, missingVal), typ)
   751  	case *parse.VariableNode:
   752  		return s.validateType(s.evalVariableNode(dot, arg, nil, missingVal), typ)
   753  	case *parse.PipeNode:
   754  		return s.validateType(s.evalPipeline(dot, arg), typ)
   755  	case *parse.IdentifierNode:
   756  		return s.validateType(s.evalFunction(dot, arg, arg, nil, missingVal), typ)
   757  	case *parse.ChainNode:
   758  		return s.validateType(s.evalChainNode(dot, arg, nil, missingVal), typ)
   759  	}
   760  	switch typ.Kind() {
   761  	case reflect.Bool:
   762  		return s.evalBool(typ, n)
   763  	case reflect.Complex64, reflect.Complex128:
   764  		return s.evalComplex(typ, n)
   765  	case reflect.Float32, reflect.Float64:
   766  		return s.evalFloat(typ, n)
   767  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   768  		return s.evalInteger(typ, n)
   769  	case reflect.Interface:
   770  		if typ.NumMethod() == 0 {
   771  			return s.evalEmptyInterface(dot, n)
   772  		}
   773  	case reflect.Struct:
   774  		if typ == reflectValueType {
   775  			return reflect.ValueOf(s.evalEmptyInterface(dot, n))
   776  		}
   777  	case reflect.String:
   778  		return s.evalString(typ, n)
   779  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   780  		return s.evalUnsignedInteger(typ, n)
   781  	}
   782  	s.errorf("can't handle %s for arg of type %s", n, typ)
   783  	panic("not reached")
   784  }
   785  
   786  func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value {
   787  	s.at(n)
   788  	if n, ok := n.(*parse.BoolNode); ok {
   789  		value := reflect.New(typ).Elem()
   790  		value.SetBool(n.True)
   791  		return value
   792  	}
   793  	s.errorf("expected bool; found %s", n)
   794  	panic("not reached")
   795  }
   796  
   797  func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value {
   798  	s.at(n)
   799  	if n, ok := n.(*parse.StringNode); ok {
   800  		value := reflect.New(typ).Elem()
   801  		value.SetString(n.Text)
   802  		return value
   803  	}
   804  	s.errorf("expected string; found %s", n)
   805  	panic("not reached")
   806  }
   807  
   808  func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value {
   809  	s.at(n)
   810  	if n, ok := n.(*parse.NumberNode); ok && n.IsInt {
   811  		value := reflect.New(typ).Elem()
   812  		value.SetInt(n.Int64)
   813  		return value
   814  	}
   815  	s.errorf("expected integer; found %s", n)
   816  	panic("not reached")
   817  }
   818  
   819  func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value {
   820  	s.at(n)
   821  	if n, ok := n.(*parse.NumberNode); ok && n.IsUint {
   822  		value := reflect.New(typ).Elem()
   823  		value.SetUint(n.Uint64)
   824  		return value
   825  	}
   826  	s.errorf("expected unsigned integer; found %s", n)
   827  	panic("not reached")
   828  }
   829  
   830  func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value {
   831  	s.at(n)
   832  	if n, ok := n.(*parse.NumberNode); ok && n.IsFloat {
   833  		value := reflect.New(typ).Elem()
   834  		value.SetFloat(n.Float64)
   835  		return value
   836  	}
   837  	s.errorf("expected float; found %s", n)
   838  	panic("not reached")
   839  }
   840  
   841  func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value {
   842  	if n, ok := n.(*parse.NumberNode); ok && n.IsComplex {
   843  		value := reflect.New(typ).Elem()
   844  		value.SetComplex(n.Complex128)
   845  		return value
   846  	}
   847  	s.errorf("expected complex; found %s", n)
   848  	panic("not reached")
   849  }
   850  
   851  func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value {
   852  	s.at(n)
   853  	switch n := n.(type) {
   854  	case *parse.BoolNode:
   855  		return reflect.ValueOf(n.True)
   856  	case *parse.DotNode:
   857  		return dot
   858  	case *parse.FieldNode:
   859  		return s.evalFieldNode(dot, n, nil, missingVal)
   860  	case *parse.IdentifierNode:
   861  		return s.evalFunction(dot, n, n, nil, missingVal)
   862  	case *parse.NilNode:
   863  		// NilNode is handled in evalArg, the only place that calls here.
   864  		s.errorf("evalEmptyInterface: nil (can't happen)")
   865  	case *parse.NumberNode:
   866  		return s.idealConstant(n)
   867  	case *parse.StringNode:
   868  		return reflect.ValueOf(n.Text)
   869  	case *parse.VariableNode:
   870  		return s.evalVariableNode(dot, n, nil, missingVal)
   871  	case *parse.PipeNode:
   872  		return s.evalPipeline(dot, n)
   873  	}
   874  	s.errorf("can't handle assignment of %s to empty interface argument", n)
   875  	panic("not reached")
   876  }
   877  
   878  // indirect returns the item at the end of indirection, and a bool to indicate if it's nil.
   879  func indirect(v reflect.Value) (rv reflect.Value, isNil bool) {
   880  	for ; v.Kind() == reflect.Ptr || v.Kind() == reflect.Interface; v = v.Elem() {
   881  		if v.IsNil() {
   882  			return v, true
   883  		}
   884  	}
   885  	return v, false
   886  }
   887  
   888  // indirectInterface returns the concrete value in an interface value,
   889  // or else the zero reflect.Value.
   890  // That is, if v represents the interface value x, the result is the same as reflect.ValueOf(x):
   891  // the fact that x was an interface value is forgotten.
   892  func indirectInterface(v reflect.Value) reflect.Value {
   893  	if v.Kind() != reflect.Interface {
   894  		return v
   895  	}
   896  	if v.IsNil() {
   897  		return reflect.Value{}
   898  	}
   899  	return v.Elem()
   900  }
   901  
   902  // printValue writes the textual representation of the value to the output of
   903  // the template.
   904  func (s *state) printValue(n parse.Node, v reflect.Value) {
   905  	s.at(n)
   906  	iface, ok := printableValue(v)
   907  	if !ok {
   908  		s.errorf("can't print %s of type %s", n, v.Type())
   909  	}
   910  	_, err := fmt.Fprint(s.wr, iface)
   911  	if err != nil {
   912  		s.writeError(err)
   913  	}
   914  }
   915  
   916  // printableValue returns the, possibly indirected, interface value inside v that
   917  // is best for a call to formatted printer.
   918  func printableValue(v reflect.Value) (interface{}, bool) {
   919  	if v.Kind() == reflect.Ptr {
   920  		v, _ = indirect(v) // fmt.Fprint handles nil.
   921  	}
   922  	if !v.IsValid() {
   923  		return "<no value>", true
   924  	}
   925  
   926  	if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) {
   927  		if v.CanAddr() && (reflect.PtrTo(v.Type()).Implements(errorType) || reflect.PtrTo(v.Type()).Implements(fmtStringerType)) {
   928  			v = v.Addr()
   929  		} else {
   930  			switch v.Kind() {
   931  			case reflect.Chan, reflect.Func:
   932  				return nil, false
   933  			}
   934  		}
   935  	}
   936  	return v.Interface(), true
   937  }
   938  
   939  // sortKeys sorts (if it can) the slice of reflect.Values, which is a slice of map keys.
   940  func sortKeys(v []reflect.Value) []reflect.Value {
   941  	if len(v) <= 1 {
   942  		return v
   943  	}
   944  	switch v[0].Kind() {
   945  	case reflect.Float32, reflect.Float64:
   946  		sort.Slice(v, func(i, j int) bool {
   947  			return v[i].Float() < v[j].Float()
   948  		})
   949  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   950  		sort.Slice(v, func(i, j int) bool {
   951  			return v[i].Int() < v[j].Int()
   952  		})
   953  	case reflect.String:
   954  		sort.Slice(v, func(i, j int) bool {
   955  			return v[i].String() < v[j].String()
   956  		})
   957  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   958  		sort.Slice(v, func(i, j int) bool {
   959  			return v[i].Uint() < v[j].Uint()
   960  		})
   961  	}
   962  	return v
   963  }