github.com/cranelv/ethereum_mpc@v0.0.0-20191031014521-23aeb1415092/crypto/secp256k1/curve.go (about) 1 // Copyright 2010 The Go Authors. All rights reserved. 2 // Copyright 2011 ThePiachu. All rights reserved. 3 // 4 // Redistribution and use in source and binary forms, with or without 5 // modification, are permitted provided that the following conditions are 6 // met: 7 // 8 // * Redistributions of source code must retain the above copyright 9 // notice, this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above 11 // copyright notice, this list of conditions and the following disclaimer 12 // in the documentation and/or other materials provided with the 13 // distribution. 14 // * Neither the name of Google Inc. nor the names of its 15 // contributors may be used to endorse or promote products derived from 16 // this software without specific prior written permission. 17 // * The name of ThePiachu may not be used to endorse or promote products 18 // derived from this software without specific prior written permission. 19 // 20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 23 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 24 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 25 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 26 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 27 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 28 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 29 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 30 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 31 32 package secp256k1 33 34 import ( 35 "crypto/elliptic" 36 "math/big" 37 "unsafe" 38 39 "github.com/ethereum/go-ethereum/common/math" 40 ) 41 42 /* 43 #include "libsecp256k1/include/secp256k1.h" 44 extern int secp256k1_ext_scalar_mul(const secp256k1_context* ctx, const unsigned char *point, const unsigned char *scalar); 45 */ 46 import "C" 47 48 // This code is from https://github.com/ThePiachu/GoBit and implements 49 // several Koblitz elliptic curves over prime fields. 50 // 51 // The curve methods, internally, on Jacobian coordinates. For a given 52 // (x, y) position on the curve, the Jacobian coordinates are (x1, y1, 53 // z1) where x = x1/z1² and y = y1/z1³. The greatest speedups come 54 // when the whole calculation can be performed within the transform 55 // (as in ScalarMult and ScalarBaseMult). But even for Add and Double, 56 // it's faster to apply and reverse the transform than to operate in 57 // affine coordinates. 58 59 // A BitCurve represents a Koblitz Curve with a=0. 60 // See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html 61 type BitCurve struct { 62 P *big.Int // the order of the underlying field 63 N *big.Int // the order of the base point 64 B *big.Int // the constant of the BitCurve equation 65 Gx, Gy *big.Int // (x,y) of the base point 66 BitSize int // the size of the underlying field 67 } 68 69 func (BitCurve *BitCurve) Params() *elliptic.CurveParams { 70 return &elliptic.CurveParams{ 71 P: BitCurve.P, 72 N: BitCurve.N, 73 B: BitCurve.B, 74 Gx: BitCurve.Gx, 75 Gy: BitCurve.Gy, 76 BitSize: BitCurve.BitSize, 77 } 78 } 79 80 // IsOnCurve returns true if the given (x,y) lies on the BitCurve. 81 func (BitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool { 82 // y² = x³ + b 83 y2 := new(big.Int).Mul(y, y) //y² 84 y2.Mod(y2, BitCurve.P) //y²%P 85 86 x3 := new(big.Int).Mul(x, x) //x² 87 x3.Mul(x3, x) //x³ 88 89 x3.Add(x3, BitCurve.B) //x³+B 90 x3.Mod(x3, BitCurve.P) //(x³+B)%P 91 92 return x3.Cmp(y2) == 0 93 } 94 95 //TODO: double check if the function is okay 96 // affineFromJacobian reverses the Jacobian transform. See the comment at the 97 // top of the file. 98 func (BitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) { 99 zinv := new(big.Int).ModInverse(z, BitCurve.P) 100 zinvsq := new(big.Int).Mul(zinv, zinv) 101 102 xOut = new(big.Int).Mul(x, zinvsq) 103 xOut.Mod(xOut, BitCurve.P) 104 zinvsq.Mul(zinvsq, zinv) 105 yOut = new(big.Int).Mul(y, zinvsq) 106 yOut.Mod(yOut, BitCurve.P) 107 return 108 } 109 110 // Add returns the sum of (x1,y1) and (x2,y2) 111 func (BitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { 112 z := new(big.Int).SetInt64(1) 113 return BitCurve.affineFromJacobian(BitCurve.addJacobian(x1, y1, z, x2, y2, z)) 114 } 115 116 // addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and 117 // (x2, y2, z2) and returns their sum, also in Jacobian form. 118 func (BitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) { 119 // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl 120 z1z1 := new(big.Int).Mul(z1, z1) 121 z1z1.Mod(z1z1, BitCurve.P) 122 z2z2 := new(big.Int).Mul(z2, z2) 123 z2z2.Mod(z2z2, BitCurve.P) 124 125 u1 := new(big.Int).Mul(x1, z2z2) 126 u1.Mod(u1, BitCurve.P) 127 u2 := new(big.Int).Mul(x2, z1z1) 128 u2.Mod(u2, BitCurve.P) 129 h := new(big.Int).Sub(u2, u1) 130 xEqual := h.Sign() == 0 131 if h.Sign() == -1 { 132 h.Add(h, BitCurve.P) 133 } 134 i := new(big.Int).Lsh(h, 1) 135 i.Mul(i, i) 136 j := new(big.Int).Mul(h, i) 137 138 s1 := new(big.Int).Mul(y1, z2) 139 s1.Mul(s1, z2z2) 140 s1.Mod(s1, BitCurve.P) 141 s2 := new(big.Int).Mul(y2, z1) 142 s2.Mul(s2, z1z1) 143 s2.Mod(s2, BitCurve.P) 144 r := new(big.Int).Sub(s2, s1) 145 yEqual := r.Sign() == 0 146 if xEqual && yEqual { 147 return BitCurve.doubleJacobian(x1, y1, z1) 148 } 149 if r.Sign() == -1 { 150 r.Add(r, BitCurve.P) 151 } 152 r.Lsh(r, 1) 153 v := new(big.Int).Mul(u1, i) 154 155 x3 := new(big.Int).Set(r) 156 x3.Mul(x3, x3) 157 x3.Sub(x3, j) 158 x3.Sub(x3, v) 159 x3.Sub(x3, v) 160 x3.Mod(x3, BitCurve.P) 161 162 y3 := new(big.Int).Set(r) 163 v.Sub(v, x3) 164 y3.Mul(y3, v) 165 s1.Mul(s1, j) 166 s1.Lsh(s1, 1) 167 y3.Sub(y3, s1) 168 y3.Mod(y3, BitCurve.P) 169 170 z3 := new(big.Int).Add(z1, z2) 171 z3.Mul(z3, z3) 172 z3.Sub(z3, z1z1) 173 if z3.Sign() == -1 { 174 z3.Add(z3, BitCurve.P) 175 } 176 z3.Sub(z3, z2z2) 177 if z3.Sign() == -1 { 178 z3.Add(z3, BitCurve.P) 179 } 180 z3.Mul(z3, h) 181 z3.Mod(z3, BitCurve.P) 182 183 return x3, y3, z3 184 } 185 186 // Double returns 2*(x,y) 187 func (BitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { 188 z1 := new(big.Int).SetInt64(1) 189 return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z1)) 190 } 191 192 // doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and 193 // returns its double, also in Jacobian form. 194 func (BitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) { 195 // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l 196 197 a := new(big.Int).Mul(x, x) //X1² 198 b := new(big.Int).Mul(y, y) //Y1² 199 c := new(big.Int).Mul(b, b) //B² 200 201 d := new(big.Int).Add(x, b) //X1+B 202 d.Mul(d, d) //(X1+B)² 203 d.Sub(d, a) //(X1+B)²-A 204 d.Sub(d, c) //(X1+B)²-A-C 205 d.Mul(d, big.NewInt(2)) //2*((X1+B)²-A-C) 206 207 e := new(big.Int).Mul(big.NewInt(3), a) //3*A 208 f := new(big.Int).Mul(e, e) //E² 209 210 x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D 211 x3.Sub(f, x3) //F-2*D 212 x3.Mod(x3, BitCurve.P) 213 214 y3 := new(big.Int).Sub(d, x3) //D-X3 215 y3.Mul(e, y3) //E*(D-X3) 216 y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C 217 y3.Mod(y3, BitCurve.P) 218 219 z3 := new(big.Int).Mul(y, z) //Y1*Z1 220 z3.Mul(big.NewInt(2), z3) //3*Y1*Z1 221 z3.Mod(z3, BitCurve.P) 222 223 return x3, y3, z3 224 } 225 226 func (BitCurve *BitCurve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) { 227 // Ensure scalar is exactly 32 bytes. We pad always, even if 228 // scalar is 32 bytes long, to avoid a timing side channel. 229 if len(scalar) > 32 { 230 panic("can't handle scalars > 256 bits") 231 } 232 // NOTE: potential timing issue 233 padded := make([]byte, 32) 234 copy(padded[32-len(scalar):], scalar) 235 scalar = padded 236 237 // Do the multiplication in C, updating point. 238 point := make([]byte, 64) 239 math.ReadBits(Bx, point[:32]) 240 math.ReadBits(By, point[32:]) 241 pointPtr := (*C.uchar)(unsafe.Pointer(&point[0])) 242 scalarPtr := (*C.uchar)(unsafe.Pointer(&scalar[0])) 243 res := C.secp256k1_ext_scalar_mul(context, pointPtr, scalarPtr) 244 245 // Unpack the result and clear temporaries. 246 x := new(big.Int).SetBytes(point[:32]) 247 y := new(big.Int).SetBytes(point[32:]) 248 for i := range point { 249 point[i] = 0 250 } 251 for i := range padded { 252 scalar[i] = 0 253 } 254 if res != 1 { 255 return nil, nil 256 } 257 return x, y 258 } 259 260 // ScalarBaseMult returns k*G, where G is the base point of the group and k is 261 // an integer in big-endian form. 262 func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) { 263 return BitCurve.ScalarMult(BitCurve.Gx, BitCurve.Gy, k) 264 } 265 266 // Marshal converts a point into the form specified in section 4.3.6 of ANSI 267 // X9.62. 268 func (BitCurve *BitCurve) Marshal(x, y *big.Int) []byte { 269 byteLen := (BitCurve.BitSize + 7) >> 3 270 ret := make([]byte, 1+2*byteLen) 271 ret[0] = 4 // uncompressed point flag 272 math.ReadBits(x, ret[1:1+byteLen]) 273 math.ReadBits(y, ret[1+byteLen:]) 274 return ret 275 } 276 277 // Unmarshal converts a point, serialised by Marshal, into an x, y pair. On 278 // error, x = nil. 279 func (BitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int) { 280 byteLen := (BitCurve.BitSize + 7) >> 3 281 if len(data) != 1+2*byteLen { 282 return 283 } 284 if data[0] != 4 { // uncompressed form 285 return 286 } 287 x = new(big.Int).SetBytes(data[1 : 1+byteLen]) 288 y = new(big.Int).SetBytes(data[1+byteLen:]) 289 return 290 } 291 292 var theCurve = new(BitCurve) 293 294 func init() { 295 // See SEC 2 section 2.7.1 296 // curve parameters taken from: 297 // http://www.secg.org/collateral/sec2_final.pdf 298 theCurve.P = math.MustParseBig256("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F") 299 theCurve.N = math.MustParseBig256("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141") 300 theCurve.B = math.MustParseBig256("0x0000000000000000000000000000000000000000000000000000000000000007") 301 theCurve.Gx = math.MustParseBig256("0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798") 302 theCurve.Gy = math.MustParseBig256("0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8") 303 theCurve.BitSize = 256 304 } 305 306 // S256 returns a BitCurve which implements secp256k1. 307 func S256() *BitCurve { 308 return theCurve 309 }