github.com/cryptogateway/go-paymex@v0.0.0-20210204174735-96277fb1e602/les/serverpool.go (about)

     1  // Copyright 2020 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package les
    18  
    19  import (
    20  	"errors"
    21  	"math/rand"
    22  	"reflect"
    23  	"sync"
    24  	"sync/atomic"
    25  	"time"
    26  
    27  	"github.com/cryptogateway/go-paymex/common/mclock"
    28  	"github.com/cryptogateway/go-paymex/ethdb"
    29  	lpc "github.com/cryptogateway/go-paymex/les/lespay/client"
    30  	"github.com/cryptogateway/go-paymex/les/utils"
    31  	"github.com/cryptogateway/go-paymex/log"
    32  	"github.com/cryptogateway/go-paymex/p2p/enode"
    33  	"github.com/cryptogateway/go-paymex/p2p/enr"
    34  	"github.com/cryptogateway/go-paymex/p2p/nodestate"
    35  	"github.com/cryptogateway/go-paymex/rlp"
    36  )
    37  
    38  const (
    39  	minTimeout          = time.Millisecond * 500 // minimum request timeout suggested by the server pool
    40  	timeoutRefresh      = time.Second * 5        // recalculate timeout if older than this
    41  	dialCost            = 10000                  // cost of a TCP dial (used for known node selection weight calculation)
    42  	dialWaitStep        = 1.5                    // exponential multiplier of redial wait time when no value was provided by the server
    43  	queryCost           = 500                    // cost of a UDP pre-negotiation query
    44  	queryWaitStep       = 1.02                   // exponential multiplier of redial wait time when no value was provided by the server
    45  	waitThreshold       = time.Hour * 2000       // drop node if waiting time is over the threshold
    46  	nodeWeightMul       = 1000000                // multiplier constant for node weight calculation
    47  	nodeWeightThreshold = 100                    // minimum weight for keeping a node in the the known (valuable) set
    48  	minRedialWait       = 10                     // minimum redial wait time in seconds
    49  	preNegLimit         = 5                      // maximum number of simultaneous pre-negotiation queries
    50  	maxQueryFails       = 100                    // number of consecutive UDP query failures before we print a warning
    51  )
    52  
    53  // serverPool provides a node iterator for dial candidates. The output is a mix of newly discovered
    54  // nodes, a weighted random selection of known (previously valuable) nodes and trusted/paid nodes.
    55  type serverPool struct {
    56  	clock    mclock.Clock
    57  	unixTime func() int64
    58  	db       ethdb.KeyValueStore
    59  
    60  	ns           *nodestate.NodeStateMachine
    61  	vt           *lpc.ValueTracker
    62  	mixer        *enode.FairMix
    63  	mixSources   []enode.Iterator
    64  	dialIterator enode.Iterator
    65  	validSchemes enr.IdentityScheme
    66  	trustedURLs  []string
    67  	fillSet      *lpc.FillSet
    68  	queryFails   uint32
    69  
    70  	timeoutLock      sync.RWMutex
    71  	timeout          time.Duration
    72  	timeWeights      lpc.ResponseTimeWeights
    73  	timeoutRefreshed mclock.AbsTime
    74  }
    75  
    76  // nodeHistory keeps track of dial costs which determine node weight together with the
    77  // service value calculated by lpc.ValueTracker.
    78  type nodeHistory struct {
    79  	dialCost                       utils.ExpiredValue
    80  	redialWaitStart, redialWaitEnd int64 // unix time (seconds)
    81  }
    82  
    83  type nodeHistoryEnc struct {
    84  	DialCost                       utils.ExpiredValue
    85  	RedialWaitStart, RedialWaitEnd uint64
    86  }
    87  
    88  // queryFunc sends a pre-negotiation query and blocks until a response arrives or timeout occurs.
    89  // It returns 1 if the remote node has confirmed that connection is possible, 0 if not
    90  // possible and -1 if no response arrived (timeout).
    91  type queryFunc func(*enode.Node) int
    92  
    93  var (
    94  	serverPoolSetup    = &nodestate.Setup{Version: 1}
    95  	sfHasValue         = serverPoolSetup.NewPersistentFlag("hasValue")
    96  	sfQueried          = serverPoolSetup.NewFlag("queried")
    97  	sfCanDial          = serverPoolSetup.NewFlag("canDial")
    98  	sfDialing          = serverPoolSetup.NewFlag("dialed")
    99  	sfWaitDialTimeout  = serverPoolSetup.NewFlag("dialTimeout")
   100  	sfConnected        = serverPoolSetup.NewFlag("connected")
   101  	sfRedialWait       = serverPoolSetup.NewFlag("redialWait")
   102  	sfAlwaysConnect    = serverPoolSetup.NewFlag("alwaysConnect")
   103  	sfDisableSelection = nodestate.MergeFlags(sfQueried, sfCanDial, sfDialing, sfConnected, sfRedialWait)
   104  
   105  	sfiNodeHistory = serverPoolSetup.NewPersistentField("nodeHistory", reflect.TypeOf(nodeHistory{}),
   106  		func(field interface{}) ([]byte, error) {
   107  			if n, ok := field.(nodeHistory); ok {
   108  				ne := nodeHistoryEnc{
   109  					DialCost:        n.dialCost,
   110  					RedialWaitStart: uint64(n.redialWaitStart),
   111  					RedialWaitEnd:   uint64(n.redialWaitEnd),
   112  				}
   113  				enc, err := rlp.EncodeToBytes(&ne)
   114  				return enc, err
   115  			}
   116  			return nil, errors.New("invalid field type")
   117  		},
   118  		func(enc []byte) (interface{}, error) {
   119  			var ne nodeHistoryEnc
   120  			err := rlp.DecodeBytes(enc, &ne)
   121  			n := nodeHistory{
   122  				dialCost:        ne.DialCost,
   123  				redialWaitStart: int64(ne.RedialWaitStart),
   124  				redialWaitEnd:   int64(ne.RedialWaitEnd),
   125  			}
   126  			return n, err
   127  		},
   128  	)
   129  	sfiNodeWeight     = serverPoolSetup.NewField("nodeWeight", reflect.TypeOf(uint64(0)))
   130  	sfiConnectedStats = serverPoolSetup.NewField("connectedStats", reflect.TypeOf(lpc.ResponseTimeStats{}))
   131  )
   132  
   133  // newServerPool creates a new server pool
   134  func newServerPool(db ethdb.KeyValueStore, dbKey []byte, vt *lpc.ValueTracker, mixTimeout time.Duration, query queryFunc, clock mclock.Clock, trustedURLs []string) *serverPool {
   135  	s := &serverPool{
   136  		db:           db,
   137  		clock:        clock,
   138  		unixTime:     func() int64 { return time.Now().Unix() },
   139  		validSchemes: enode.ValidSchemes,
   140  		trustedURLs:  trustedURLs,
   141  		vt:           vt,
   142  		ns:           nodestate.NewNodeStateMachine(db, []byte(string(dbKey)+"ns:"), clock, serverPoolSetup),
   143  	}
   144  	s.recalTimeout()
   145  	s.mixer = enode.NewFairMix(mixTimeout)
   146  	knownSelector := lpc.NewWrsIterator(s.ns, sfHasValue, sfDisableSelection, sfiNodeWeight)
   147  	alwaysConnect := lpc.NewQueueIterator(s.ns, sfAlwaysConnect, sfDisableSelection, true, nil)
   148  	s.mixSources = append(s.mixSources, knownSelector)
   149  	s.mixSources = append(s.mixSources, alwaysConnect)
   150  
   151  	iter := enode.Iterator(s.mixer)
   152  	if query != nil {
   153  		iter = s.addPreNegFilter(iter, query)
   154  	}
   155  	s.dialIterator = enode.Filter(iter, func(node *enode.Node) bool {
   156  		s.ns.SetState(node, sfDialing, sfCanDial, 0)
   157  		s.ns.SetState(node, sfWaitDialTimeout, nodestate.Flags{}, time.Second*10)
   158  		return true
   159  	})
   160  
   161  	s.ns.SubscribeState(nodestate.MergeFlags(sfWaitDialTimeout, sfConnected), func(n *enode.Node, oldState, newState nodestate.Flags) {
   162  		if oldState.Equals(sfWaitDialTimeout) && newState.IsEmpty() {
   163  			// dial timeout, no connection
   164  			s.setRedialWait(n, dialCost, dialWaitStep)
   165  			s.ns.SetStateSub(n, nodestate.Flags{}, sfDialing, 0)
   166  		}
   167  	})
   168  
   169  	s.ns.AddLogMetrics(sfHasValue, sfDisableSelection, "selectable", nil, nil, serverSelectableGauge)
   170  	s.ns.AddLogMetrics(sfDialing, nodestate.Flags{}, "dialed", serverDialedMeter, nil, nil)
   171  	s.ns.AddLogMetrics(sfConnected, nodestate.Flags{}, "connected", nil, nil, serverConnectedGauge)
   172  	return s
   173  }
   174  
   175  // addSource adds a node discovery source to the server pool (should be called before start)
   176  func (s *serverPool) addSource(source enode.Iterator) {
   177  	if source != nil {
   178  		s.mixSources = append(s.mixSources, source)
   179  	}
   180  }
   181  
   182  // addPreNegFilter installs a node filter mechanism that performs a pre-negotiation query.
   183  // Nodes that are filtered out and does not appear on the output iterator are put back
   184  // into redialWait state.
   185  func (s *serverPool) addPreNegFilter(input enode.Iterator, query queryFunc) enode.Iterator {
   186  	s.fillSet = lpc.NewFillSet(s.ns, input, sfQueried)
   187  	s.ns.SubscribeState(sfQueried, func(n *enode.Node, oldState, newState nodestate.Flags) {
   188  		if newState.Equals(sfQueried) {
   189  			fails := atomic.LoadUint32(&s.queryFails)
   190  			if fails == maxQueryFails {
   191  				log.Warn("UDP pre-negotiation query does not seem to work")
   192  			}
   193  			if fails > maxQueryFails {
   194  				fails = maxQueryFails
   195  			}
   196  			if rand.Intn(maxQueryFails*2) < int(fails) {
   197  				// skip pre-negotiation with increasing chance, max 50%
   198  				// this ensures that the client can operate even if UDP is not working at all
   199  				s.ns.SetStateSub(n, sfCanDial, nodestate.Flags{}, time.Second*10)
   200  				// set canDial before resetting queried so that FillSet will not read more
   201  				// candidates unnecessarily
   202  				s.ns.SetStateSub(n, nodestate.Flags{}, sfQueried, 0)
   203  				return
   204  			}
   205  			go func() {
   206  				q := query(n)
   207  				if q == -1 {
   208  					atomic.AddUint32(&s.queryFails, 1)
   209  				} else {
   210  					atomic.StoreUint32(&s.queryFails, 0)
   211  				}
   212  				s.ns.Operation(func() {
   213  					// we are no longer running in the operation that the callback belongs to, start a new one because of setRedialWait
   214  					if q == 1 {
   215  						s.ns.SetStateSub(n, sfCanDial, nodestate.Flags{}, time.Second*10)
   216  					} else {
   217  						s.setRedialWait(n, queryCost, queryWaitStep)
   218  					}
   219  					s.ns.SetStateSub(n, nodestate.Flags{}, sfQueried, 0)
   220  				})
   221  			}()
   222  		}
   223  	})
   224  	return lpc.NewQueueIterator(s.ns, sfCanDial, nodestate.Flags{}, false, func(waiting bool) {
   225  		if waiting {
   226  			s.fillSet.SetTarget(preNegLimit)
   227  		} else {
   228  			s.fillSet.SetTarget(0)
   229  		}
   230  	})
   231  }
   232  
   233  // start starts the server pool. Note that NodeStateMachine should be started first.
   234  func (s *serverPool) start() {
   235  	s.ns.Start()
   236  	for _, iter := range s.mixSources {
   237  		// add sources to mixer at startup because the mixer instantly tries to read them
   238  		// which should only happen after NodeStateMachine has been started
   239  		s.mixer.AddSource(iter)
   240  	}
   241  	for _, url := range s.trustedURLs {
   242  		if node, err := enode.Parse(s.validSchemes, url); err == nil {
   243  			s.ns.SetState(node, sfAlwaysConnect, nodestate.Flags{}, 0)
   244  		} else {
   245  			log.Error("Invalid trusted server URL", "url", url, "error", err)
   246  		}
   247  	}
   248  	unixTime := s.unixTime()
   249  	s.ns.Operation(func() {
   250  		s.ns.ForEach(sfHasValue, nodestate.Flags{}, func(node *enode.Node, state nodestate.Flags) {
   251  			s.calculateWeight(node)
   252  			if n, ok := s.ns.GetField(node, sfiNodeHistory).(nodeHistory); ok && n.redialWaitEnd > unixTime {
   253  				wait := n.redialWaitEnd - unixTime
   254  				lastWait := n.redialWaitEnd - n.redialWaitStart
   255  				if wait > lastWait {
   256  					// if the time until expiration is larger than the last suggested
   257  					// waiting time then the system clock was probably adjusted
   258  					wait = lastWait
   259  				}
   260  				s.ns.SetStateSub(node, sfRedialWait, nodestate.Flags{}, time.Duration(wait)*time.Second)
   261  			}
   262  		})
   263  	})
   264  }
   265  
   266  // stop stops the server pool
   267  func (s *serverPool) stop() {
   268  	s.dialIterator.Close()
   269  	if s.fillSet != nil {
   270  		s.fillSet.Close()
   271  	}
   272  	s.ns.Operation(func() {
   273  		s.ns.ForEach(sfConnected, nodestate.Flags{}, func(n *enode.Node, state nodestate.Flags) {
   274  			// recalculate weight of connected nodes in order to update hasValue flag if necessary
   275  			s.calculateWeight(n)
   276  		})
   277  	})
   278  	s.ns.Stop()
   279  }
   280  
   281  // registerPeer implements serverPeerSubscriber
   282  func (s *serverPool) registerPeer(p *serverPeer) {
   283  	s.ns.SetState(p.Node(), sfConnected, sfDialing.Or(sfWaitDialTimeout), 0)
   284  	nvt := s.vt.Register(p.ID())
   285  	s.ns.SetField(p.Node(), sfiConnectedStats, nvt.RtStats())
   286  	p.setValueTracker(s.vt, nvt)
   287  	p.updateVtParams()
   288  }
   289  
   290  // unregisterPeer implements serverPeerSubscriber
   291  func (s *serverPool) unregisterPeer(p *serverPeer) {
   292  	s.ns.Operation(func() {
   293  		s.setRedialWait(p.Node(), dialCost, dialWaitStep)
   294  		s.ns.SetStateSub(p.Node(), nodestate.Flags{}, sfConnected, 0)
   295  		s.ns.SetFieldSub(p.Node(), sfiConnectedStats, nil)
   296  	})
   297  	s.vt.Unregister(p.ID())
   298  	p.setValueTracker(nil, nil)
   299  }
   300  
   301  // recalTimeout calculates the current recommended timeout. This value is used by
   302  // the client as a "soft timeout" value. It also affects the service value calculation
   303  // of individual nodes.
   304  func (s *serverPool) recalTimeout() {
   305  	// Use cached result if possible, avoid recalculating too frequently.
   306  	s.timeoutLock.RLock()
   307  	refreshed := s.timeoutRefreshed
   308  	s.timeoutLock.RUnlock()
   309  	now := s.clock.Now()
   310  	if refreshed != 0 && time.Duration(now-refreshed) < timeoutRefresh {
   311  		return
   312  	}
   313  	// Cached result is stale, recalculate a new one.
   314  	rts := s.vt.RtStats()
   315  
   316  	// Add a fake statistic here. It is an easy way to initialize with some
   317  	// conservative values when the database is new. As soon as we have a
   318  	// considerable amount of real stats this small value won't matter.
   319  	rts.Add(time.Second*2, 10, s.vt.StatsExpFactor())
   320  
   321  	// Use either 10% failure rate timeout or twice the median response time
   322  	// as the recommended timeout.
   323  	timeout := minTimeout
   324  	if t := rts.Timeout(0.1); t > timeout {
   325  		timeout = t
   326  	}
   327  	if t := rts.Timeout(0.5) * 2; t > timeout {
   328  		timeout = t
   329  	}
   330  	s.timeoutLock.Lock()
   331  	if s.timeout != timeout {
   332  		s.timeout = timeout
   333  		s.timeWeights = lpc.TimeoutWeights(s.timeout)
   334  
   335  		suggestedTimeoutGauge.Update(int64(s.timeout / time.Millisecond))
   336  		totalValueGauge.Update(int64(rts.Value(s.timeWeights, s.vt.StatsExpFactor())))
   337  	}
   338  	s.timeoutRefreshed = now
   339  	s.timeoutLock.Unlock()
   340  }
   341  
   342  // getTimeout returns the recommended request timeout.
   343  func (s *serverPool) getTimeout() time.Duration {
   344  	s.recalTimeout()
   345  	s.timeoutLock.RLock()
   346  	defer s.timeoutLock.RUnlock()
   347  	return s.timeout
   348  }
   349  
   350  // getTimeoutAndWeight returns the recommended request timeout as well as the
   351  // response time weight which is necessary to calculate service value.
   352  func (s *serverPool) getTimeoutAndWeight() (time.Duration, lpc.ResponseTimeWeights) {
   353  	s.recalTimeout()
   354  	s.timeoutLock.RLock()
   355  	defer s.timeoutLock.RUnlock()
   356  	return s.timeout, s.timeWeights
   357  }
   358  
   359  // addDialCost adds the given amount of dial cost to the node history and returns the current
   360  // amount of total dial cost
   361  func (s *serverPool) addDialCost(n *nodeHistory, amount int64) uint64 {
   362  	logOffset := s.vt.StatsExpirer().LogOffset(s.clock.Now())
   363  	if amount > 0 {
   364  		n.dialCost.Add(amount, logOffset)
   365  	}
   366  	totalDialCost := n.dialCost.Value(logOffset)
   367  	if totalDialCost < dialCost {
   368  		totalDialCost = dialCost
   369  	}
   370  	return totalDialCost
   371  }
   372  
   373  // serviceValue returns the service value accumulated in this session and in total
   374  func (s *serverPool) serviceValue(node *enode.Node) (sessionValue, totalValue float64) {
   375  	nvt := s.vt.GetNode(node.ID())
   376  	if nvt == nil {
   377  		return 0, 0
   378  	}
   379  	currentStats := nvt.RtStats()
   380  	_, timeWeights := s.getTimeoutAndWeight()
   381  	expFactor := s.vt.StatsExpFactor()
   382  
   383  	totalValue = currentStats.Value(timeWeights, expFactor)
   384  	if connStats, ok := s.ns.GetField(node, sfiConnectedStats).(lpc.ResponseTimeStats); ok {
   385  		diff := currentStats
   386  		diff.SubStats(&connStats)
   387  		sessionValue = diff.Value(timeWeights, expFactor)
   388  		sessionValueMeter.Mark(int64(sessionValue))
   389  	}
   390  	return
   391  }
   392  
   393  // updateWeight calculates the node weight and updates the nodeWeight field and the
   394  // hasValue flag. It also saves the node state if necessary.
   395  // Note: this function should run inside a NodeStateMachine operation
   396  func (s *serverPool) updateWeight(node *enode.Node, totalValue float64, totalDialCost uint64) {
   397  	weight := uint64(totalValue * nodeWeightMul / float64(totalDialCost))
   398  	if weight >= nodeWeightThreshold {
   399  		s.ns.SetStateSub(node, sfHasValue, nodestate.Flags{}, 0)
   400  		s.ns.SetFieldSub(node, sfiNodeWeight, weight)
   401  	} else {
   402  		s.ns.SetStateSub(node, nodestate.Flags{}, sfHasValue, 0)
   403  		s.ns.SetFieldSub(node, sfiNodeWeight, nil)
   404  		s.ns.SetFieldSub(node, sfiNodeHistory, nil)
   405  	}
   406  	s.ns.Persist(node) // saved if node history or hasValue changed
   407  }
   408  
   409  // setRedialWait calculates and sets the redialWait timeout based on the service value
   410  // and dial cost accumulated during the last session/attempt and in total.
   411  // The waiting time is raised exponentially if no service value has been received in order
   412  // to prevent dialing an unresponsive node frequently for a very long time just because it
   413  // was useful in the past. It can still be occasionally dialed though and once it provides
   414  // a significant amount of service value again its waiting time is quickly reduced or reset
   415  // to the minimum.
   416  // Note: node weight is also recalculated and updated by this function.
   417  // Note 2: this function should run inside a NodeStateMachine operation
   418  func (s *serverPool) setRedialWait(node *enode.Node, addDialCost int64, waitStep float64) {
   419  	n, _ := s.ns.GetField(node, sfiNodeHistory).(nodeHistory)
   420  	sessionValue, totalValue := s.serviceValue(node)
   421  	totalDialCost := s.addDialCost(&n, addDialCost)
   422  
   423  	// if the current dial session has yielded at least the average value/dial cost ratio
   424  	// then the waiting time should be reset to the minimum. If the session value
   425  	// is below average but still positive then timeout is limited to the ratio of
   426  	// average / current service value multiplied by the minimum timeout. If the attempt
   427  	// was unsuccessful then timeout is raised exponentially without limitation.
   428  	// Note: dialCost is used in the formula below even if dial was not attempted at all
   429  	// because the pre-negotiation query did not return a positive result. In this case
   430  	// the ratio has no meaning anyway and waitFactor is always raised, though in smaller
   431  	// steps because queries are cheaper and therefore we can allow more failed attempts.
   432  	unixTime := s.unixTime()
   433  	plannedTimeout := float64(n.redialWaitEnd - n.redialWaitStart) // last planned redialWait timeout
   434  	var actualWait float64                                         // actual waiting time elapsed
   435  	if unixTime > n.redialWaitEnd {
   436  		// the planned timeout has elapsed
   437  		actualWait = plannedTimeout
   438  	} else {
   439  		// if the node was redialed earlier then we do not raise the planned timeout
   440  		// exponentially because that could lead to the timeout rising very high in
   441  		// a short amount of time
   442  		// Note that in case of an early redial actualWait also includes the dial
   443  		// timeout or connection time of the last attempt but it still serves its
   444  		// purpose of preventing the timeout rising quicker than linearly as a function
   445  		// of total time elapsed without a successful connection.
   446  		actualWait = float64(unixTime - n.redialWaitStart)
   447  	}
   448  	// raise timeout exponentially if the last planned timeout has elapsed
   449  	// (use at least the last planned timeout otherwise)
   450  	nextTimeout := actualWait * waitStep
   451  	if plannedTimeout > nextTimeout {
   452  		nextTimeout = plannedTimeout
   453  	}
   454  	// we reduce the waiting time if the server has provided service value during the
   455  	// connection (but never under the minimum)
   456  	a := totalValue * dialCost * float64(minRedialWait)
   457  	b := float64(totalDialCost) * sessionValue
   458  	if a < b*nextTimeout {
   459  		nextTimeout = a / b
   460  	}
   461  	if nextTimeout < minRedialWait {
   462  		nextTimeout = minRedialWait
   463  	}
   464  	wait := time.Duration(float64(time.Second) * nextTimeout)
   465  	if wait < waitThreshold {
   466  		n.redialWaitStart = unixTime
   467  		n.redialWaitEnd = unixTime + int64(nextTimeout)
   468  		s.ns.SetFieldSub(node, sfiNodeHistory, n)
   469  		s.ns.SetStateSub(node, sfRedialWait, nodestate.Flags{}, wait)
   470  		s.updateWeight(node, totalValue, totalDialCost)
   471  	} else {
   472  		// discard known node statistics if waiting time is very long because the node
   473  		// hasn't been responsive for a very long time
   474  		s.ns.SetFieldSub(node, sfiNodeHistory, nil)
   475  		s.ns.SetFieldSub(node, sfiNodeWeight, nil)
   476  		s.ns.SetStateSub(node, nodestate.Flags{}, sfHasValue, 0)
   477  	}
   478  }
   479  
   480  // calculateWeight calculates and sets the node weight without altering the node history.
   481  // This function should be called during startup and shutdown only, otherwise setRedialWait
   482  // will keep the weights updated as the underlying statistics are adjusted.
   483  // Note: this function should run inside a NodeStateMachine operation
   484  func (s *serverPool) calculateWeight(node *enode.Node) {
   485  	n, _ := s.ns.GetField(node, sfiNodeHistory).(nodeHistory)
   486  	_, totalValue := s.serviceValue(node)
   487  	totalDialCost := s.addDialCost(&n, 0)
   488  	s.updateWeight(node, totalValue, totalDialCost)
   489  }