github.com/cryptogateway/go-paymex@v0.0.0-20210204174735-96277fb1e602/p2p/rlpx/rlpx.go (about) 1 // Copyright 2015 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 // Package rlpx implements the RLPx transport protocol. 18 package rlpx 19 20 import ( 21 "bytes" 22 "crypto/aes" 23 "crypto/cipher" 24 "crypto/ecdsa" 25 "crypto/elliptic" 26 "crypto/hmac" 27 "crypto/rand" 28 "encoding/binary" 29 "errors" 30 "fmt" 31 "hash" 32 "io" 33 mrand "math/rand" 34 "net" 35 "time" 36 37 "github.com/cryptogateway/go-paymex/crypto" 38 "github.com/cryptogateway/go-paymex/crypto/ecies" 39 "github.com/cryptogateway/go-paymex/rlp" 40 "github.com/golang/snappy" 41 "golang.org/x/crypto/sha3" 42 ) 43 44 // Conn is an RLPx network connection. It wraps a low-level network connection. The 45 // underlying connection should not be used for other activity when it is wrapped by Conn. 46 // 47 // Before sending messages, a handshake must be performed by calling the Handshake method. 48 // This type is not generally safe for concurrent use, but reading and writing of messages 49 // may happen concurrently after the handshake. 50 type Conn struct { 51 dialDest *ecdsa.PublicKey 52 conn net.Conn 53 handshake *handshakeState 54 snappy bool 55 } 56 57 type handshakeState struct { 58 enc cipher.Stream 59 dec cipher.Stream 60 61 macCipher cipher.Block 62 egressMAC hash.Hash 63 ingressMAC hash.Hash 64 } 65 66 // NewConn wraps the given network connection. If dialDest is non-nil, the connection 67 // behaves as the initiator during the handshake. 68 func NewConn(conn net.Conn, dialDest *ecdsa.PublicKey) *Conn { 69 return &Conn{ 70 dialDest: dialDest, 71 conn: conn, 72 } 73 } 74 75 // SetSnappy enables or disables snappy compression of messages. This is usually called 76 // after the devp2p Hello message exchange when the negotiated version indicates that 77 // compression is available on both ends of the connection. 78 func (c *Conn) SetSnappy(snappy bool) { 79 c.snappy = snappy 80 } 81 82 // SetReadDeadline sets the deadline for all future read operations. 83 func (c *Conn) SetReadDeadline(time time.Time) error { 84 return c.conn.SetReadDeadline(time) 85 } 86 87 // SetWriteDeadline sets the deadline for all future write operations. 88 func (c *Conn) SetWriteDeadline(time time.Time) error { 89 return c.conn.SetWriteDeadline(time) 90 } 91 92 // SetDeadline sets the deadline for all future read and write operations. 93 func (c *Conn) SetDeadline(time time.Time) error { 94 return c.conn.SetDeadline(time) 95 } 96 97 // Read reads a message from the connection. 98 func (c *Conn) Read() (code uint64, data []byte, wireSize int, err error) { 99 if c.handshake == nil { 100 panic("can't ReadMsg before handshake") 101 } 102 103 frame, err := c.handshake.readFrame(c.conn) 104 if err != nil { 105 return 0, nil, 0, err 106 } 107 code, data, err = rlp.SplitUint64(frame) 108 if err != nil { 109 return 0, nil, 0, fmt.Errorf("invalid message code: %v", err) 110 } 111 wireSize = len(data) 112 113 // If snappy is enabled, verify and decompress message. 114 if c.snappy { 115 var actualSize int 116 actualSize, err = snappy.DecodedLen(data) 117 if err != nil { 118 return code, nil, 0, err 119 } 120 if actualSize > maxUint24 { 121 return code, nil, 0, errPlainMessageTooLarge 122 } 123 data, err = snappy.Decode(nil, data) 124 } 125 return code, data, wireSize, err 126 } 127 128 func (h *handshakeState) readFrame(conn io.Reader) ([]byte, error) { 129 // read the header 130 headbuf := make([]byte, 32) 131 if _, err := io.ReadFull(conn, headbuf); err != nil { 132 return nil, err 133 } 134 135 // verify header mac 136 shouldMAC := updateMAC(h.ingressMAC, h.macCipher, headbuf[:16]) 137 if !hmac.Equal(shouldMAC, headbuf[16:]) { 138 return nil, errors.New("bad header MAC") 139 } 140 h.dec.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now decrypted 141 fsize := readInt24(headbuf) 142 // ignore protocol type for now 143 144 // read the frame content 145 var rsize = fsize // frame size rounded up to 16 byte boundary 146 if padding := fsize % 16; padding > 0 { 147 rsize += 16 - padding 148 } 149 framebuf := make([]byte, rsize) 150 if _, err := io.ReadFull(conn, framebuf); err != nil { 151 return nil, err 152 } 153 154 // read and validate frame MAC. we can re-use headbuf for that. 155 h.ingressMAC.Write(framebuf) 156 fmacseed := h.ingressMAC.Sum(nil) 157 if _, err := io.ReadFull(conn, headbuf[:16]); err != nil { 158 return nil, err 159 } 160 shouldMAC = updateMAC(h.ingressMAC, h.macCipher, fmacseed) 161 if !hmac.Equal(shouldMAC, headbuf[:16]) { 162 return nil, errors.New("bad frame MAC") 163 } 164 165 // decrypt frame content 166 h.dec.XORKeyStream(framebuf, framebuf) 167 return framebuf[:fsize], nil 168 } 169 170 // Write writes a message to the connection. 171 // 172 // Write returns the written size of the message data. This may be less than or equal to 173 // len(data) depending on whether snappy compression is enabled. 174 func (c *Conn) Write(code uint64, data []byte) (uint32, error) { 175 if c.handshake == nil { 176 panic("can't WriteMsg before handshake") 177 } 178 if len(data) > maxUint24 { 179 return 0, errPlainMessageTooLarge 180 } 181 if c.snappy { 182 data = snappy.Encode(nil, data) 183 } 184 185 wireSize := uint32(len(data)) 186 err := c.handshake.writeFrame(c.conn, code, data) 187 return wireSize, err 188 } 189 190 func (h *handshakeState) writeFrame(conn io.Writer, code uint64, data []byte) error { 191 ptype, _ := rlp.EncodeToBytes(code) 192 193 // write header 194 headbuf := make([]byte, 32) 195 fsize := len(ptype) + len(data) 196 if fsize > maxUint24 { 197 return errPlainMessageTooLarge 198 } 199 putInt24(uint32(fsize), headbuf) 200 copy(headbuf[3:], zeroHeader) 201 h.enc.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now encrypted 202 203 // write header MAC 204 copy(headbuf[16:], updateMAC(h.egressMAC, h.macCipher, headbuf[:16])) 205 if _, err := conn.Write(headbuf); err != nil { 206 return err 207 } 208 209 // write encrypted frame, updating the egress MAC hash with 210 // the data written to conn. 211 tee := cipher.StreamWriter{S: h.enc, W: io.MultiWriter(conn, h.egressMAC)} 212 if _, err := tee.Write(ptype); err != nil { 213 return err 214 } 215 if _, err := tee.Write(data); err != nil { 216 return err 217 } 218 if padding := fsize % 16; padding > 0 { 219 if _, err := tee.Write(zero16[:16-padding]); err != nil { 220 return err 221 } 222 } 223 224 // write frame MAC. egress MAC hash is up to date because 225 // frame content was written to it as well. 226 fmacseed := h.egressMAC.Sum(nil) 227 mac := updateMAC(h.egressMAC, h.macCipher, fmacseed) 228 _, err := conn.Write(mac) 229 return err 230 } 231 232 func readInt24(b []byte) uint32 { 233 return uint32(b[2]) | uint32(b[1])<<8 | uint32(b[0])<<16 234 } 235 236 func putInt24(v uint32, b []byte) { 237 b[0] = byte(v >> 16) 238 b[1] = byte(v >> 8) 239 b[2] = byte(v) 240 } 241 242 // updateMAC reseeds the given hash with encrypted seed. 243 // it returns the first 16 bytes of the hash sum after seeding. 244 func updateMAC(mac hash.Hash, block cipher.Block, seed []byte) []byte { 245 aesbuf := make([]byte, aes.BlockSize) 246 block.Encrypt(aesbuf, mac.Sum(nil)) 247 for i := range aesbuf { 248 aesbuf[i] ^= seed[i] 249 } 250 mac.Write(aesbuf) 251 return mac.Sum(nil)[:16] 252 } 253 254 // Handshake performs the handshake. This must be called before any data is written 255 // or read from the connection. 256 func (c *Conn) Handshake(prv *ecdsa.PrivateKey) (*ecdsa.PublicKey, error) { 257 var ( 258 sec Secrets 259 err error 260 ) 261 if c.dialDest != nil { 262 sec, err = initiatorEncHandshake(c.conn, prv, c.dialDest) 263 } else { 264 sec, err = receiverEncHandshake(c.conn, prv) 265 } 266 if err != nil { 267 return nil, err 268 } 269 c.InitWithSecrets(sec) 270 return sec.remote, err 271 } 272 273 // InitWithSecrets injects connection secrets as if a handshake had 274 // been performed. This cannot be called after the handshake. 275 func (c *Conn) InitWithSecrets(sec Secrets) { 276 if c.handshake != nil { 277 panic("can't handshake twice") 278 } 279 macc, err := aes.NewCipher(sec.MAC) 280 if err != nil { 281 panic("invalid MAC secret: " + err.Error()) 282 } 283 encc, err := aes.NewCipher(sec.AES) 284 if err != nil { 285 panic("invalid AES secret: " + err.Error()) 286 } 287 // we use an all-zeroes IV for AES because the key used 288 // for encryption is ephemeral. 289 iv := make([]byte, encc.BlockSize()) 290 c.handshake = &handshakeState{ 291 enc: cipher.NewCTR(encc, iv), 292 dec: cipher.NewCTR(encc, iv), 293 macCipher: macc, 294 egressMAC: sec.EgressMAC, 295 ingressMAC: sec.IngressMAC, 296 } 297 } 298 299 // Close closes the underlying network connection. 300 func (c *Conn) Close() error { 301 return c.conn.Close() 302 } 303 304 // Constants for the handshake. 305 const ( 306 maxUint24 = int(^uint32(0) >> 8) 307 308 sskLen = 16 // ecies.MaxSharedKeyLength(pubKey) / 2 309 sigLen = crypto.SignatureLength // elliptic S256 310 pubLen = 64 // 512 bit pubkey in uncompressed representation without format byte 311 shaLen = 32 // hash length (for nonce etc) 312 313 authMsgLen = sigLen + shaLen + pubLen + shaLen + 1 314 authRespLen = pubLen + shaLen + 1 315 316 eciesOverhead = 65 /* pubkey */ + 16 /* IV */ + 32 /* MAC */ 317 318 encAuthMsgLen = authMsgLen + eciesOverhead // size of encrypted pre-EIP-8 initiator handshake 319 encAuthRespLen = authRespLen + eciesOverhead // size of encrypted pre-EIP-8 handshake reply 320 ) 321 322 var ( 323 // this is used in place of actual frame header data. 324 // TODO: replace this when Msg contains the protocol type code. 325 zeroHeader = []byte{0xC2, 0x80, 0x80} 326 // sixteen zero bytes 327 zero16 = make([]byte, 16) 328 329 // errPlainMessageTooLarge is returned if a decompressed message length exceeds 330 // the allowed 24 bits (i.e. length >= 16MB). 331 errPlainMessageTooLarge = errors.New("message length >= 16MB") 332 ) 333 334 // Secrets represents the connection secrets which are negotiated during the handshake. 335 type Secrets struct { 336 AES, MAC []byte 337 EgressMAC, IngressMAC hash.Hash 338 remote *ecdsa.PublicKey 339 } 340 341 // encHandshake contains the state of the encryption handshake. 342 type encHandshake struct { 343 initiator bool 344 remote *ecies.PublicKey // remote-pubk 345 initNonce, respNonce []byte // nonce 346 randomPrivKey *ecies.PrivateKey // ecdhe-random 347 remoteRandomPub *ecies.PublicKey // ecdhe-random-pubk 348 } 349 350 // RLPx v4 handshake auth (defined in EIP-8). 351 type authMsgV4 struct { 352 gotPlain bool // whether read packet had plain format. 353 354 Signature [sigLen]byte 355 InitiatorPubkey [pubLen]byte 356 Nonce [shaLen]byte 357 Version uint 358 359 // Ignore additional fields (forward-compatibility) 360 Rest []rlp.RawValue `rlp:"tail"` 361 } 362 363 // RLPx v4 handshake response (defined in EIP-8). 364 type authRespV4 struct { 365 RandomPubkey [pubLen]byte 366 Nonce [shaLen]byte 367 Version uint 368 369 // Ignore additional fields (forward-compatibility) 370 Rest []rlp.RawValue `rlp:"tail"` 371 } 372 373 // receiverEncHandshake negotiates a session token on conn. 374 // it should be called on the listening side of the connection. 375 // 376 // prv is the local client's private key. 377 func receiverEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey) (s Secrets, err error) { 378 authMsg := new(authMsgV4) 379 authPacket, err := readHandshakeMsg(authMsg, encAuthMsgLen, prv, conn) 380 if err != nil { 381 return s, err 382 } 383 h := new(encHandshake) 384 if err := h.handleAuthMsg(authMsg, prv); err != nil { 385 return s, err 386 } 387 388 authRespMsg, err := h.makeAuthResp() 389 if err != nil { 390 return s, err 391 } 392 var authRespPacket []byte 393 if authMsg.gotPlain { 394 authRespPacket, err = authRespMsg.sealPlain(h) 395 } else { 396 authRespPacket, err = sealEIP8(authRespMsg, h) 397 } 398 if err != nil { 399 return s, err 400 } 401 if _, err = conn.Write(authRespPacket); err != nil { 402 return s, err 403 } 404 return h.secrets(authPacket, authRespPacket) 405 } 406 407 func (h *encHandshake) handleAuthMsg(msg *authMsgV4, prv *ecdsa.PrivateKey) error { 408 // Import the remote identity. 409 rpub, err := importPublicKey(msg.InitiatorPubkey[:]) 410 if err != nil { 411 return err 412 } 413 h.initNonce = msg.Nonce[:] 414 h.remote = rpub 415 416 // Generate random keypair for ECDH. 417 // If a private key is already set, use it instead of generating one (for testing). 418 if h.randomPrivKey == nil { 419 h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil) 420 if err != nil { 421 return err 422 } 423 } 424 425 // Check the signature. 426 token, err := h.staticSharedSecret(prv) 427 if err != nil { 428 return err 429 } 430 signedMsg := xor(token, h.initNonce) 431 remoteRandomPub, err := crypto.Ecrecover(signedMsg, msg.Signature[:]) 432 if err != nil { 433 return err 434 } 435 h.remoteRandomPub, _ = importPublicKey(remoteRandomPub) 436 return nil 437 } 438 439 // secrets is called after the handshake is completed. 440 // It extracts the connection secrets from the handshake values. 441 func (h *encHandshake) secrets(auth, authResp []byte) (Secrets, error) { 442 ecdheSecret, err := h.randomPrivKey.GenerateShared(h.remoteRandomPub, sskLen, sskLen) 443 if err != nil { 444 return Secrets{}, err 445 } 446 447 // derive base secrets from ephemeral key agreement 448 sharedSecret := crypto.Keccak256(ecdheSecret, crypto.Keccak256(h.respNonce, h.initNonce)) 449 aesSecret := crypto.Keccak256(ecdheSecret, sharedSecret) 450 s := Secrets{ 451 remote: h.remote.ExportECDSA(), 452 AES: aesSecret, 453 MAC: crypto.Keccak256(ecdheSecret, aesSecret), 454 } 455 456 // setup sha3 instances for the MACs 457 mac1 := sha3.NewLegacyKeccak256() 458 mac1.Write(xor(s.MAC, h.respNonce)) 459 mac1.Write(auth) 460 mac2 := sha3.NewLegacyKeccak256() 461 mac2.Write(xor(s.MAC, h.initNonce)) 462 mac2.Write(authResp) 463 if h.initiator { 464 s.EgressMAC, s.IngressMAC = mac1, mac2 465 } else { 466 s.EgressMAC, s.IngressMAC = mac2, mac1 467 } 468 469 return s, nil 470 } 471 472 // staticSharedSecret returns the static shared secret, the result 473 // of key agreement between the local and remote static node key. 474 func (h *encHandshake) staticSharedSecret(prv *ecdsa.PrivateKey) ([]byte, error) { 475 return ecies.ImportECDSA(prv).GenerateShared(h.remote, sskLen, sskLen) 476 } 477 478 // initiatorEncHandshake negotiates a session token on conn. 479 // it should be called on the dialing side of the connection. 480 // 481 // prv is the local client's private key. 482 func initiatorEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, remote *ecdsa.PublicKey) (s Secrets, err error) { 483 h := &encHandshake{initiator: true, remote: ecies.ImportECDSAPublic(remote)} 484 authMsg, err := h.makeAuthMsg(prv) 485 if err != nil { 486 return s, err 487 } 488 authPacket, err := sealEIP8(authMsg, h) 489 if err != nil { 490 return s, err 491 } 492 493 if _, err = conn.Write(authPacket); err != nil { 494 return s, err 495 } 496 497 authRespMsg := new(authRespV4) 498 authRespPacket, err := readHandshakeMsg(authRespMsg, encAuthRespLen, prv, conn) 499 if err != nil { 500 return s, err 501 } 502 if err := h.handleAuthResp(authRespMsg); err != nil { 503 return s, err 504 } 505 return h.secrets(authPacket, authRespPacket) 506 } 507 508 // makeAuthMsg creates the initiator handshake message. 509 func (h *encHandshake) makeAuthMsg(prv *ecdsa.PrivateKey) (*authMsgV4, error) { 510 // Generate random initiator nonce. 511 h.initNonce = make([]byte, shaLen) 512 _, err := rand.Read(h.initNonce) 513 if err != nil { 514 return nil, err 515 } 516 // Generate random keypair to for ECDH. 517 h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil) 518 if err != nil { 519 return nil, err 520 } 521 522 // Sign known message: static-shared-secret ^ nonce 523 token, err := h.staticSharedSecret(prv) 524 if err != nil { 525 return nil, err 526 } 527 signed := xor(token, h.initNonce) 528 signature, err := crypto.Sign(signed, h.randomPrivKey.ExportECDSA()) 529 if err != nil { 530 return nil, err 531 } 532 533 msg := new(authMsgV4) 534 copy(msg.Signature[:], signature) 535 copy(msg.InitiatorPubkey[:], crypto.FromECDSAPub(&prv.PublicKey)[1:]) 536 copy(msg.Nonce[:], h.initNonce) 537 msg.Version = 4 538 return msg, nil 539 } 540 541 func (h *encHandshake) handleAuthResp(msg *authRespV4) (err error) { 542 h.respNonce = msg.Nonce[:] 543 h.remoteRandomPub, err = importPublicKey(msg.RandomPubkey[:]) 544 return err 545 } 546 547 func (h *encHandshake) makeAuthResp() (msg *authRespV4, err error) { 548 // Generate random nonce. 549 h.respNonce = make([]byte, shaLen) 550 if _, err = rand.Read(h.respNonce); err != nil { 551 return nil, err 552 } 553 554 msg = new(authRespV4) 555 copy(msg.Nonce[:], h.respNonce) 556 copy(msg.RandomPubkey[:], exportPubkey(&h.randomPrivKey.PublicKey)) 557 msg.Version = 4 558 return msg, nil 559 } 560 561 func (msg *authMsgV4) decodePlain(input []byte) { 562 n := copy(msg.Signature[:], input) 563 n += shaLen // skip sha3(initiator-ephemeral-pubk) 564 n += copy(msg.InitiatorPubkey[:], input[n:]) 565 copy(msg.Nonce[:], input[n:]) 566 msg.Version = 4 567 msg.gotPlain = true 568 } 569 570 func (msg *authRespV4) sealPlain(hs *encHandshake) ([]byte, error) { 571 buf := make([]byte, authRespLen) 572 n := copy(buf, msg.RandomPubkey[:]) 573 copy(buf[n:], msg.Nonce[:]) 574 return ecies.Encrypt(rand.Reader, hs.remote, buf, nil, nil) 575 } 576 577 func (msg *authRespV4) decodePlain(input []byte) { 578 n := copy(msg.RandomPubkey[:], input) 579 copy(msg.Nonce[:], input[n:]) 580 msg.Version = 4 581 } 582 583 var padSpace = make([]byte, 300) 584 585 func sealEIP8(msg interface{}, h *encHandshake) ([]byte, error) { 586 buf := new(bytes.Buffer) 587 if err := rlp.Encode(buf, msg); err != nil { 588 return nil, err 589 } 590 // pad with random amount of data. the amount needs to be at least 100 bytes to make 591 // the message distinguishable from pre-EIP-8 handshakes. 592 pad := padSpace[:mrand.Intn(len(padSpace)-100)+100] 593 buf.Write(pad) 594 prefix := make([]byte, 2) 595 binary.BigEndian.PutUint16(prefix, uint16(buf.Len()+eciesOverhead)) 596 597 enc, err := ecies.Encrypt(rand.Reader, h.remote, buf.Bytes(), nil, prefix) 598 return append(prefix, enc...), err 599 } 600 601 type plainDecoder interface { 602 decodePlain([]byte) 603 } 604 605 func readHandshakeMsg(msg plainDecoder, plainSize int, prv *ecdsa.PrivateKey, r io.Reader) ([]byte, error) { 606 buf := make([]byte, plainSize) 607 if _, err := io.ReadFull(r, buf); err != nil { 608 return buf, err 609 } 610 // Attempt decoding pre-EIP-8 "plain" format. 611 key := ecies.ImportECDSA(prv) 612 if dec, err := key.Decrypt(buf, nil, nil); err == nil { 613 msg.decodePlain(dec) 614 return buf, nil 615 } 616 // Could be EIP-8 format, try that. 617 prefix := buf[:2] 618 size := binary.BigEndian.Uint16(prefix) 619 if size < uint16(plainSize) { 620 return buf, fmt.Errorf("size underflow, need at least %d bytes", plainSize) 621 } 622 buf = append(buf, make([]byte, size-uint16(plainSize)+2)...) 623 if _, err := io.ReadFull(r, buf[plainSize:]); err != nil { 624 return buf, err 625 } 626 dec, err := key.Decrypt(buf[2:], nil, prefix) 627 if err != nil { 628 return buf, err 629 } 630 // Can't use rlp.DecodeBytes here because it rejects 631 // trailing data (forward-compatibility). 632 s := rlp.NewStream(bytes.NewReader(dec), 0) 633 return buf, s.Decode(msg) 634 } 635 636 // importPublicKey unmarshals 512 bit public keys. 637 func importPublicKey(pubKey []byte) (*ecies.PublicKey, error) { 638 var pubKey65 []byte 639 switch len(pubKey) { 640 case 64: 641 // add 'uncompressed key' flag 642 pubKey65 = append([]byte{0x04}, pubKey...) 643 case 65: 644 pubKey65 = pubKey 645 default: 646 return nil, fmt.Errorf("invalid public key length %v (expect 64/65)", len(pubKey)) 647 } 648 // TODO: fewer pointless conversions 649 pub, err := crypto.UnmarshalPubkey(pubKey65) 650 if err != nil { 651 return nil, err 652 } 653 return ecies.ImportECDSAPublic(pub), nil 654 } 655 656 func exportPubkey(pub *ecies.PublicKey) []byte { 657 if pub == nil { 658 panic("nil pubkey") 659 } 660 return elliptic.Marshal(pub.Curve, pub.X, pub.Y)[1:] 661 } 662 663 func xor(one, other []byte) (xor []byte) { 664 xor = make([]byte, len(one)) 665 for i := 0; i < len(one); i++ { 666 xor[i] = one[i] ^ other[i] 667 } 668 return xor 669 }