github.com/cryptotooltop/go-ethereum@v0.0.0-20231103184714-151d1922f3e5/core/vm/contracts.go (about)

     1  // Copyright 2014 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package vm
    18  
    19  import (
    20  	"crypto/sha256"
    21  	"encoding/binary"
    22  	"errors"
    23  	"math/big"
    24  
    25  	"github.com/scroll-tech/go-ethereum/common"
    26  	"github.com/scroll-tech/go-ethereum/common/math"
    27  	"github.com/scroll-tech/go-ethereum/crypto"
    28  	"github.com/scroll-tech/go-ethereum/crypto/blake2b"
    29  	"github.com/scroll-tech/go-ethereum/crypto/bls12381"
    30  	"github.com/scroll-tech/go-ethereum/crypto/bn256"
    31  	"github.com/scroll-tech/go-ethereum/params"
    32  
    33  	//lint:ignore SA1019 Needed for precompile
    34  	"golang.org/x/crypto/ripemd160"
    35  )
    36  
    37  var (
    38  	errPrecompileDisabled     = errors.New("sha256, ripemd160, blake2f precompiles temporarily disabled")
    39  	errModexpUnsupportedInput = errors.New("modexp temporarily only accepts inputs of 32 bytes (256 bits) or less")
    40  )
    41  
    42  // PrecompiledContract is the basic interface for native Go contracts. The implementation
    43  // requires a deterministic gas count based on the input size of the Run method of the
    44  // contract.
    45  type PrecompiledContract interface {
    46  	RequiredGas(input []byte) uint64  // RequiredPrice calculates the contract gas use
    47  	Run(input []byte) ([]byte, error) // Run runs the precompiled contract
    48  }
    49  
    50  // PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum
    51  // contracts used in the Frontier and Homestead releases.
    52  var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{
    53  	common.BytesToAddress([]byte{1}): &ecrecover{},
    54  	common.BytesToAddress([]byte{2}): &sha256hash{},
    55  	common.BytesToAddress([]byte{3}): &ripemd160hash{},
    56  	common.BytesToAddress([]byte{4}): &dataCopy{},
    57  }
    58  
    59  // PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum
    60  // contracts used in the Byzantium release.
    61  var PrecompiledContractsByzantium = map[common.Address]PrecompiledContract{
    62  	common.BytesToAddress([]byte{1}): &ecrecover{},
    63  	common.BytesToAddress([]byte{2}): &sha256hash{},
    64  	common.BytesToAddress([]byte{3}): &ripemd160hash{},
    65  	common.BytesToAddress([]byte{4}): &dataCopy{},
    66  	common.BytesToAddress([]byte{5}): &bigModExp{eip2565: false},
    67  	common.BytesToAddress([]byte{6}): &bn256AddByzantium{},
    68  	common.BytesToAddress([]byte{7}): &bn256ScalarMulByzantium{},
    69  	common.BytesToAddress([]byte{8}): &bn256PairingByzantium{},
    70  }
    71  
    72  // PrecompiledContractsIstanbul contains the default set of pre-compiled Ethereum
    73  // contracts used in the Istanbul release.
    74  var PrecompiledContractsIstanbul = map[common.Address]PrecompiledContract{
    75  	common.BytesToAddress([]byte{1}): &ecrecover{},
    76  	common.BytesToAddress([]byte{2}): &sha256hash{},
    77  	common.BytesToAddress([]byte{3}): &ripemd160hash{},
    78  	common.BytesToAddress([]byte{4}): &dataCopy{},
    79  	common.BytesToAddress([]byte{5}): &bigModExp{eip2565: false},
    80  	common.BytesToAddress([]byte{6}): &bn256AddIstanbul{},
    81  	common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{},
    82  	common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{},
    83  	common.BytesToAddress([]byte{9}): &blake2F{},
    84  }
    85  
    86  // PrecompiledContractsBerlin contains the default set of pre-compiled Ethereum
    87  // contracts used in the Berlin release.
    88  var PrecompiledContractsBerlin = map[common.Address]PrecompiledContract{
    89  	common.BytesToAddress([]byte{1}): &ecrecover{},
    90  	common.BytesToAddress([]byte{2}): &sha256hash{},
    91  	common.BytesToAddress([]byte{3}): &ripemd160hash{},
    92  	common.BytesToAddress([]byte{4}): &dataCopy{},
    93  	common.BytesToAddress([]byte{5}): &bigModExp{eip2565: true},
    94  	common.BytesToAddress([]byte{6}): &bn256AddIstanbul{},
    95  	common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{},
    96  	common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{},
    97  	common.BytesToAddress([]byte{9}): &blake2F{},
    98  }
    99  
   100  // PrecompiledContractsArchimedes contains the default set of pre-compiled Ethereum
   101  // contracts used in the Archimedes release. Same as Berlin but without sha2, blake2f, ripemd160
   102  var PrecompiledContractsArchimedes = map[common.Address]PrecompiledContract{
   103  	common.BytesToAddress([]byte{1}): &ecrecover{},
   104  	common.BytesToAddress([]byte{2}): &sha256hashDisabled{},
   105  	common.BytesToAddress([]byte{3}): &ripemd160hashDisabled{},
   106  	common.BytesToAddress([]byte{4}): &dataCopy{},
   107  	common.BytesToAddress([]byte{5}): &bigModExp{eip2565: true},
   108  	common.BytesToAddress([]byte{6}): &bn256AddIstanbul{},
   109  	common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{},
   110  	common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{},
   111  	common.BytesToAddress([]byte{9}): &blake2FDisabled{},
   112  }
   113  
   114  // PrecompiledContractsBLS contains the set of pre-compiled Ethereum
   115  // contracts specified in EIP-2537. These are exported for testing purposes.
   116  var PrecompiledContractsBLS = map[common.Address]PrecompiledContract{
   117  	common.BytesToAddress([]byte{10}): &bls12381G1Add{},
   118  	common.BytesToAddress([]byte{11}): &bls12381G1Mul{},
   119  	common.BytesToAddress([]byte{12}): &bls12381G1MultiExp{},
   120  	common.BytesToAddress([]byte{13}): &bls12381G2Add{},
   121  	common.BytesToAddress([]byte{14}): &bls12381G2Mul{},
   122  	common.BytesToAddress([]byte{15}): &bls12381G2MultiExp{},
   123  	common.BytesToAddress([]byte{16}): &bls12381Pairing{},
   124  	common.BytesToAddress([]byte{17}): &bls12381MapG1{},
   125  	common.BytesToAddress([]byte{18}): &bls12381MapG2{},
   126  }
   127  
   128  var (
   129  	PrecompiledAddressesArchimedes []common.Address
   130  	PrecompiledAddressesBerlin     []common.Address
   131  	PrecompiledAddressesIstanbul   []common.Address
   132  	PrecompiledAddressesByzantium  []common.Address
   133  	PrecompiledAddressesHomestead  []common.Address
   134  )
   135  
   136  func init() {
   137  	for k := range PrecompiledContractsHomestead {
   138  		PrecompiledAddressesHomestead = append(PrecompiledAddressesHomestead, k)
   139  	}
   140  	for k := range PrecompiledContractsByzantium {
   141  		PrecompiledAddressesByzantium = append(PrecompiledAddressesByzantium, k)
   142  	}
   143  	for k := range PrecompiledContractsIstanbul {
   144  		PrecompiledAddressesIstanbul = append(PrecompiledAddressesIstanbul, k)
   145  	}
   146  	for k := range PrecompiledContractsBerlin {
   147  		PrecompiledAddressesBerlin = append(PrecompiledAddressesBerlin, k)
   148  	}
   149  	for k := range PrecompiledContractsArchimedes {
   150  		PrecompiledAddressesArchimedes = append(PrecompiledAddressesArchimedes, k)
   151  	}
   152  }
   153  
   154  // ActivePrecompiles returns the precompiles enabled with the current configuration.
   155  func ActivePrecompiles(rules params.Rules) []common.Address {
   156  	switch {
   157  	case rules.IsArchimedes:
   158  		return PrecompiledAddressesArchimedes
   159  	case rules.IsBerlin:
   160  		return PrecompiledAddressesBerlin
   161  	case rules.IsIstanbul:
   162  		return PrecompiledAddressesIstanbul
   163  	case rules.IsByzantium:
   164  		return PrecompiledAddressesByzantium
   165  	default:
   166  		return PrecompiledAddressesHomestead
   167  	}
   168  }
   169  
   170  // RunPrecompiledContract runs and evaluates the output of a precompiled contract.
   171  // It returns
   172  // - the returned bytes,
   173  // - the _remaining_ gas,
   174  // - any error that occurred
   175  func RunPrecompiledContract(p PrecompiledContract, input []byte, suppliedGas uint64) (ret []byte, remainingGas uint64, err error) {
   176  	gasCost := p.RequiredGas(input)
   177  	if suppliedGas < gasCost {
   178  		return nil, 0, ErrOutOfGas
   179  	}
   180  	suppliedGas -= gasCost
   181  	output, err := p.Run(input)
   182  	return output, suppliedGas, err
   183  }
   184  
   185  // ECRECOVER implemented as a native contract.
   186  type ecrecover struct{}
   187  
   188  func (c *ecrecover) RequiredGas(input []byte) uint64 {
   189  	return params.EcrecoverGas
   190  }
   191  
   192  func (c *ecrecover) Run(input []byte) ([]byte, error) {
   193  	const ecRecoverInputLength = 128
   194  
   195  	input = common.RightPadBytes(input, ecRecoverInputLength)
   196  	// "input" is (hash, v, r, s), each 32 bytes
   197  	// but for ecrecover we want (r, s, v)
   198  
   199  	r := new(big.Int).SetBytes(input[64:96])
   200  	s := new(big.Int).SetBytes(input[96:128])
   201  	v := input[63] - 27
   202  
   203  	// tighter sig s values input homestead only apply to tx sigs
   204  	if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) {
   205  		return nil, nil
   206  	}
   207  	// We must make sure not to modify the 'input', so placing the 'v' along with
   208  	// the signature needs to be done on a new allocation
   209  	sig := make([]byte, 65)
   210  	copy(sig, input[64:128])
   211  	sig[64] = v
   212  	// v needs to be at the end for libsecp256k1
   213  	pubKey, err := crypto.Ecrecover(input[:32], sig)
   214  	// make sure the public key is a valid one
   215  	if err != nil {
   216  		return nil, nil
   217  	}
   218  
   219  	// the first byte of pubkey is bitcoin heritage
   220  	return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil
   221  }
   222  
   223  // SHA256 implemented as a native contract.
   224  type sha256hash struct{}
   225  
   226  // RequiredGas returns the gas required to execute the pre-compiled contract.
   227  //
   228  // This method does not require any overflow checking as the input size gas costs
   229  // required for anything significant is so high it's impossible to pay for.
   230  func (c *sha256hash) RequiredGas(input []byte) uint64 {
   231  	return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas
   232  }
   233  func (c *sha256hash) Run(input []byte) ([]byte, error) {
   234  	h := sha256.Sum256(input)
   235  	return h[:], nil
   236  }
   237  
   238  type sha256hashDisabled struct{}
   239  
   240  func (c *sha256hashDisabled) RequiredGas(input []byte) uint64 {
   241  	return (&sha256hash{}).RequiredGas(input)
   242  }
   243  func (c *sha256hashDisabled) Run(input []byte) ([]byte, error) {
   244  	return nil, errPrecompileDisabled
   245  }
   246  
   247  // RIPEMD160 implemented as a native contract.
   248  type ripemd160hash struct{}
   249  
   250  // RequiredGas returns the gas required to execute the pre-compiled contract.
   251  //
   252  // This method does not require any overflow checking as the input size gas costs
   253  // required for anything significant is so high it's impossible to pay for.
   254  func (c *ripemd160hash) RequiredGas(input []byte) uint64 {
   255  	return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas
   256  }
   257  func (c *ripemd160hash) Run(input []byte) ([]byte, error) {
   258  	ripemd := ripemd160.New()
   259  	ripemd.Write(input)
   260  	return common.LeftPadBytes(ripemd.Sum(nil), 32), nil
   261  }
   262  
   263  type ripemd160hashDisabled struct{}
   264  
   265  func (c *ripemd160hashDisabled) RequiredGas(input []byte) uint64 {
   266  	return (&ripemd160hash{}).RequiredGas(input)
   267  }
   268  func (c *ripemd160hashDisabled) Run(input []byte) ([]byte, error) {
   269  	return nil, errPrecompileDisabled
   270  }
   271  
   272  // data copy implemented as a native contract.
   273  type dataCopy struct{}
   274  
   275  // RequiredGas returns the gas required to execute the pre-compiled contract.
   276  //
   277  // This method does not require any overflow checking as the input size gas costs
   278  // required for anything significant is so high it's impossible to pay for.
   279  func (c *dataCopy) RequiredGas(input []byte) uint64 {
   280  	return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas
   281  }
   282  func (c *dataCopy) Run(in []byte) ([]byte, error) {
   283  	return in, nil
   284  }
   285  
   286  // bigModExp implements a native big integer exponential modular operation.
   287  type bigModExp struct {
   288  	eip2565 bool
   289  }
   290  
   291  var (
   292  	big0      = big.NewInt(0)
   293  	big1      = big.NewInt(1)
   294  	big3      = big.NewInt(3)
   295  	big4      = big.NewInt(4)
   296  	big7      = big.NewInt(7)
   297  	big8      = big.NewInt(8)
   298  	big16     = big.NewInt(16)
   299  	big20     = big.NewInt(20)
   300  	big32     = big.NewInt(32)
   301  	big64     = big.NewInt(64)
   302  	big96     = big.NewInt(96)
   303  	big480    = big.NewInt(480)
   304  	big1024   = big.NewInt(1024)
   305  	big3072   = big.NewInt(3072)
   306  	big199680 = big.NewInt(199680)
   307  )
   308  
   309  // modexpMultComplexity implements bigModexp multComplexity formula, as defined in EIP-198
   310  //
   311  // def mult_complexity(x):
   312  //    if x <= 64: return x ** 2
   313  //    elif x <= 1024: return x ** 2 // 4 + 96 * x - 3072
   314  //    else: return x ** 2 // 16 + 480 * x - 199680
   315  //
   316  // where is x is max(length_of_MODULUS, length_of_BASE)
   317  func modexpMultComplexity(x *big.Int) *big.Int {
   318  	switch {
   319  	case x.Cmp(big64) <= 0:
   320  		x.Mul(x, x) // x ** 2
   321  	case x.Cmp(big1024) <= 0:
   322  		// (x ** 2 // 4 ) + ( 96 * x - 3072)
   323  		x = new(big.Int).Add(
   324  			new(big.Int).Div(new(big.Int).Mul(x, x), big4),
   325  			new(big.Int).Sub(new(big.Int).Mul(big96, x), big3072),
   326  		)
   327  	default:
   328  		// (x ** 2 // 16) + (480 * x - 199680)
   329  		x = new(big.Int).Add(
   330  			new(big.Int).Div(new(big.Int).Mul(x, x), big16),
   331  			new(big.Int).Sub(new(big.Int).Mul(big480, x), big199680),
   332  		)
   333  	}
   334  	return x
   335  }
   336  
   337  // RequiredGas returns the gas required to execute the pre-compiled contract.
   338  func (c *bigModExp) RequiredGas(input []byte) uint64 {
   339  	var (
   340  		baseLen = new(big.Int).SetBytes(getData(input, 0, 32))
   341  		expLen  = new(big.Int).SetBytes(getData(input, 32, 32))
   342  		modLen  = new(big.Int).SetBytes(getData(input, 64, 32))
   343  	)
   344  	if len(input) > 96 {
   345  		input = input[96:]
   346  	} else {
   347  		input = input[:0]
   348  	}
   349  	// Retrieve the head 32 bytes of exp for the adjusted exponent length
   350  	var expHead *big.Int
   351  	if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 {
   352  		expHead = new(big.Int)
   353  	} else {
   354  		if expLen.Cmp(big32) > 0 {
   355  			expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32))
   356  		} else {
   357  			expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64()))
   358  		}
   359  	}
   360  	// Calculate the adjusted exponent length
   361  	var msb int
   362  	if bitlen := expHead.BitLen(); bitlen > 0 {
   363  		msb = bitlen - 1
   364  	}
   365  	adjExpLen := new(big.Int)
   366  	if expLen.Cmp(big32) > 0 {
   367  		adjExpLen.Sub(expLen, big32)
   368  		adjExpLen.Mul(big8, adjExpLen)
   369  	}
   370  	adjExpLen.Add(adjExpLen, big.NewInt(int64(msb)))
   371  	// Calculate the gas cost of the operation
   372  	gas := new(big.Int).Set(math.BigMax(modLen, baseLen))
   373  	if c.eip2565 {
   374  		// EIP-2565 has three changes
   375  		// 1. Different multComplexity (inlined here)
   376  		// in EIP-2565 (https://eips.ethereum.org/EIPS/eip-2565):
   377  		//
   378  		// def mult_complexity(x):
   379  		//    ceiling(x/8)^2
   380  		//
   381  		//where is x is max(length_of_MODULUS, length_of_BASE)
   382  		gas = gas.Add(gas, big7)
   383  		gas = gas.Div(gas, big8)
   384  		gas.Mul(gas, gas)
   385  
   386  		gas.Mul(gas, math.BigMax(adjExpLen, big1))
   387  		// 2. Different divisor (`GQUADDIVISOR`) (3)
   388  		gas.Div(gas, big3)
   389  		if gas.BitLen() > 64 {
   390  			return math.MaxUint64
   391  		}
   392  		// 3. Minimum price of 200 gas
   393  		if gas.Uint64() < 200 {
   394  			return 200
   395  		}
   396  		return gas.Uint64()
   397  	}
   398  	gas = modexpMultComplexity(gas)
   399  	gas.Mul(gas, math.BigMax(adjExpLen, big1))
   400  	gas.Div(gas, big20)
   401  
   402  	if gas.BitLen() > 64 {
   403  		return math.MaxUint64
   404  	}
   405  	return gas.Uint64()
   406  }
   407  
   408  func (c *bigModExp) Run(input []byte) ([]byte, error) {
   409  	var (
   410  		baseLenBigInt = new(big.Int).SetBytes(getData(input, 0, 32))
   411  		expLenBigInt  = new(big.Int).SetBytes(getData(input, 32, 32))
   412  		modLenBigInt  = new(big.Int).SetBytes(getData(input, 64, 32))
   413  	)
   414  	var (
   415  		baseLen = baseLenBigInt.Uint64()
   416  		expLen  = expLenBigInt.Uint64()
   417  		modLen  = modLenBigInt.Uint64()
   418  	)
   419  	// Check that all inputs are `u256` (32 - bytes) or less, revert otherwise
   420  	var lenLimit = new(big.Int).SetInt64(32)
   421  	if baseLenBigInt.Cmp(lenLimit) > 0 || expLenBigInt.Cmp(lenLimit) > 0 || modLenBigInt.Cmp(lenLimit) > 0 {
   422  		return nil, errModexpUnsupportedInput
   423  	}
   424  	if len(input) > 96 {
   425  		input = input[96:]
   426  	} else {
   427  		input = input[:0]
   428  	}
   429  	// Handle a special case when both the base and mod length is zero
   430  	if baseLen == 0 && modLen == 0 {
   431  		return []byte{}, nil
   432  	}
   433  	// Retrieve the operands and execute the exponentiation
   434  	var (
   435  		base = new(big.Int).SetBytes(getData(input, 0, baseLen))
   436  		exp  = new(big.Int).SetBytes(getData(input, baseLen, expLen))
   437  		mod  = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen))
   438  	)
   439  	if mod.BitLen() == 0 {
   440  		// Modulo 0 is undefined, return zero
   441  		return common.LeftPadBytes([]byte{}, int(modLen)), nil
   442  	}
   443  	return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil
   444  }
   445  
   446  // newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point,
   447  // returning it, or an error if the point is invalid.
   448  func newCurvePoint(blob []byte) (*bn256.G1, error) {
   449  	p := new(bn256.G1)
   450  	if _, err := p.Unmarshal(blob); err != nil {
   451  		return nil, err
   452  	}
   453  	return p, nil
   454  }
   455  
   456  // newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point,
   457  // returning it, or an error if the point is invalid.
   458  func newTwistPoint(blob []byte) (*bn256.G2, error) {
   459  	p := new(bn256.G2)
   460  	if _, err := p.Unmarshal(blob); err != nil {
   461  		return nil, err
   462  	}
   463  	return p, nil
   464  }
   465  
   466  // runBn256Add implements the Bn256Add precompile, referenced by both
   467  // Byzantium and Istanbul operations.
   468  func runBn256Add(input []byte) ([]byte, error) {
   469  	x, err := newCurvePoint(getData(input, 0, 64))
   470  	if err != nil {
   471  		return nil, err
   472  	}
   473  	y, err := newCurvePoint(getData(input, 64, 64))
   474  	if err != nil {
   475  		return nil, err
   476  	}
   477  	res := new(bn256.G1)
   478  	res.Add(x, y)
   479  	return res.Marshal(), nil
   480  }
   481  
   482  // bn256Add implements a native elliptic curve point addition conforming to
   483  // Istanbul consensus rules.
   484  type bn256AddIstanbul struct{}
   485  
   486  // RequiredGas returns the gas required to execute the pre-compiled contract.
   487  func (c *bn256AddIstanbul) RequiredGas(input []byte) uint64 {
   488  	return params.Bn256AddGasIstanbul
   489  }
   490  
   491  func (c *bn256AddIstanbul) Run(input []byte) ([]byte, error) {
   492  	return runBn256Add(input)
   493  }
   494  
   495  // bn256AddByzantium implements a native elliptic curve point addition
   496  // conforming to Byzantium consensus rules.
   497  type bn256AddByzantium struct{}
   498  
   499  // RequiredGas returns the gas required to execute the pre-compiled contract.
   500  func (c *bn256AddByzantium) RequiredGas(input []byte) uint64 {
   501  	return params.Bn256AddGasByzantium
   502  }
   503  
   504  func (c *bn256AddByzantium) Run(input []byte) ([]byte, error) {
   505  	return runBn256Add(input)
   506  }
   507  
   508  // runBn256ScalarMul implements the Bn256ScalarMul precompile, referenced by
   509  // both Byzantium and Istanbul operations.
   510  func runBn256ScalarMul(input []byte) ([]byte, error) {
   511  	p, err := newCurvePoint(getData(input, 0, 64))
   512  	if err != nil {
   513  		return nil, err
   514  	}
   515  	res := new(bn256.G1)
   516  	res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32)))
   517  	return res.Marshal(), nil
   518  }
   519  
   520  // bn256ScalarMulIstanbul implements a native elliptic curve scalar
   521  // multiplication conforming to Istanbul consensus rules.
   522  type bn256ScalarMulIstanbul struct{}
   523  
   524  // RequiredGas returns the gas required to execute the pre-compiled contract.
   525  func (c *bn256ScalarMulIstanbul) RequiredGas(input []byte) uint64 {
   526  	return params.Bn256ScalarMulGasIstanbul
   527  }
   528  
   529  func (c *bn256ScalarMulIstanbul) Run(input []byte) ([]byte, error) {
   530  	return runBn256ScalarMul(input)
   531  }
   532  
   533  // bn256ScalarMulByzantium implements a native elliptic curve scalar
   534  // multiplication conforming to Byzantium consensus rules.
   535  type bn256ScalarMulByzantium struct{}
   536  
   537  // RequiredGas returns the gas required to execute the pre-compiled contract.
   538  func (c *bn256ScalarMulByzantium) RequiredGas(input []byte) uint64 {
   539  	return params.Bn256ScalarMulGasByzantium
   540  }
   541  
   542  func (c *bn256ScalarMulByzantium) Run(input []byte) ([]byte, error) {
   543  	return runBn256ScalarMul(input)
   544  }
   545  
   546  var (
   547  	// true32Byte is returned if the bn256 pairing check succeeds.
   548  	true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
   549  
   550  	// false32Byte is returned if the bn256 pairing check fails.
   551  	false32Byte = make([]byte, 32)
   552  
   553  	// errBadPairingInput is returned if the bn256 pairing input is invalid.
   554  	errBadPairingInput = errors.New("bad elliptic curve pairing size")
   555  )
   556  
   557  // runBn256Pairing implements the Bn256Pairing precompile, referenced by both
   558  // Byzantium and Istanbul operations.
   559  func runBn256Pairing(input []byte) ([]byte, error) {
   560  	// Allow at most 4 inputs
   561  	if len(input) > 4*192 {
   562  		return nil, errBadPairingInput
   563  	}
   564  	// Handle some corner cases cheaply
   565  	if len(input)%192 > 0 {
   566  		return nil, errBadPairingInput
   567  	}
   568  	// Convert the input into a set of coordinates
   569  	var (
   570  		cs []*bn256.G1
   571  		ts []*bn256.G2
   572  	)
   573  	for i := 0; i < len(input); i += 192 {
   574  		c, err := newCurvePoint(input[i : i+64])
   575  		if err != nil {
   576  			return nil, err
   577  		}
   578  		t, err := newTwistPoint(input[i+64 : i+192])
   579  		if err != nil {
   580  			return nil, err
   581  		}
   582  		cs = append(cs, c)
   583  		ts = append(ts, t)
   584  	}
   585  	// Execute the pairing checks and return the results
   586  	if bn256.PairingCheck(cs, ts) {
   587  		return true32Byte, nil
   588  	}
   589  	return false32Byte, nil
   590  }
   591  
   592  // bn256PairingIstanbul implements a pairing pre-compile for the bn256 curve
   593  // conforming to Istanbul consensus rules.
   594  type bn256PairingIstanbul struct{}
   595  
   596  // RequiredGas returns the gas required to execute the pre-compiled contract.
   597  func (c *bn256PairingIstanbul) RequiredGas(input []byte) uint64 {
   598  	return params.Bn256PairingBaseGasIstanbul + uint64(len(input)/192)*params.Bn256PairingPerPointGasIstanbul
   599  }
   600  
   601  func (c *bn256PairingIstanbul) Run(input []byte) ([]byte, error) {
   602  	return runBn256Pairing(input)
   603  }
   604  
   605  // bn256PairingByzantium implements a pairing pre-compile for the bn256 curve
   606  // conforming to Byzantium consensus rules.
   607  type bn256PairingByzantium struct{}
   608  
   609  // RequiredGas returns the gas required to execute the pre-compiled contract.
   610  func (c *bn256PairingByzantium) RequiredGas(input []byte) uint64 {
   611  	return params.Bn256PairingBaseGasByzantium + uint64(len(input)/192)*params.Bn256PairingPerPointGasByzantium
   612  }
   613  
   614  func (c *bn256PairingByzantium) Run(input []byte) ([]byte, error) {
   615  	return runBn256Pairing(input)
   616  }
   617  
   618  type blake2F struct{}
   619  
   620  func (c *blake2F) RequiredGas(input []byte) uint64 {
   621  	// If the input is malformed, we can't calculate the gas, return 0 and let the
   622  	// actual call choke and fault.
   623  	if len(input) != blake2FInputLength {
   624  		return 0
   625  	}
   626  	return uint64(binary.BigEndian.Uint32(input[0:4]))
   627  }
   628  
   629  const (
   630  	blake2FInputLength        = 213
   631  	blake2FFinalBlockBytes    = byte(1)
   632  	blake2FNonFinalBlockBytes = byte(0)
   633  )
   634  
   635  var (
   636  	errBlake2FInvalidInputLength = errors.New("invalid input length")
   637  	errBlake2FInvalidFinalFlag   = errors.New("invalid final flag")
   638  )
   639  
   640  func (c *blake2F) Run(input []byte) ([]byte, error) {
   641  	// Make sure the input is valid (correct length and final flag)
   642  	if len(input) != blake2FInputLength {
   643  		return nil, errBlake2FInvalidInputLength
   644  	}
   645  	if input[212] != blake2FNonFinalBlockBytes && input[212] != blake2FFinalBlockBytes {
   646  		return nil, errBlake2FInvalidFinalFlag
   647  	}
   648  	// Parse the input into the Blake2b call parameters
   649  	var (
   650  		rounds = binary.BigEndian.Uint32(input[0:4])
   651  		final  = (input[212] == blake2FFinalBlockBytes)
   652  
   653  		h [8]uint64
   654  		m [16]uint64
   655  		t [2]uint64
   656  	)
   657  	for i := 0; i < 8; i++ {
   658  		offset := 4 + i*8
   659  		h[i] = binary.LittleEndian.Uint64(input[offset : offset+8])
   660  	}
   661  	for i := 0; i < 16; i++ {
   662  		offset := 68 + i*8
   663  		m[i] = binary.LittleEndian.Uint64(input[offset : offset+8])
   664  	}
   665  	t[0] = binary.LittleEndian.Uint64(input[196:204])
   666  	t[1] = binary.LittleEndian.Uint64(input[204:212])
   667  
   668  	// Execute the compression function, extract and return the result
   669  	blake2b.F(&h, m, t, final, rounds)
   670  
   671  	output := make([]byte, 64)
   672  	for i := 0; i < 8; i++ {
   673  		offset := i * 8
   674  		binary.LittleEndian.PutUint64(output[offset:offset+8], h[i])
   675  	}
   676  	return output, nil
   677  }
   678  
   679  type blake2FDisabled struct{}
   680  
   681  func (c *blake2FDisabled) RequiredGas(input []byte) uint64 {
   682  	return (&blake2F{}).RequiredGas(input)
   683  }
   684  func (c *blake2FDisabled) Run(input []byte) ([]byte, error) {
   685  	return nil, errPrecompileDisabled
   686  }
   687  
   688  var (
   689  	errBLS12381InvalidInputLength          = errors.New("invalid input length")
   690  	errBLS12381InvalidFieldElementTopBytes = errors.New("invalid field element top bytes")
   691  	errBLS12381G1PointSubgroup             = errors.New("g1 point is not on correct subgroup")
   692  	errBLS12381G2PointSubgroup             = errors.New("g2 point is not on correct subgroup")
   693  )
   694  
   695  // bls12381G1Add implements EIP-2537 G1Add precompile.
   696  type bls12381G1Add struct{}
   697  
   698  // RequiredGas returns the gas required to execute the pre-compiled contract.
   699  func (c *bls12381G1Add) RequiredGas(input []byte) uint64 {
   700  	return params.Bls12381G1AddGas
   701  }
   702  
   703  func (c *bls12381G1Add) Run(input []byte) ([]byte, error) {
   704  	// Implements EIP-2537 G1Add precompile.
   705  	// > G1 addition call expects `256` bytes as an input that is interpreted as byte concatenation of two G1 points (`128` bytes each).
   706  	// > Output is an encoding of addition operation result - single G1 point (`128` bytes).
   707  	if len(input) != 256 {
   708  		return nil, errBLS12381InvalidInputLength
   709  	}
   710  	var err error
   711  	var p0, p1 *bls12381.PointG1
   712  
   713  	// Initialize G1
   714  	g := bls12381.NewG1()
   715  
   716  	// Decode G1 point p_0
   717  	if p0, err = g.DecodePoint(input[:128]); err != nil {
   718  		return nil, err
   719  	}
   720  	// Decode G1 point p_1
   721  	if p1, err = g.DecodePoint(input[128:]); err != nil {
   722  		return nil, err
   723  	}
   724  
   725  	// Compute r = p_0 + p_1
   726  	r := g.New()
   727  	g.Add(r, p0, p1)
   728  
   729  	// Encode the G1 point result into 128 bytes
   730  	return g.EncodePoint(r), nil
   731  }
   732  
   733  // bls12381G1Mul implements EIP-2537 G1Mul precompile.
   734  type bls12381G1Mul struct{}
   735  
   736  // RequiredGas returns the gas required to execute the pre-compiled contract.
   737  func (c *bls12381G1Mul) RequiredGas(input []byte) uint64 {
   738  	return params.Bls12381G1MulGas
   739  }
   740  
   741  func (c *bls12381G1Mul) Run(input []byte) ([]byte, error) {
   742  	// Implements EIP-2537 G1Mul precompile.
   743  	// > G1 multiplication call expects `160` bytes as an input that is interpreted as byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes).
   744  	// > Output is an encoding of multiplication operation result - single G1 point (`128` bytes).
   745  	if len(input) != 160 {
   746  		return nil, errBLS12381InvalidInputLength
   747  	}
   748  	var err error
   749  	var p0 *bls12381.PointG1
   750  
   751  	// Initialize G1
   752  	g := bls12381.NewG1()
   753  
   754  	// Decode G1 point
   755  	if p0, err = g.DecodePoint(input[:128]); err != nil {
   756  		return nil, err
   757  	}
   758  	// Decode scalar value
   759  	e := new(big.Int).SetBytes(input[128:])
   760  
   761  	// Compute r = e * p_0
   762  	r := g.New()
   763  	g.MulScalar(r, p0, e)
   764  
   765  	// Encode the G1 point into 128 bytes
   766  	return g.EncodePoint(r), nil
   767  }
   768  
   769  // bls12381G1MultiExp implements EIP-2537 G1MultiExp precompile.
   770  type bls12381G1MultiExp struct{}
   771  
   772  // RequiredGas returns the gas required to execute the pre-compiled contract.
   773  func (c *bls12381G1MultiExp) RequiredGas(input []byte) uint64 {
   774  	// Calculate G1 point, scalar value pair length
   775  	k := len(input) / 160
   776  	if k == 0 {
   777  		// Return 0 gas for small input length
   778  		return 0
   779  	}
   780  	// Lookup discount value for G1 point, scalar value pair length
   781  	var discount uint64
   782  	if dLen := len(params.Bls12381MultiExpDiscountTable); k < dLen {
   783  		discount = params.Bls12381MultiExpDiscountTable[k-1]
   784  	} else {
   785  		discount = params.Bls12381MultiExpDiscountTable[dLen-1]
   786  	}
   787  	// Calculate gas and return the result
   788  	return (uint64(k) * params.Bls12381G1MulGas * discount) / 1000
   789  }
   790  
   791  func (c *bls12381G1MultiExp) Run(input []byte) ([]byte, error) {
   792  	// Implements EIP-2537 G1MultiExp precompile.
   793  	// G1 multiplication call expects `160*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes).
   794  	// Output is an encoding of multiexponentiation operation result - single G1 point (`128` bytes).
   795  	k := len(input) / 160
   796  	if len(input) == 0 || len(input)%160 != 0 {
   797  		return nil, errBLS12381InvalidInputLength
   798  	}
   799  	var err error
   800  	points := make([]*bls12381.PointG1, k)
   801  	scalars := make([]*big.Int, k)
   802  
   803  	// Initialize G1
   804  	g := bls12381.NewG1()
   805  
   806  	// Decode point scalar pairs
   807  	for i := 0; i < k; i++ {
   808  		off := 160 * i
   809  		t0, t1, t2 := off, off+128, off+160
   810  		// Decode G1 point
   811  		if points[i], err = g.DecodePoint(input[t0:t1]); err != nil {
   812  			return nil, err
   813  		}
   814  		// Decode scalar value
   815  		scalars[i] = new(big.Int).SetBytes(input[t1:t2])
   816  	}
   817  
   818  	// Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1)
   819  	r := g.New()
   820  	g.MultiExp(r, points, scalars)
   821  
   822  	// Encode the G1 point to 128 bytes
   823  	return g.EncodePoint(r), nil
   824  }
   825  
   826  // bls12381G2Add implements EIP-2537 G2Add precompile.
   827  type bls12381G2Add struct{}
   828  
   829  // RequiredGas returns the gas required to execute the pre-compiled contract.
   830  func (c *bls12381G2Add) RequiredGas(input []byte) uint64 {
   831  	return params.Bls12381G2AddGas
   832  }
   833  
   834  func (c *bls12381G2Add) Run(input []byte) ([]byte, error) {
   835  	// Implements EIP-2537 G2Add precompile.
   836  	// > G2 addition call expects `512` bytes as an input that is interpreted as byte concatenation of two G2 points (`256` bytes each).
   837  	// > Output is an encoding of addition operation result - single G2 point (`256` bytes).
   838  	if len(input) != 512 {
   839  		return nil, errBLS12381InvalidInputLength
   840  	}
   841  	var err error
   842  	var p0, p1 *bls12381.PointG2
   843  
   844  	// Initialize G2
   845  	g := bls12381.NewG2()
   846  	r := g.New()
   847  
   848  	// Decode G2 point p_0
   849  	if p0, err = g.DecodePoint(input[:256]); err != nil {
   850  		return nil, err
   851  	}
   852  	// Decode G2 point p_1
   853  	if p1, err = g.DecodePoint(input[256:]); err != nil {
   854  		return nil, err
   855  	}
   856  
   857  	// Compute r = p_0 + p_1
   858  	g.Add(r, p0, p1)
   859  
   860  	// Encode the G2 point into 256 bytes
   861  	return g.EncodePoint(r), nil
   862  }
   863  
   864  // bls12381G2Mul implements EIP-2537 G2Mul precompile.
   865  type bls12381G2Mul struct{}
   866  
   867  // RequiredGas returns the gas required to execute the pre-compiled contract.
   868  func (c *bls12381G2Mul) RequiredGas(input []byte) uint64 {
   869  	return params.Bls12381G2MulGas
   870  }
   871  
   872  func (c *bls12381G2Mul) Run(input []byte) ([]byte, error) {
   873  	// Implements EIP-2537 G2MUL precompile logic.
   874  	// > G2 multiplication call expects `288` bytes as an input that is interpreted as byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes).
   875  	// > Output is an encoding of multiplication operation result - single G2 point (`256` bytes).
   876  	if len(input) != 288 {
   877  		return nil, errBLS12381InvalidInputLength
   878  	}
   879  	var err error
   880  	var p0 *bls12381.PointG2
   881  
   882  	// Initialize G2
   883  	g := bls12381.NewG2()
   884  
   885  	// Decode G2 point
   886  	if p0, err = g.DecodePoint(input[:256]); err != nil {
   887  		return nil, err
   888  	}
   889  	// Decode scalar value
   890  	e := new(big.Int).SetBytes(input[256:])
   891  
   892  	// Compute r = e * p_0
   893  	r := g.New()
   894  	g.MulScalar(r, p0, e)
   895  
   896  	// Encode the G2 point into 256 bytes
   897  	return g.EncodePoint(r), nil
   898  }
   899  
   900  // bls12381G2MultiExp implements EIP-2537 G2MultiExp precompile.
   901  type bls12381G2MultiExp struct{}
   902  
   903  // RequiredGas returns the gas required to execute the pre-compiled contract.
   904  func (c *bls12381G2MultiExp) RequiredGas(input []byte) uint64 {
   905  	// Calculate G2 point, scalar value pair length
   906  	k := len(input) / 288
   907  	if k == 0 {
   908  		// Return 0 gas for small input length
   909  		return 0
   910  	}
   911  	// Lookup discount value for G2 point, scalar value pair length
   912  	var discount uint64
   913  	if dLen := len(params.Bls12381MultiExpDiscountTable); k < dLen {
   914  		discount = params.Bls12381MultiExpDiscountTable[k-1]
   915  	} else {
   916  		discount = params.Bls12381MultiExpDiscountTable[dLen-1]
   917  	}
   918  	// Calculate gas and return the result
   919  	return (uint64(k) * params.Bls12381G2MulGas * discount) / 1000
   920  }
   921  
   922  func (c *bls12381G2MultiExp) Run(input []byte) ([]byte, error) {
   923  	// Implements EIP-2537 G2MultiExp precompile logic
   924  	// > G2 multiplication call expects `288*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes).
   925  	// > Output is an encoding of multiexponentiation operation result - single G2 point (`256` bytes).
   926  	k := len(input) / 288
   927  	if len(input) == 0 || len(input)%288 != 0 {
   928  		return nil, errBLS12381InvalidInputLength
   929  	}
   930  	var err error
   931  	points := make([]*bls12381.PointG2, k)
   932  	scalars := make([]*big.Int, k)
   933  
   934  	// Initialize G2
   935  	g := bls12381.NewG2()
   936  
   937  	// Decode point scalar pairs
   938  	for i := 0; i < k; i++ {
   939  		off := 288 * i
   940  		t0, t1, t2 := off, off+256, off+288
   941  		// Decode G1 point
   942  		if points[i], err = g.DecodePoint(input[t0:t1]); err != nil {
   943  			return nil, err
   944  		}
   945  		// Decode scalar value
   946  		scalars[i] = new(big.Int).SetBytes(input[t1:t2])
   947  	}
   948  
   949  	// Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1)
   950  	r := g.New()
   951  	g.MultiExp(r, points, scalars)
   952  
   953  	// Encode the G2 point to 256 bytes.
   954  	return g.EncodePoint(r), nil
   955  }
   956  
   957  // bls12381Pairing implements EIP-2537 Pairing precompile.
   958  type bls12381Pairing struct{}
   959  
   960  // RequiredGas returns the gas required to execute the pre-compiled contract.
   961  func (c *bls12381Pairing) RequiredGas(input []byte) uint64 {
   962  	return params.Bls12381PairingBaseGas + uint64(len(input)/384)*params.Bls12381PairingPerPairGas
   963  }
   964  
   965  func (c *bls12381Pairing) Run(input []byte) ([]byte, error) {
   966  	// Implements EIP-2537 Pairing precompile logic.
   967  	// > Pairing call expects `384*k` bytes as an inputs that is interpreted as byte concatenation of `k` slices. Each slice has the following structure:
   968  	// > - `128` bytes of G1 point encoding
   969  	// > - `256` bytes of G2 point encoding
   970  	// > Output is a `32` bytes where last single byte is `0x01` if pairing result is equal to multiplicative identity in a pairing target field and `0x00` otherwise
   971  	// > (which is equivalent of Big Endian encoding of Solidity values `uint256(1)` and `uin256(0)` respectively).
   972  	k := len(input) / 384
   973  	if len(input) == 0 || len(input)%384 != 0 {
   974  		return nil, errBLS12381InvalidInputLength
   975  	}
   976  
   977  	// Initialize BLS12-381 pairing engine
   978  	e := bls12381.NewPairingEngine()
   979  	g1, g2 := e.G1, e.G2
   980  
   981  	// Decode pairs
   982  	for i := 0; i < k; i++ {
   983  		off := 384 * i
   984  		t0, t1, t2 := off, off+128, off+384
   985  
   986  		// Decode G1 point
   987  		p1, err := g1.DecodePoint(input[t0:t1])
   988  		if err != nil {
   989  			return nil, err
   990  		}
   991  		// Decode G2 point
   992  		p2, err := g2.DecodePoint(input[t1:t2])
   993  		if err != nil {
   994  			return nil, err
   995  		}
   996  
   997  		// 'point is on curve' check already done,
   998  		// Here we need to apply subgroup checks.
   999  		if !g1.InCorrectSubgroup(p1) {
  1000  			return nil, errBLS12381G1PointSubgroup
  1001  		}
  1002  		if !g2.InCorrectSubgroup(p2) {
  1003  			return nil, errBLS12381G2PointSubgroup
  1004  		}
  1005  
  1006  		// Update pairing engine with G1 and G2 ponits
  1007  		e.AddPair(p1, p2)
  1008  	}
  1009  	// Prepare 32 byte output
  1010  	out := make([]byte, 32)
  1011  
  1012  	// Compute pairing and set the result
  1013  	if e.Check() {
  1014  		out[31] = 1
  1015  	}
  1016  	return out, nil
  1017  }
  1018  
  1019  // decodeBLS12381FieldElement decodes BLS12-381 elliptic curve field element.
  1020  // Removes top 16 bytes of 64 byte input.
  1021  func decodeBLS12381FieldElement(in []byte) ([]byte, error) {
  1022  	if len(in) != 64 {
  1023  		return nil, errors.New("invalid field element length")
  1024  	}
  1025  	// check top bytes
  1026  	for i := 0; i < 16; i++ {
  1027  		if in[i] != byte(0x00) {
  1028  			return nil, errBLS12381InvalidFieldElementTopBytes
  1029  		}
  1030  	}
  1031  	out := make([]byte, 48)
  1032  	copy(out[:], in[16:])
  1033  	return out, nil
  1034  }
  1035  
  1036  // bls12381MapG1 implements EIP-2537 MapG1 precompile.
  1037  type bls12381MapG1 struct{}
  1038  
  1039  // RequiredGas returns the gas required to execute the pre-compiled contract.
  1040  func (c *bls12381MapG1) RequiredGas(input []byte) uint64 {
  1041  	return params.Bls12381MapG1Gas
  1042  }
  1043  
  1044  func (c *bls12381MapG1) Run(input []byte) ([]byte, error) {
  1045  	// Implements EIP-2537 Map_To_G1 precompile.
  1046  	// > Field-to-curve call expects `64` bytes an an input that is interpreted as a an element of the base field.
  1047  	// > Output of this call is `128` bytes and is G1 point following respective encoding rules.
  1048  	if len(input) != 64 {
  1049  		return nil, errBLS12381InvalidInputLength
  1050  	}
  1051  
  1052  	// Decode input field element
  1053  	fe, err := decodeBLS12381FieldElement(input)
  1054  	if err != nil {
  1055  		return nil, err
  1056  	}
  1057  
  1058  	// Initialize G1
  1059  	g := bls12381.NewG1()
  1060  
  1061  	// Compute mapping
  1062  	r, err := g.MapToCurve(fe)
  1063  	if err != nil {
  1064  		return nil, err
  1065  	}
  1066  
  1067  	// Encode the G1 point to 128 bytes
  1068  	return g.EncodePoint(r), nil
  1069  }
  1070  
  1071  // bls12381MapG2 implements EIP-2537 MapG2 precompile.
  1072  type bls12381MapG2 struct{}
  1073  
  1074  // RequiredGas returns the gas required to execute the pre-compiled contract.
  1075  func (c *bls12381MapG2) RequiredGas(input []byte) uint64 {
  1076  	return params.Bls12381MapG2Gas
  1077  }
  1078  
  1079  func (c *bls12381MapG2) Run(input []byte) ([]byte, error) {
  1080  	// Implements EIP-2537 Map_FP2_TO_G2 precompile logic.
  1081  	// > Field-to-curve call expects `128` bytes an an input that is interpreted as a an element of the quadratic extension field.
  1082  	// > Output of this call is `256` bytes and is G2 point following respective encoding rules.
  1083  	if len(input) != 128 {
  1084  		return nil, errBLS12381InvalidInputLength
  1085  	}
  1086  
  1087  	// Decode input field element
  1088  	fe := make([]byte, 96)
  1089  	c0, err := decodeBLS12381FieldElement(input[:64])
  1090  	if err != nil {
  1091  		return nil, err
  1092  	}
  1093  	copy(fe[48:], c0)
  1094  	c1, err := decodeBLS12381FieldElement(input[64:])
  1095  	if err != nil {
  1096  		return nil, err
  1097  	}
  1098  	copy(fe[:48], c1)
  1099  
  1100  	// Initialize G2
  1101  	g := bls12381.NewG2()
  1102  
  1103  	// Compute mapping
  1104  	r, err := g.MapToCurve(fe)
  1105  	if err != nil {
  1106  		return nil, err
  1107  	}
  1108  
  1109  	// Encode the G2 point to 256 bytes
  1110  	return g.EncodePoint(r), nil
  1111  }