github.com/cryptotooltop/go-ethereum@v0.0.0-20231103184714-151d1922f3e5/core/vm/gas_table.go (about) 1 // Copyright 2017 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package vm 18 19 import ( 20 "errors" 21 22 "github.com/scroll-tech/go-ethereum/common" 23 "github.com/scroll-tech/go-ethereum/common/math" 24 "github.com/scroll-tech/go-ethereum/params" 25 ) 26 27 // memoryGasCost calculates the quadratic gas for memory expansion. It does so 28 // only for the memory region that is expanded, not the total memory. 29 func memoryGasCost(mem *Memory, newMemSize uint64) (uint64, error) { 30 if newMemSize == 0 { 31 return 0, nil 32 } 33 // The maximum that will fit in a uint64 is max_word_count - 1. Anything above 34 // that will result in an overflow. Additionally, a newMemSize which results in 35 // a newMemSizeWords larger than 0xFFFFFFFF will cause the square operation to 36 // overflow. The constant 0x1FFFFFFFE0 is the highest number that can be used 37 // without overflowing the gas calculation. 38 if newMemSize > 0x1FFFFFFFE0 { 39 return 0, ErrGasUintOverflow 40 } 41 newMemSizeWords := toWordSize(newMemSize) 42 newMemSize = newMemSizeWords * 32 43 44 if newMemSize > uint64(mem.Len()) { 45 square := newMemSizeWords * newMemSizeWords 46 linCoef := newMemSizeWords * params.MemoryGas 47 quadCoef := square / params.QuadCoeffDiv 48 newTotalFee := linCoef + quadCoef 49 50 fee := newTotalFee - mem.lastGasCost 51 mem.lastGasCost = newTotalFee 52 53 return fee, nil 54 } 55 return 0, nil 56 } 57 58 // memoryCopierGas creates the gas functions for the following opcodes, and takes 59 // the stack position of the operand which determines the size of the data to copy 60 // as argument: 61 // CALLDATACOPY (stack position 2) 62 // CODECOPY (stack position 2) 63 // EXTCODECOPY (stack position 3) 64 // RETURNDATACOPY (stack position 2) 65 func memoryCopierGas(stackpos int) gasFunc { 66 return func(evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) { 67 // Gas for expanding the memory 68 gas, err := memoryGasCost(mem, memorySize) 69 if err != nil { 70 return 0, err 71 } 72 // And gas for copying data, charged per word at param.CopyGas 73 words, overflow := stack.Back(stackpos).Uint64WithOverflow() 74 if overflow { 75 return 0, ErrGasUintOverflow 76 } 77 78 if words, overflow = math.SafeMul(toWordSize(words), params.CopyGas); overflow { 79 return 0, ErrGasUintOverflow 80 } 81 82 if gas, overflow = math.SafeAdd(gas, words); overflow { 83 return 0, ErrGasUintOverflow 84 } 85 return gas, nil 86 } 87 } 88 89 var ( 90 gasCallDataCopy = memoryCopierGas(2) 91 gasCodeCopy = memoryCopierGas(2) 92 gasExtCodeCopy = memoryCopierGas(3) 93 gasReturnDataCopy = memoryCopierGas(2) 94 ) 95 96 func gasSStore(evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) { 97 var ( 98 y, x = stack.Back(1), stack.Back(0) 99 current = evm.StateDB.GetState(contract.Address(), x.Bytes32()) 100 ) 101 // The legacy gas metering only takes into consideration the current state 102 // Legacy rules should be applied if we are in Petersburg (removal of EIP-1283) 103 // OR Constantinople is not active 104 if evm.chainRules.IsPetersburg || !evm.chainRules.IsConstantinople { 105 // This checks for 3 scenario's and calculates gas accordingly: 106 // 107 // 1. From a zero-value address to a non-zero value (NEW VALUE) 108 // 2. From a non-zero value address to a zero-value address (DELETE) 109 // 3. From a non-zero to a non-zero (CHANGE) 110 switch { 111 case current == (common.Hash{}) && y.Sign() != 0: // 0 => non 0 112 return params.SstoreSetGas, nil 113 case current != (common.Hash{}) && y.Sign() == 0: // non 0 => 0 114 evm.StateDB.AddRefund(params.SstoreRefundGas) 115 return params.SstoreClearGas, nil 116 default: // non 0 => non 0 (or 0 => 0) 117 return params.SstoreResetGas, nil 118 } 119 } 120 // The new gas metering is based on net gas costs (EIP-1283): 121 // 122 // 1. If current value equals new value (this is a no-op), 200 gas is deducted. 123 // 2. If current value does not equal new value 124 // 2.1. If original value equals current value (this storage slot has not been changed by the current execution context) 125 // 2.1.1. If original value is 0, 20000 gas is deducted. 126 // 2.1.2. Otherwise, 5000 gas is deducted. If new value is 0, add 15000 gas to refund counter. 127 // 2.2. If original value does not equal current value (this storage slot is dirty), 200 gas is deducted. Apply both of the following clauses. 128 // 2.2.1. If original value is not 0 129 // 2.2.1.1. If current value is 0 (also means that new value is not 0), remove 15000 gas from refund counter. We can prove that refund counter will never go below 0. 130 // 2.2.1.2. If new value is 0 (also means that current value is not 0), add 15000 gas to refund counter. 131 // 2.2.2. If original value equals new value (this storage slot is reset) 132 // 2.2.2.1. If original value is 0, add 19800 gas to refund counter. 133 // 2.2.2.2. Otherwise, add 4800 gas to refund counter. 134 value := common.Hash(y.Bytes32()) 135 if current == value { // noop (1) 136 return params.NetSstoreNoopGas, nil 137 } 138 original := evm.StateDB.GetCommittedState(contract.Address(), x.Bytes32()) 139 if original == current { 140 if original == (common.Hash{}) { // create slot (2.1.1) 141 return params.NetSstoreInitGas, nil 142 } 143 if value == (common.Hash{}) { // delete slot (2.1.2b) 144 evm.StateDB.AddRefund(params.NetSstoreClearRefund) 145 } 146 return params.NetSstoreCleanGas, nil // write existing slot (2.1.2) 147 } 148 if original != (common.Hash{}) { 149 if current == (common.Hash{}) { // recreate slot (2.2.1.1) 150 evm.StateDB.SubRefund(params.NetSstoreClearRefund) 151 } else if value == (common.Hash{}) { // delete slot (2.2.1.2) 152 evm.StateDB.AddRefund(params.NetSstoreClearRefund) 153 } 154 } 155 if original == value { 156 if original == (common.Hash{}) { // reset to original inexistent slot (2.2.2.1) 157 evm.StateDB.AddRefund(params.NetSstoreResetClearRefund) 158 } else { // reset to original existing slot (2.2.2.2) 159 evm.StateDB.AddRefund(params.NetSstoreResetRefund) 160 } 161 } 162 return params.NetSstoreDirtyGas, nil 163 } 164 165 // 0. If *gasleft* is less than or equal to 2300, fail the current call. 166 // 1. If current value equals new value (this is a no-op), SLOAD_GAS is deducted. 167 // 2. If current value does not equal new value: 168 // 2.1. If original value equals current value (this storage slot has not been changed by the current execution context): 169 // 2.1.1. If original value is 0, SSTORE_SET_GAS (20K) gas is deducted. 170 // 2.1.2. Otherwise, SSTORE_RESET_GAS gas is deducted. If new value is 0, add SSTORE_CLEARS_SCHEDULE to refund counter. 171 // 2.2. If original value does not equal current value (this storage slot is dirty), SLOAD_GAS gas is deducted. Apply both of the following clauses: 172 // 2.2.1. If original value is not 0: 173 // 2.2.1.1. If current value is 0 (also means that new value is not 0), subtract SSTORE_CLEARS_SCHEDULE gas from refund counter. 174 // 2.2.1.2. If new value is 0 (also means that current value is not 0), add SSTORE_CLEARS_SCHEDULE gas to refund counter. 175 // 2.2.2. If original value equals new value (this storage slot is reset): 176 // 2.2.2.1. If original value is 0, add SSTORE_SET_GAS - SLOAD_GAS to refund counter. 177 // 2.2.2.2. Otherwise, add SSTORE_RESET_GAS - SLOAD_GAS gas to refund counter. 178 func gasSStoreEIP2200(evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) { 179 // If we fail the minimum gas availability invariant, fail (0) 180 if contract.Gas <= params.SstoreSentryGasEIP2200 { 181 return 0, errors.New("not enough gas for reentrancy sentry") 182 } 183 // Gas sentry honoured, do the actual gas calculation based on the stored value 184 var ( 185 y, x = stack.Back(1), stack.Back(0) 186 current = evm.StateDB.GetState(contract.Address(), x.Bytes32()) 187 ) 188 value := common.Hash(y.Bytes32()) 189 190 if current == value { // noop (1) 191 return params.SloadGasEIP2200, nil 192 } 193 original := evm.StateDB.GetCommittedState(contract.Address(), x.Bytes32()) 194 if original == current { 195 if original == (common.Hash{}) { // create slot (2.1.1) 196 return params.SstoreSetGasEIP2200, nil 197 } 198 if value == (common.Hash{}) { // delete slot (2.1.2b) 199 evm.StateDB.AddRefund(params.SstoreClearsScheduleRefundEIP2200) 200 } 201 return params.SstoreResetGasEIP2200, nil // write existing slot (2.1.2) 202 } 203 if original != (common.Hash{}) { 204 if current == (common.Hash{}) { // recreate slot (2.2.1.1) 205 evm.StateDB.SubRefund(params.SstoreClearsScheduleRefundEIP2200) 206 } else if value == (common.Hash{}) { // delete slot (2.2.1.2) 207 evm.StateDB.AddRefund(params.SstoreClearsScheduleRefundEIP2200) 208 } 209 } 210 if original == value { 211 if original == (common.Hash{}) { // reset to original inexistent slot (2.2.2.1) 212 evm.StateDB.AddRefund(params.SstoreSetGasEIP2200 - params.SloadGasEIP2200) 213 } else { // reset to original existing slot (2.2.2.2) 214 evm.StateDB.AddRefund(params.SstoreResetGasEIP2200 - params.SloadGasEIP2200) 215 } 216 } 217 return params.SloadGasEIP2200, nil // dirty update (2.2) 218 } 219 220 func makeGasLog(n uint64) gasFunc { 221 return func(evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) { 222 requestedSize, overflow := stack.Back(1).Uint64WithOverflow() 223 if overflow { 224 return 0, ErrGasUintOverflow 225 } 226 227 gas, err := memoryGasCost(mem, memorySize) 228 if err != nil { 229 return 0, err 230 } 231 232 if gas, overflow = math.SafeAdd(gas, params.LogGas); overflow { 233 return 0, ErrGasUintOverflow 234 } 235 if gas, overflow = math.SafeAdd(gas, n*params.LogTopicGas); overflow { 236 return 0, ErrGasUintOverflow 237 } 238 239 var memorySizeGas uint64 240 if memorySizeGas, overflow = math.SafeMul(requestedSize, params.LogDataGas); overflow { 241 return 0, ErrGasUintOverflow 242 } 243 if gas, overflow = math.SafeAdd(gas, memorySizeGas); overflow { 244 return 0, ErrGasUintOverflow 245 } 246 return gas, nil 247 } 248 } 249 250 func gasSha3(evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) { 251 gas, err := memoryGasCost(mem, memorySize) 252 if err != nil { 253 return 0, err 254 } 255 wordGas, overflow := stack.Back(1).Uint64WithOverflow() 256 if overflow { 257 return 0, ErrGasUintOverflow 258 } 259 if wordGas, overflow = math.SafeMul(toWordSize(wordGas), params.Sha3WordGas); overflow { 260 return 0, ErrGasUintOverflow 261 } 262 if gas, overflow = math.SafeAdd(gas, wordGas); overflow { 263 return 0, ErrGasUintOverflow 264 } 265 return gas, nil 266 } 267 268 // pureMemoryGascost is used by several operations, which aside from their 269 // static cost have a dynamic cost which is solely based on the memory 270 // expansion 271 func pureMemoryGascost(evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) { 272 return memoryGasCost(mem, memorySize) 273 } 274 275 var ( 276 gasReturn = pureMemoryGascost 277 gasRevert = pureMemoryGascost 278 gasMLoad = pureMemoryGascost 279 gasMStore8 = pureMemoryGascost 280 gasMStore = pureMemoryGascost 281 gasCreate = pureMemoryGascost 282 ) 283 284 func gasCreate2(evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) { 285 gas, err := memoryGasCost(mem, memorySize) 286 if err != nil { 287 return 0, err 288 } 289 wordGas, overflow := stack.Back(2).Uint64WithOverflow() 290 if overflow { 291 return 0, ErrGasUintOverflow 292 } 293 if wordGas, overflow = math.SafeMul(toWordSize(wordGas), params.Sha3WordGas); overflow { 294 return 0, ErrGasUintOverflow 295 } 296 if gas, overflow = math.SafeAdd(gas, wordGas); overflow { 297 return 0, ErrGasUintOverflow 298 } 299 return gas, nil 300 } 301 302 func gasCreateEip3860(evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) { 303 gas, err := memoryGasCost(mem, memorySize) 304 if err != nil { 305 return 0, err 306 } 307 size, overflow := stack.Back(2).Uint64WithOverflow() 308 if overflow || size > params.MaxInitCodeSize { 309 return 0, ErrGasUintOverflow 310 } 311 // Since size <= params.MaxInitCodeSize, these multiplication cannot overflow 312 moreGas := params.InitCodeWordGas * ((size + 31) / 32) 313 if gas, overflow = math.SafeAdd(gas, moreGas); overflow { 314 return 0, ErrGasUintOverflow 315 } 316 return gas, nil 317 } 318 319 func gasCreate2Eip3860(evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) { 320 gas, err := memoryGasCost(mem, memorySize) 321 if err != nil { 322 return 0, err 323 } 324 size, overflow := stack.Back(2).Uint64WithOverflow() 325 if overflow || size > params.MaxInitCodeSize { 326 return 0, ErrGasUintOverflow 327 } 328 // Since size <= params.MaxInitCodeSize, these multiplication cannot overflow 329 moreGas := (params.InitCodeWordGas + params.Keccak256WordGas) * ((size + 31) / 32) 330 if gas, overflow = math.SafeAdd(gas, moreGas); overflow { 331 return 0, ErrGasUintOverflow 332 } 333 return gas, nil 334 } 335 336 func gasExpFrontier(evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) { 337 expByteLen := uint64((stack.data[stack.len()-2].BitLen() + 7) / 8) 338 339 var ( 340 gas = expByteLen * params.ExpByteFrontier // no overflow check required. Max is 256 * ExpByte gas 341 overflow bool 342 ) 343 if gas, overflow = math.SafeAdd(gas, params.ExpGas); overflow { 344 return 0, ErrGasUintOverflow 345 } 346 return gas, nil 347 } 348 349 func gasExpEIP158(evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) { 350 expByteLen := uint64((stack.data[stack.len()-2].BitLen() + 7) / 8) 351 352 var ( 353 gas = expByteLen * params.ExpByteEIP158 // no overflow check required. Max is 256 * ExpByte gas 354 overflow bool 355 ) 356 if gas, overflow = math.SafeAdd(gas, params.ExpGas); overflow { 357 return 0, ErrGasUintOverflow 358 } 359 return gas, nil 360 } 361 362 func gasCall(evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) { 363 var ( 364 gas uint64 365 transfersValue = !stack.Back(2).IsZero() 366 address = common.Address(stack.Back(1).Bytes20()) 367 ) 368 if evm.chainRules.IsEIP158 { 369 if transfersValue && evm.StateDB.Empty(address) { 370 gas += params.CallNewAccountGas 371 } 372 } else if !evm.StateDB.Exist(address) { 373 gas += params.CallNewAccountGas 374 } 375 if transfersValue { 376 gas += params.CallValueTransferGas 377 } 378 memoryGas, err := memoryGasCost(mem, memorySize) 379 if err != nil { 380 return 0, err 381 } 382 var overflow bool 383 if gas, overflow = math.SafeAdd(gas, memoryGas); overflow { 384 return 0, ErrGasUintOverflow 385 } 386 387 evm.callGasTemp, err = callGas(evm.chainRules.IsEIP150, contract.Gas, gas, stack.Back(0)) 388 if err != nil { 389 return 0, err 390 } 391 if gas, overflow = math.SafeAdd(gas, evm.callGasTemp); overflow { 392 return 0, ErrGasUintOverflow 393 } 394 return gas, nil 395 } 396 397 func gasCallCode(evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) { 398 memoryGas, err := memoryGasCost(mem, memorySize) 399 if err != nil { 400 return 0, err 401 } 402 var ( 403 gas uint64 404 overflow bool 405 ) 406 if stack.Back(2).Sign() != 0 { 407 gas += params.CallValueTransferGas 408 } 409 if gas, overflow = math.SafeAdd(gas, memoryGas); overflow { 410 return 0, ErrGasUintOverflow 411 } 412 evm.callGasTemp, err = callGas(evm.chainRules.IsEIP150, contract.Gas, gas, stack.Back(0)) 413 if err != nil { 414 return 0, err 415 } 416 if gas, overflow = math.SafeAdd(gas, evm.callGasTemp); overflow { 417 return 0, ErrGasUintOverflow 418 } 419 return gas, nil 420 } 421 422 func gasDelegateCall(evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) { 423 gas, err := memoryGasCost(mem, memorySize) 424 if err != nil { 425 return 0, err 426 } 427 evm.callGasTemp, err = callGas(evm.chainRules.IsEIP150, contract.Gas, gas, stack.Back(0)) 428 if err != nil { 429 return 0, err 430 } 431 var overflow bool 432 if gas, overflow = math.SafeAdd(gas, evm.callGasTemp); overflow { 433 return 0, ErrGasUintOverflow 434 } 435 return gas, nil 436 } 437 438 func gasStaticCall(evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) { 439 gas, err := memoryGasCost(mem, memorySize) 440 if err != nil { 441 return 0, err 442 } 443 evm.callGasTemp, err = callGas(evm.chainRules.IsEIP150, contract.Gas, gas, stack.Back(0)) 444 if err != nil { 445 return 0, err 446 } 447 var overflow bool 448 if gas, overflow = math.SafeAdd(gas, evm.callGasTemp); overflow { 449 return 0, ErrGasUintOverflow 450 } 451 return gas, nil 452 }