github.com/cryptotooltop/go-ethereum@v0.0.0-20231103184714-151d1922f3e5/trie/committer.go (about)

     1  // Copyright 2019 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package trie
    18  
    19  import (
    20  	"errors"
    21  	"fmt"
    22  	"sync"
    23  
    24  	"golang.org/x/crypto/sha3"
    25  
    26  	"github.com/scroll-tech/go-ethereum/common"
    27  	"github.com/scroll-tech/go-ethereum/crypto"
    28  )
    29  
    30  // leafChanSize is the size of the leafCh. It's a pretty arbitrary number, to allow
    31  // some parallelism but not incur too much memory overhead.
    32  const leafChanSize = 200
    33  
    34  // leaf represents a trie leaf value
    35  type leaf struct {
    36  	size int         // size of the rlp data (estimate)
    37  	hash common.Hash // hash of rlp data
    38  	node node        // the node to commit
    39  }
    40  
    41  // committer is a type used for the trie Commit operation. A committer has some
    42  // internal preallocated temp space, and also a callback that is invoked when
    43  // leaves are committed. The leafs are passed through the `leafCh`,  to allow
    44  // some level of parallelism.
    45  // By 'some level' of parallelism, it's still the case that all leaves will be
    46  // processed sequentially - onleaf will never be called in parallel or out of order.
    47  type committer struct {
    48  	tmp sliceBuffer
    49  	sha crypto.KeccakState
    50  
    51  	onleaf LeafCallback
    52  	leafCh chan *leaf
    53  }
    54  
    55  // committers live in a global sync.Pool
    56  var committerPool = sync.Pool{
    57  	New: func() interface{} {
    58  		return &committer{
    59  			tmp: make(sliceBuffer, 0, 550), // cap is as large as a full fullNode.
    60  			sha: sha3.NewLegacyKeccak256().(crypto.KeccakState),
    61  		}
    62  	},
    63  }
    64  
    65  // newCommitter creates a new committer or picks one from the pool.
    66  func newCommitter() *committer {
    67  	return committerPool.Get().(*committer)
    68  }
    69  
    70  func returnCommitterToPool(h *committer) {
    71  	h.onleaf = nil
    72  	h.leafCh = nil
    73  	committerPool.Put(h)
    74  }
    75  
    76  // Commit collapses a node down into a hash node and inserts it into the database
    77  func (c *committer) Commit(n node, db *Database) (hashNode, int, error) {
    78  	if db == nil {
    79  		return nil, 0, errors.New("no db provided")
    80  	}
    81  	h, committed, err := c.commit(n, db)
    82  	if err != nil {
    83  		return nil, 0, err
    84  	}
    85  	return h.(hashNode), committed, nil
    86  }
    87  
    88  // commit collapses a node down into a hash node and inserts it into the database
    89  func (c *committer) commit(n node, db *Database) (node, int, error) {
    90  	// if this path is clean, use available cached data
    91  	hash, dirty := n.cache()
    92  	if hash != nil && !dirty {
    93  		return hash, 0, nil
    94  	}
    95  	// Commit children, then parent, and remove remove the dirty flag.
    96  	switch cn := n.(type) {
    97  	case *shortNode:
    98  		// Commit child
    99  		collapsed := cn.copy()
   100  
   101  		// If the child is fullNode, recursively commit,
   102  		// otherwise it can only be hashNode or valueNode.
   103  		var childCommitted int
   104  		if _, ok := cn.Val.(*fullNode); ok {
   105  			childV, committed, err := c.commit(cn.Val, db)
   106  			if err != nil {
   107  				return nil, 0, err
   108  			}
   109  			collapsed.Val, childCommitted = childV, committed
   110  		}
   111  		// The key needs to be copied, since we're delivering it to database
   112  		collapsed.Key = hexToCompact(cn.Key)
   113  		hashedNode := c.store(collapsed, db)
   114  		if hn, ok := hashedNode.(hashNode); ok {
   115  			return hn, childCommitted + 1, nil
   116  		}
   117  		return collapsed, childCommitted, nil
   118  	case *fullNode:
   119  		hashedKids, childCommitted, err := c.commitChildren(cn, db)
   120  		if err != nil {
   121  			return nil, 0, err
   122  		}
   123  		collapsed := cn.copy()
   124  		collapsed.Children = hashedKids
   125  
   126  		hashedNode := c.store(collapsed, db)
   127  		if hn, ok := hashedNode.(hashNode); ok {
   128  			return hn, childCommitted + 1, nil
   129  		}
   130  		return collapsed, childCommitted, nil
   131  	case hashNode:
   132  		return cn, 0, nil
   133  	default:
   134  		// nil, valuenode shouldn't be committed
   135  		panic(fmt.Sprintf("%T: invalid node: %v", n, n))
   136  	}
   137  }
   138  
   139  // commitChildren commits the children of the given fullnode
   140  func (c *committer) commitChildren(n *fullNode, db *Database) ([17]node, int, error) {
   141  	var (
   142  		committed int
   143  		children  [17]node
   144  	)
   145  	for i := 0; i < 16; i++ {
   146  		child := n.Children[i]
   147  		if child == nil {
   148  			continue
   149  		}
   150  		// If it's the hashed child, save the hash value directly.
   151  		// Note: it's impossible that the child in range [0, 15]
   152  		// is a valueNode.
   153  		if hn, ok := child.(hashNode); ok {
   154  			children[i] = hn
   155  			continue
   156  		}
   157  		// Commit the child recursively and store the "hashed" value.
   158  		// Note the returned node can be some embedded nodes, so it's
   159  		// possible the type is not hashNode.
   160  		hashed, childCommitted, err := c.commit(child, db)
   161  		if err != nil {
   162  			return children, 0, err
   163  		}
   164  		children[i] = hashed
   165  		committed += childCommitted
   166  	}
   167  	// For the 17th child, it's possible the type is valuenode.
   168  	if n.Children[16] != nil {
   169  		children[16] = n.Children[16]
   170  	}
   171  	return children, committed, nil
   172  }
   173  
   174  // store hashes the node n and if we have a storage layer specified, it writes
   175  // the key/value pair to it and tracks any node->child references as well as any
   176  // node->external trie references.
   177  func (c *committer) store(n node, db *Database) node {
   178  	// Larger nodes are replaced by their hash and stored in the database.
   179  	var (
   180  		hash, _ = n.cache()
   181  		size    int
   182  	)
   183  	if hash == nil {
   184  		// This was not generated - must be a small node stored in the parent.
   185  		// In theory, we should apply the leafCall here if it's not nil(embedded
   186  		// node usually contains value). But small value(less than 32bytes) is
   187  		// not our target.
   188  		return n
   189  	} else {
   190  		// We have the hash already, estimate the RLP encoding-size of the node.
   191  		// The size is used for mem tracking, does not need to be exact
   192  		size = estimateSize(n)
   193  	}
   194  	// If we're using channel-based leaf-reporting, send to channel.
   195  	// The leaf channel will be active only when there an active leaf-callback
   196  	if c.leafCh != nil {
   197  		c.leafCh <- &leaf{
   198  			size: size,
   199  			hash: common.BytesToHash(hash),
   200  			node: n,
   201  		}
   202  	} else if db != nil {
   203  		// No leaf-callback used, but there's still a database. Do serial
   204  		// insertion
   205  		db.lock.Lock()
   206  		db.insert(common.BytesToHash(hash), size, n)
   207  		db.lock.Unlock()
   208  	}
   209  	return hash
   210  }
   211  
   212  // commitLoop does the actual insert + leaf callback for nodes.
   213  func (c *committer) commitLoop(db *Database) {
   214  	for item := range c.leafCh {
   215  		var (
   216  			hash = item.hash
   217  			size = item.size
   218  			n    = item.node
   219  		)
   220  		// We are pooling the trie nodes into an intermediate memory cache
   221  		db.lock.Lock()
   222  		db.insert(hash, size, n)
   223  		db.lock.Unlock()
   224  
   225  		if c.onleaf != nil {
   226  			switch n := n.(type) {
   227  			case *shortNode:
   228  				if child, ok := n.Val.(valueNode); ok {
   229  					c.onleaf(nil, nil, child, hash)
   230  				}
   231  			case *fullNode:
   232  				// For children in range [0, 15], it's impossible
   233  				// to contain valueNode. Only check the 17th child.
   234  				if n.Children[16] != nil {
   235  					c.onleaf(nil, nil, n.Children[16].(valueNode), hash)
   236  				}
   237  			}
   238  		}
   239  	}
   240  }
   241  
   242  func (c *committer) makeHashNode(data []byte) hashNode {
   243  	n := make(hashNode, c.sha.Size())
   244  	c.sha.Reset()
   245  	c.sha.Write(data)
   246  	c.sha.Read(n)
   247  	return n
   248  }
   249  
   250  // estimateSize estimates the size of an rlp-encoded node, without actually
   251  // rlp-encoding it (zero allocs). This method has been experimentally tried, and with a trie
   252  // with 1000 leafs, the only errors above 1% are on small shortnodes, where this
   253  // method overestimates by 2 or 3 bytes (e.g. 37 instead of 35)
   254  func estimateSize(n node) int {
   255  	switch n := n.(type) {
   256  	case *shortNode:
   257  		// A short node contains a compacted key, and a value.
   258  		return 3 + len(n.Key) + estimateSize(n.Val)
   259  	case *fullNode:
   260  		// A full node contains up to 16 hashes (some nils), and a key
   261  		s := 3
   262  		for i := 0; i < 16; i++ {
   263  			if child := n.Children[i]; child != nil {
   264  				s += estimateSize(child)
   265  			} else {
   266  				s++
   267  			}
   268  		}
   269  		return s
   270  	case valueNode:
   271  		return 1 + len(n)
   272  	case hashNode:
   273  		return 1 + len(n)
   274  	default:
   275  		panic(fmt.Sprintf("node type %T", n))
   276  	}
   277  }